Enhancing Nutrient Profile and Reducing Acrylamide in California-Style Table Olives with Cassia grandis Fortification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Californian-Style Table Olives Elaboration Process
2.3. Total Phenolic Compounds and Antioxidant Activities
2.4. Acrylamide Analysis
2.5. Micronutrients Analysis with ICP-OES
2.6. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic Compounds and Antioxidant Activities
3.2. Determination of Minerals in California-Style Table Olives After the Addition of “Carao” Pulp
3.3. Influence of “Carao” Addition in the Synthesis of Acrylamide in Californian-Style Table Olives
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buitriago, E.; García-Brenes, D.; Navarro, J.; Iñiguez, R. Comercio de la Aceituna de Mesa Sevillana a Través Puerto de Sevilla. 1891–1991; IGP Aceitunas Manzanilla y Gordal de Sevillana: Sevilla, Spain, 2024. [Google Scholar]
- International Olive Council (IOC). Method Sensory Analysis of Table Olives; COI/OT/MO; International Olive Council: Madrid, Spain, 2024. [Google Scholar]
- Chou, C.; Marcos-Matamoros, R.; López-Nevado, J.; López-Feria, S.; González-Reviriego, N. Comparison of five strategies for seasonal prediction of bioclimatic indicators in the olive sector. Clim. Serv. 2023, 30, 100345. [Google Scholar] [CrossRef]
- Martín-Vertedor, D.; Rodrigues, N.; Marx, Í.M.G.; Veloso, A.C.A.; Peres, A.M.; Pereira, J.A. Impact of thermal sterilization on the physicochemical-sensory characteristics of Californian-style black olives and its assessment using an electronic tongue. Food Control 2020, 117, 107369. [Google Scholar] [CrossRef]
- Brenes-Álvarez, M.; Johanningsmeier, S.D.; Bough, R.; Medina, E.; Romero, C. Characterization of preservation solutions of Spanish black olives and potential for acrylamide formation in processed products. Food Control 2025, 175, 111307. [Google Scholar] [CrossRef]
- Martín-Vertedor, D.; Fernández, A.; Mesías, M.; Martínez, M.; Díaz, M.; Martín-Tornero, E. Industrial Strategies to Reduce Acrylamide Formation in Californian-Style Green Ripe Olives. Foods 2020, 9, 1202. [Google Scholar] [CrossRef]
- Shukla, P.; Sahu, N.K.; Kumar, R.; Dhalla, D.K.; Rakshit, S.; Bhadauria, M.; Das Agrawal, N.; Shrivastava, S.; Shukla, S.; Nirala, S.K. Quercetin ameliorates acute acrylamide induced spleen injury. Biotech. Histochem. 2023, 98, 221–229. [Google Scholar] [CrossRef]
- Kacar, S.; Vejselova, D.; Kutlu, H.M.; Sahinturk, V. Acrylamide-derived cytotoxic, anti-proliferative, and apoptotic effects on A549 cells. Hum. Exp. Toxicol. 2018, 37, 468–474. [Google Scholar] [CrossRef]
- Commission Implementing Regulation (EU). 2093 of 29 November 2019 amending Regulation (EC) No 333/2007 as regards the analysis of 3-monochloropropane-1,2-diol(3-MCPD) fatty acid esters, glycidyl fatty acid esters, perchlorate, and acrylamide. Off. J. Eur. Communities-Legis. 2019, 317, 96–101. [Google Scholar]
- Commission Recommendation (EU). 1888 Of 7 November 2019 on the monitoring of the presence of acrylamide in certain foods. Official Journal of the European Communities—Legislation, 290, 31–33. Commission Recommendation (EU). (2013). 647 of 8 November 2013 on investigations into the levels of acrylamide in food. Off. J. Eur. Communities–Legis. 2019, 301, 15–17. [Google Scholar]
- Benford, D.; Bignami, M.; Chipman, J.L.; Ramos Bordajandi, L. Assessment of the genotoxicity of acrylamide. EFSA J. 2022, 20, 7293. [Google Scholar]
