The Valorization of Potato Peels as a Functional Ingredient in the Food Industry: A Comprehensive Review
Abstract
:1. Introduction
2. Potato Chemical Composition
Potato Cultivar | Carbohydrates | Protein | Fiber | Fat | Ash | Unit | References | |
---|---|---|---|---|---|---|---|---|
Flesh | ||||||||
Gold Potato (Solanum tuberosum L.) raw, without skin | 16.0 | 1.81 | 13.8 | 0.26 | 0.89 | g/100 g FW | [45] | |
Red Potato (Solanum tuberosum L.) raw, without skin | 16.3 | 2.06 | 13.8 | 0.25 | 0.95 | g/100 g FW | [45] | |
Primura (Solanum tuberosum L.) raw | 16.0 | 2.0 | 1.8 | 0.1 | n.r. | g/100 g FW | [46] | |
Marabel (Solanum tuberosum L.) raw | 16.0 | 2.0 | 1.8 | 0.1 | n.r. | g/100 g FW | [46] | |
Agata (Solanum tuberosum L.) raw | 16.0 | 2.0 | 1.8 | 0.1 | n.r. | g/100 g FW | [46] | |
Annabelle (Solanum tuberosum L.) raw | 16.0 | 2.0 | 1.8 | 0.1 | n.r. | g/100 g FW | [46] | |
Vivaldi (Solanum tuberosum L.) raw | 16.0 | 2.0 | 1.8 | 0.1 | n.r. | g/100 g FW | [46] | |
Peels | ||||||||
Red Potato (Solanum tuberosum L.) | 72 * | 15.99 * | 15.97 * | 0.81 * | 6.69 * | % | [47] | |
Gold Potato (Solanum tuberosum L.) | 70 * | 14.17 * | 21.72 * | 1.17 * | 9.12 * | % | [47] | |
Organic Russet (Solanum tuberosum L.) | 76 * | 11.98 * | 21.4 * | 1.12 * | 7.32 * | % | [47] | |
Non-organic Russet (Solanum tuberosum L.) | 71 * | 17.19 * | 22.39 * | 1.1 * | 7.34 * | % | [47] | |
Lady Rosetta (Solanum tuberosum L.) | 72.53 ± 0.08 | 11.17 ± 0.03 | n.r. | 2.09 ± 0.01 | 7.24 ± 0.02 | g/100 g DW | [48] | |
Lady Claire (Solanum tuberosum L.) | 77.38 ± 0.65 | 12.44 ± 0.09 | n.r. | 1.27 ± 0.38 | 4.83 ± 0.13 | g/100 g DW | [48] | |
Spunta (Solanum tuberosum L.) | 88.0 ± 4.4 | 2.10 ± 0.11 | n.r. | 0.73 ± 0.04 | 0.91 ± 0.01 | % DW | [49] | |
Agria (Solanum tuberosum L.) | 86.97 ± 0.43 | 6.47 ± 0.23 | n.r. | 0 * | 5.46 ± 0.17 | % DW | [50] | |
U.V. (Solanum tuberosum L.) | 68.7 * | 8 * | n.r. | 2.6 * | 6.34 * | % DW | [39] | |
U.V. (Solanum tuberosum L.) | 73.79 ± 3.02 | 4.42 ± 0.45 | 4.81 ± 0.07 | 1.63 ± 0.54 | 3.65 ± 0.41 | % | [51] | |
U.V. (Solanum tuberosum L.) | 43.20 * | 10.73 * | n.r. | 2.45 * | 7.45 * | % | [52] | |
Purple-Fleshed Sweet Potato (Ipomoea batatas L.) | 79.10 ± 0.03 | 2.33 ± 0.04 | 15.8 ± 0.50 | 0.51 ± 0.04 | 2.06 ± 0.01 | g/100 g DW | [36] | |
Sweet Potato (Ipomoea batatas L.) | 72.60 ± 1.58 | 4.64 ± 0.51 | 3.79 ± 0.67 | 2.02 ± 0.22 | 4.56 ± 1.15 | % | [51] | |
Flesh/Peels | Potato tissue | |||||||
Red Emmalie (Solanum tuberosum L.) | Flesh | 5.03 TSS °Brix | 103.3 * | 24.2 * | n.r. | 61.4 * | g/kg DM | [24] |
Peels | 3.53 TSS °Brix | 147.2 * | 66.4 * | n.r. | 78.2 * | g/kg DM | [24] | |
Rosalinde (Solanum tuberosum L.) | Flesh | 4.50 TSS °Brix | 121.1 * | 21.4 * | n.r. | 52.1 * | g/kg DM | [24] |
Peels | 4.16 TSS °Brix | 161.1 * | 71.7 * | n.r. | 76.6 * | g/kg DM | [24] | |
Highland Burgundy Red (Solanum tuberosum L.) | Flesh | 5.40 TSS °Brix | 107.1 * | 27.6 * | n.r. | 55.7 * | g/kg DM | [24] |
Peels | 4.56 TSS °Brix | 165.3 * | 75.8 * | n.r. | 86.5 * | g/kg DM | [24] | |