- Veerappan, V.R.; Gabriel, P.J.; Shlobin, N.A.; Marks, K.; Ooi, S.Z.; Aukrust, C.G.; Ham, E.; Abdi, H.; Negida, A.; Park, K.B.; et al. Global Neurosurgery in the Context of Global Public Health Practice–A Literature Review of Case Studies. World Neurosurg. 2022, 165, 20–26. [Google Scholar] [CrossRef]
- Rubiano, A.M.; Vera, D.S.; Montenegro, J.H.; Carney, N.; Clavijo, A.; Carreño, J.N.; Gutierrez, O.; Mejia, J.; Ciro, J.D.; Barrios, N.D.; et al. Recommendations of the Colombian consensus committee for the management of traumatic brain injury in prehospital, emergency department, surgery, and intensive care (beyond one option for treatment of traumatic brain injury: A stratified protocol. J. Neurosci. Rural Pract. 2020, 11, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Embling, R.; Neilson, L.; Mellor, C.; Durodola, M.; Rouse, N.; Haselgruve, A.; Shipley, K.; Tales, A.; Wilkinson, L. Exploring consumer beliefs about novel fortified foods: A focus group study with UK-based older and younger adult consumers. Appetite 2023, 193, 107139. [Google Scholar] [CrossRef]
- Kruger, J.; Taylor, J.R.N.; Ferruzzi, M.G.; Debelo, H. What is food-to-food fortification? A working definition and framework for evaluation of efficiency and implementation of best practices. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3618–3658. [Google Scholar] [CrossRef] [PubMed]
- Iddir, M.; Brito, A.; Dingeo, G.; Fernandez Del Campo, S.S.; Samouda, H.; La Frano, M.R.; Bohn, T. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients 2020, 12, 1562. [Google Scholar] [CrossRef] [PubMed]
- Allied Market Research. Global functional food market. In Opportunities and Applications of Novel Non-Thermal Processing Technologies for the Fish Industry a Food Market; Allied Market Research: New Castle, DE, USA, 2021. [Google Scholar]
- Marcía, J.A.F.; Montero, I.F.; Fernández, M.Z.; Sánchez, J.L.; Alemán, R.S.; Navarro-Alarcón, M.; Borrás-Linares, I.; Saravia, S.A.S. Quantification of Bioactive Molecules, Minerals and Bromatological Analysis in Carao (Cassia grandis). J. Agric. Sci. 2020, 12, 88–94. [Google Scholar]
- Capó, J.T.; Chanfrau, J.R.; Mirabal, J.M.G.; Ruiz, Z.P.; Fernandez, S.A. Actividad antianémica de la Cassia grandis L. Rev. Cuba. Farmacia 2004, 38, 1. [Google Scholar]
- Lafourcade, P.A.; Rodriguez, A.J.R.; Escalona, A.J.C. State of the art in Cassia grandis Lf. Rev. Cuba. Plantas Med. 2014, 1, 21–28. [Google Scholar]
- Lafourcade, P.A.; Rodríguez, A.J.R.; Keita, H.; Puente, Z.E.; Carvalho, E.; Silva, L.E.; Pereira, S.T.; Tavares, C.J.C. Cassia grandis fruit extract reduces the blood glucose level in alloxan induced diabetic rats. Biomed. Pharmacother. 2018, 103, 421–428. [Google Scholar]
- Montero-Fernández, I.; Marcía-Fuentes, J.A.; Cascos, G.; Saravia-Maldonado, S.A.; Lozano, J.; Martín-Vertedor, D. Masking Effect of Cassia grandis Sensory Defect with Flavoured Stuffed Olives. Foods 2022, 11, 2305. [Google Scholar] [CrossRef]
- Medina, L.; Aleman, R.S.; Cedillos, R.; Aryana, K.; Olson, D.W.; Marcia, J.; Boeneke, C. Effects of carao (Cassia grandis L.) on physico-chemical, microbiological and rheological characteristics of yogurt. LWT 2023, 1833, 114891. [Google Scholar] [CrossRef]
- Marcia, J.A.; Aleman, R.S.; Kazemzadeh, S.; Manrique Fernández, V.; Martín Vertedor, D.; Kayanush, A.; Montero Fernández, I. Isolated Fraction of Gastric-Digested Camel Milk Yogurt with Carao (Cassia grandis) Pulp Fortification Enhances the Anti-Inflammatory Properties of HT-29 Human Intestinal Epithelial Cells. Pharmaceuticals 2023, 16, 1032. [Google Scholar] [CrossRef] [PubMed]
- Al-Hajm, A.Y.S.; Ozgun, E. Effects of acrylamide on protein degradation pathways in human liver-derived cells and the efficacy of N-acetylcysteine and curcumin. Drug and Chem. Toxicol. 2022, 45, 1536–1543. [Google Scholar] [CrossRef] [PubMed]
- Fernández, A.; Muñoz, J.M.; Martín-Tornero, E.; Martínez, M.; Martín-Vertedor, D. Acrylamide mitigation in Californian-style olives after termal and baking treatments. J. Food Compos. Anal. 2022, 108, 104423. [Google Scholar] [CrossRef]
- Shrivastava, S.; Gupta, D.; Gupte, S.S.; Uthra, C.; Sharma, V.; Shukla, S. Curative efficacy of polyphenols against acrylamide induced toxicity and analysis of acrylamide in Indian food by LCMS method. Food Chem. Adv. 2023, 3, 100522. [Google Scholar] [CrossRef]
- Rajesh, T.P.; Basheer, V.A.; Packirisamy, A.S.B.; Ravi, S.N.; Vallinayagam, S. Effective inhibition of enzymatic browning and carcinogenic acrylamide in fried food by polyphenols. Top. Catal. 2024, 67, 300–312. [Google Scholar] [CrossRef]
- Martín-Vertedor, D.; Fernandez, A.; Mesías, M.; Martínez, M.; Martín-Tornero, E. Identification of mitigation strategies to reduce acrylamide levels during the production of black olives. J. Food Compos. Anal. 2021, 102, 104009. [Google Scholar] [CrossRef]
- Swain, T.; Hillis, E. The phenolic constituents of Prunus domestica. I.—The quantitative analysis of phenolic constituents. J. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT–Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Liu, X.; Hu, H.; Liu, J.; Chen, J.; Chu, J.; Cheng, H. Physcion, a novel anthraquinone derivative against Chlamydia psittaci infection. Veter-Microbiol. 2023, 279, 109664. [Google Scholar] [CrossRef]
- Lodolini, E.M.; Fernández, A.; Morales-Sillero, A.; Mendiano, A.; Martín-Vertedor, D. Influence of pre-harvest calcium applications on table olive characteristics during Spanish-style elaboration process. Sci. Hortic. 2023, 308, 111577. [Google Scholar] [CrossRef]
- Delfanian, M.; Razavi, S.M.; Khodaparast, M.H.H.; Kenari, R.E.; Golmohammadzadeh, S. Influence of main emulsion components on the physicochemical and functional properties of W/O/W nano-emulsion: Effect of polyphenols, Hi-Cap, basil seed gum, soy and whey protein isolates. Food Res. Int. 2018, 108, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Wootton-Bearda, P.C.; Morana, A.; Ryan, L. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin–Ciocalteu methods. Food Res. Int. 2010, 44, 217–224. [Google Scholar] [CrossRef]
- Huang, H.; Li, Y.; Huang, B.; Pi, X. An Optimization Model for Expired Drug Recycling Logistics Networks and Government Subsidy Policy Design Based on Tri-level Programming. Int. J. Environ. Res. Public Health 2015, 12, 7738–7751. [Google Scholar] [CrossRef] [PubMed]
- Floegel, A.; Kim, D.; Chury, S.-J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Blanco-Rojo, R.; Vaquero, M.P. Iron bioavailability from food fortification to precision nutrition. A review. Innov. Food Sci. Emerg. Technol. 2019, 51, 126–138. [Google Scholar] [CrossRef]
- Shubham, K.; Anukiruthika, T.; Dutta, S.; Kashyap, A.V.; Moses, J.A.; Anandharamakrishnan, C. Iron deficiency anemia: A comprehensive review on iron absorption, bioavailability and emerging food fortification approaches. Trends Food Sci. Technol. 2020, 99, 58–75. [Google Scholar] [CrossRef]
- Joy, F.; Chaithra, K.P.; Nizam, A.; Deepti, A.; Chakrapani, P.B.; Das, A.K.; Vinod, T.P.; Nair, Y. A Multi-Stimuli responsive organic luminogen with aggregation induced emission for the selective detection of Zn2+ ions in solution and solid state. Chem. Eng. J. 2023, 453, 139798. [Google Scholar] [CrossRef]
- King, J.C.; Brown, K.H.; Gibson, R.S.; Krebs, N.F.; Lowe, N.M.; Siekmann, J.H.; Raiten, D.J. Biomarkers of Nutrition for Development (BOND)—Zinc review. J. Nutr. 2015, 146, 858S–885S. [Google Scholar] [CrossRef]
- Tsang, B.L.; Holsted, E.; McDonald, C.M.; Brown, K.H.; Black, R.; Mbuya, M.N.N.; Grant, F.; Rowe, L.A.; Manger, M.S. Effects of Foods Fortified with Zinc, Alone or Cofortified with Multiple Micronutrients, on Health and Functional Outcomes: A Systematic Review and Meta-Analysis. Adv. Nutr. 2021, 12, 1821–1837. [Google Scholar] [CrossRef]
- Singh, P.; Prasad, S.A. A review on iron, zinc and calcium biological significance and factors affecting their absorption and bioavailability. J. Food Compos. Anal. 2023, 123, 105529. [Google Scholar] [CrossRef]
- Gregory, P.J.; Wahbi, A.; Adu-Gyamfi, J.; Heiling, M.; Gruber, R.; Joy, E.J.M.; Broadley, M.R. Approaches to reduce zinc and iron déficits in food systems. Glob. Food Secur. 2017, 15, 1–10. [Google Scholar] [CrossRef]
- Li, L.; Yang, X. The essential element manganese, oxidative stress, and metabolic diseases: Links and interactions. Oxid. Med. Cell. Longev. 2018, 2018, 7I580707. [Google Scholar] [CrossRef] [PubMed]
- Cherfi, A.; Abdoum, S.; Gaci, O. Food survey: Levels and potential health risks of chromium, lead, zinc and copper content in fruits and vegetables consumed in Algeria. Food Chem. Toxicol. 2014, 70, 48–73. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Um, X.; Liang, X.; Jiang, Z.; Feng, J.; She, R.; Ma, C.; Song, J.; Li, Z.; Peng, B.; et al. Partial primary osteoporosis maybe due to parathyroid hyperfunction caused by calcium intake insufficiency and/or vitamin D insufficiency/deficiency. Med. Hypotheses 2024, 182, 111236. [Google Scholar] [CrossRef]
- Shlisky, J.; Mandlik, R.; Askari, S.; Abrams, S.; Belizan, J.M.; Bourassa, M.W.; Cormick, G.; Driller-Colangelo, A.; Gomes, F.; Khadilkar, A.; et al. Calcium deficiency worldwide: Prevalence of inadequate intakes and associated health outcomes. Ann. N. Y. Acad. Sci. 2022, 1512, 10–28. [Google Scholar] [CrossRef]
- Singh, D.; Tomar, S.; Singh, S.; Chaudhary, G.; Singh, A.P.; Gupta, R. A fluorescente pH switch probe for the ‘turn-on’ dual-channel discriminative detection of magnesium and zinc ions. J. Photochem. Photobiol. A Chem. 2023, 435, 114334. [Google Scholar] [CrossRef]
- World Health Organization. Hypertension. 2020. Available online: https://www.who.int/health-topics/hypertension/#tab¼tab_1 (accessed on 12 May 2024).
- Sun, H.; Weaver, C.M. Rise in Potassium Deficiency in the US Population Linked to Agriculture Practices and Dietary Potassium Deficits. J. Agric. Food Chem. 2020, 68, 11121–11127. [Google Scholar] [CrossRef]
- Byrd-Bredbenner, C.; Moe, G.; Berning, J.; Kelly, D. Wardlaw’s Perspectives in Nutrition, 7th ed.; McGraw-Hill Companies: New York, NY, USA, 2019. [Google Scholar]
- Heaney, R.P. Bone Biology in Health and Disease. In Modern Nutrition in Health and Disease, 10th ed.; Shills, M.E., Shike, M., Ross, A.C., Caballero, B., Cousins, R.J., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006; pp. 1314–1325. [Google Scholar]
- National Institute of Health (NIH). 2019. Available online: https://ods.od.nih.gov/pdf/factsheets/potassium-datosenespanol.pdf (accessed on 8 May 2024).
- McLean, R.M.; Wang, N.X. Chapter Three-Potassium. Adv. Food Nutr. Res. 2021, 96, 89–121. [Google Scholar]
- Cao, Y.; Zhen, S.; Atlantis, E.; Shi, Z. Dietary magnesium-to-iron intake ratios and risk of impaired fasting glucose in Chinese adults: The prospective Jiangsu Nutrition Study (JIN). J. Nutr. Intermed. Metab. 2018, 14, 22–28. [Google Scholar] [CrossRef]
- Dai, Q.; Shu, X.O.; Deng, X.; Xiang, Y.B.; Li, H.; Yang, G.; Shrubsole, M.J.; Ji, B.; Cai, H.; Chow, W.H. Modifying effect of calcium/magnesium intake ratio and mortality: A population-based cohort study. BMJ Open 2013, 3, e002111. [Google Scholar] [CrossRef]
- Costello, R.B.; Rosanoff, A.; Dai, Q.; Saldanha, L.G.; Potischman, N.A. Characterization of Dietary Supplements Containing Calcium and Magnesium and Their Respective Ratio—Is a Rising Ratio a Cause for Concern? Adv. Nutr. 2021, 12, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Trumbo, P.R.; Kirkpatrick, K.M.; Roberts, J.; Smith, P.; Zecca, P. Perspective: Challenges and Strategies to Reduce the Sodium Content of Foods by the Food Service Industry. Adv. Nutr. 2023, 14, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Casado, F.J.; Sánchez, A.H.; Montaño, A. Reduction of acrylamide content of ripe olives by selected additives. Food Chem. 2010, 119, 161–166. [Google Scholar] [CrossRef]
- Martín-Vertedor, D.; Fernández, A.; Hernández, A.; Arias-Calderón, R.; Delgado-Adámez, J.; Pérez-Nevado, F. Acrylamide reduction after phenols addition to Californian-style black olives. Food Control 2020, 108, 106888. [Google Scholar] [CrossRef]
- Mechi, D.; Pérez-Nevado, F.; Montero-Fernández, I.; Baccouri, B.; Abaza, L.; Martín-Vertedor, D. Evaluation of Tunisian Olive Leaf Extracts to Reduce the Bioavailability of Acrylamide in Californian-Style Black Olives. Antioxidants 2023, 12, 117. [Google Scholar] [CrossRef]
- Jin, J.Q.; Ma, J.Q.; Ma, C.L.; Yao, M.Z.; Chen, L. Determination of Catechin Content in Representative Chinese Tea Germplasms. J. Agric. Food Chem. 2014, 62, 9436–9441. [Google Scholar] [CrossRef]
- Bassama, J.; Brat, P.; Bohuon, P.; Boulanger, R.; Günata, Z. Study of acrylamide mitigation in model system: Effect of pure phenolic compounds. Food Chem. 2010, 123, 558–562. [Google Scholar] [CrossRef]
- Hölzle, E.; Becker, L.; Bajrami, Y.; Geisler, M.; Amrein, T.M.; Biedermann, M.; Oellig, C. Factors impacting acrylamide formation in table olives with particular focus on polyphenols. Food Control 2025, 175, 111287. [Google Scholar] [CrossRef]
Treatments | TPC (mg∙100 g−1) GAE | DPPH (mg∙100 g−1) | ABTS (mg∙100 g−1) |
---|---|---|---|
Fresh “Carao” | 284.6 ± 2.3 a | 878.5 ± 3.5 a | 1034.2 ± 7.5 a |
Lyophilized “Carao” | 248.3 ± 4.3 b | 721.2 ± 2.8 b | 938.2 ± 1.8 b |
Olives + brine | 111.2 ± 5.2 c | 541.2 ± 2.3 e | 614.2 ± 5.3 d |
Brine solution | 12.3 ± 1.1 e | 45.2 ± 1.2 g | 23.2 ± 1.8 g |
Olives + FeGluc | 92.3 ± 3.1 d | 378.1 ± 0.3 f | 421.5 ± 1.2 e |
Brine + FeGluc | 12.9 ± 2.1 e | 43.2 ± 0.1 g | 39.2 ± 0.2 f |
Olives + Fresh “Carao” | 198.2 ± 3.2 a | 1034.2 ± 2.0 a | 1204.2 ± 3.5 a |
Brine + Fresh “Carao” | 141.3 ± 2.1 b | 723.1 ± 1.0 c | 921.3 ± 7.3 b |
Olives + Lyophilized “Carao” | 145.2 ± 2.1 b | 803.2 ± 3.1 b | 912.3 ± 2.3 b |
Brine + Lyophilized “Carao” | 112.1 ± 1.2 c | 611.2 ± 2.1 d | 804.2 ± 1.2 c |
Micronutrients (mg∙kg−1) | ||||||||
---|---|---|---|---|---|---|---|---|
Treatments | Copper (Cu) | Iron (Fe) | Manganese (Mn) | Zinc (Zn) | Calcium (Ca) | Magnesium (Mg) | Potassium (K) | Sodium (Na) |
Fresh “Carao” | <0.5 | 3294.7 ± 121.6 a | 18.2 ± 5.4 a | 13.6 ± 8.6 ns | 2094.0 ± 216.6 a | 1365.2 ± 128.2 ns | 2590.6 ± 28.3 a | 165.7 ± 8.3 ns |
Lyophilized “Carao” | <0.5 | 2101.5 ± 217.5 b | 13.6 ± 3.6 b | 12.5 ± 3.5 | 1570.0 ± 188.9 b | 1421.6 ± 206.6 | 2103.4 ± 22.3 b | 160.7 ± 8.3 |
Olives + brine | <0.5 | 120.4 ± 8.3 e | <0.5 | 10.9 ± 2.4 c | 566.8 ± 25.6 d | 247.3 ± 14.5 e | 1094.3 ± 154.2 d | 14,663.2 ± 254.5 b |
Brine solution | <0.5 | 57.0 ± 6.4 f | <0.5 | 12.4 ± 3.1 c | 139.4 ± 27.4 g | <0.5 | 189.7 ± 26.7 f | 142.6 ± 9.3 e |
Olives + FeGluc | <0.5 | 1017.9 ± 15.8 c | <0.5 | 11.4 ± 2.4 c | 612.4 ± 32.3 e | 300.1 ± 17.5 d | 1425.5 ± 122.1 b | 14,194.2 ± 136.4 b |
Brine + FeGluc | <0.5 | 2202.5 ± 25.9 a | <0.5 | 19.0 ± 3.3 a | 162.6 ± 14.6 f | <0.5 | 325.2 ± 22.1 e | 270.2 ± 19.5 d |
Olives + Fresh “Carao” | <0.5 | 893.5 ± 16.7 d | <0.5 | 11.2 ± 2.5 c | 1385.0 ± 131.3 a | 558.5 ± 21.4 c | 1688.8 ± 101.4 a | 19,434.7 ± 158.2 a |
Brine + Fresh “Carao” | <0.5 | 1397.8 ± 235.1 b | 5.0 ± 2.1 b | 15.5 ± 2.2 b | 1115.7 ± 264.1 b | 748.8 ± 11.5 b | 1387.8 ± 22.5 b | 89.9 ± 15.6 f |
Olives + Lyophilized “Carao” | <0.5 | 705.4 ± 114.7 d | <0.5 | 11.8 ± 1.2 c | 1058.0 ± 111.2 b | 517.3 ± 32.4 c | 1464.8 ± 105.5 b | 12931.5 ± 187.4 c |
Brine + Lyophilized “Carao” | <0.5 | 1112.5 ± 146.3 c | 7.4 ± 5.4 a | 13.6 ± 2.5 c | 865.3 ± 84.5 c | 1003.8 ± 164.4 a | 1149.6 ± 136.9 c | 111.3 ± 11.3 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montero-Fernández, I.; Fernández, V.M.; Pérez-Nevado, F.; Saravia-Maldonado, S.A.; Fuentes, J.A.M.; Martín-Vertedor, D. Enhancing Nutrient Profile and Reducing Acrylamide in California-Style Table Olives with Cassia grandis Fortification. Foods 2025, 14, 1426. https://doi.org/10.3390/foods14081426
Montero-Fernández I, Fernández VM, Pérez-Nevado F, Saravia-Maldonado SA, Fuentes JAM, Martín-Vertedor D. Enhancing Nutrient Profile and Reducing Acrylamide in California-Style Table Olives with Cassia grandis Fortification. Foods. 2025; 14(8):1426. https://doi.org/10.3390/foods14081426
Chicago/Turabian StyleMontero-Fernández, Ismael, Víctor Manrique Fernández, Francisco Pérez-Nevado, Selvin Antonio Saravia-Maldonado, Jhunior Abraham Marcía Fuentes, and Daniel Martín-Vertedor. 2025. "Enhancing Nutrient Profile and Reducing Acrylamide in California-Style Table Olives with Cassia grandis Fortification" Foods 14, no. 8: 1426. https://doi.org/10.3390/foods14081426
APA StyleMontero-Fernández, I., Fernández, V. M., Pérez-Nevado, F., Saravia-Maldonado, S. A., Fuentes, J. A. M., & Martín-Vertedor, D. (2025). Enhancing Nutrient Profile and Reducing Acrylamide in California-Style Table Olives with Cassia grandis Fortification. Foods, 14(8), 1426. https://doi.org/10.3390/foods14081426