Violetta (Solanum tuberosum L.) | Flesh | 4.86 TSS °Brix | 119.3 * | 26.5 * | n.r. | 67.0 * | g/kg DM | [24] |
Peels | 3.63 TSS °Brix | 148.9 * | 73.7 * | n.r. | 92.5 * | g/kg DM | [24] | |
Valfi (Solanum tuberosum L.) | Flesh | 4.73 TSS °Brix | 89.4 * | 20.3 * | n.r. | 51.5 * | g/kg DM | [24] |
Peels | 4.46 TSS °Brix | 139.0 * | 55.5 * | n.r. | 68.2 * | g/kg DM | [24] | |
Salad Blue (Solanum tuberosum L.) | Flesh | 5.06 TSS °Brix | 119.4* | 20.5* | n.r. | 52.5 * | g/kg DM | [24] |
Peels | 3.86 TSS °Brix | 141.1 * | 47.5 * | n.r. | 6.33 * | g/kg DM | [24] | |
Maris Piper (Solanum tuberosum L.) | Flesh | 76.4 ± 3.3 | 7.1 ± 0.21 | n.r. | 2.61 ± 0.05 | n.r. | % (w/w) DB | [44] |
Peels | 62.4 ± 3.3 | 11.0 ± 0.15 | n.r. | 1.75 ± 0.02 | n.r. | % (w/w) DB | [44] |
2.1. Bioactive Compounds of PP
2.1.1. Phenolic Compounds in PP
PP Variety and Origin | Chlorogenic Acid | Caffeic Acid | Ferulic Acid | Gallic Acid | Protocatechuic Acid | Vanillic Acid | p-Hydroxybenzoic Acid | p-Coumaric Acid | Catechin | Quercetin | Rutin | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bintje— Italy (mg/g DW) | 1.97 ± 0.02 | 0.24 ± 0.00 | 0.06 ± 0.00 | - | - | - | - | - | - | - | - | [71] |
Challenger— Italy (mg/g DW) | 1.27 ± 0.01 | 0.22 ± 0.00 | 0.05 ± 0.00 | - | - | - | - | - | - | - | - | [71] |
Daisy— Italy (mg/g DW) | 4.10 ± 0.03 | 0.16 ± 0.00 | 0.12 ± 0.00 | - | - | - | - | - | - | - | - | [71] |
Innovator— Italy (mg/g DW) | 2.52 ± 0.01 | 0.30 ± 0.05 | 0.06 ± 0.00 | - | - | - | - | - | - | - | - | [71] |
Fontane— Italy (mg/g DW) | 3.04 ± 0.01 | 1.22 ± 0.01 | 0.12 ± 0.00 | - | - | - | - | - | - | - | - | [71] |
Maris Piper— UK (mg/g DW) | 3.87 * | 0.92 * | - | - | - | 0.31 * | - | traces | - | - | - | [44] |
Spunta—Greece (mg/100 g DW) | 8.3 ± 0.5 | 8.9 ± 0.2 | 10.8 ± 3.5 | - | - | - | - | - | - | - | - | [73] |
Spunta —Luxembourg (µg/g DW) | 907 ± 200 | 104 ± 41.9 | 2.5 ± 2.0 | - | - | 1.5 ± 1.4 | - | 4.7 ± 2.0 | 3.8 ± 5.3 | - | 11.2 ± 6.6 | [74] |
Bintje—Luxembourg (µg/g DW) | 948 ± 169 | 103± 21.0 | 0.6 ± 0.2 | - | - | 3.1 ± 0.7 | - | 1.4 ± 0.4 | 1.8 ± 1.8 | - | 5.3 ± 2.1 | [74] |
Russet— Canada (mg/100 g freeze-dried sample) | 134.9 * | 98.5 * (a) | 56.9 * (a) | - | - | - | - | 8.7 * (a) | - | - | - | [75] |
Innovator— Canada (mg/100 g freeze-dried sample) | 128.9 * | 109.4 * (a) | 84.8 * (a) | - | - | - | - | 5.3 * (a) | - | - | - | [75] |
Yellow— Canada (mg/100 g freeze-dried sample) | 16.9 * (a) | 29.7 * (a) | 12.5 * (a) | - | - | - | - | 2.6 * (a) | - | - | - | [75] |
Purple— Canada (mg/100 g freeze-dried sample) | 364.9 * (a) | 92 *(a) | 6.9 * (a) | - | - | - | - | 7.4 * (a) | - | - | - | [75] |
Fianna— Mexico (mg/100 g dw acidified ethanol extracts) | 346.03 ± 2.14 | 332.58 ± 3.67 | 3.29 ± 0.05 | 233.49 ± 9.78 | - | - | - | - | - | 11.22 ± 0.09 | 5.01 ± 1.03 | [72] |
Fianna— Mexico (mg/100 g DW water extracts) | 159.99 ± 1.05 | 56.99 ± 3.23 | - | 39.99 ± 3.03 | - | - | - | - | - | 2.18 ± 0.07 | - | [72] |
Agria (mg/L ethanolic extracts) | 0.56–31.94 | - | 0.36–6.41 | - | - | - | - | - | - | - | - | [64] |
Kennebec—Luxembourg (µg/g DW) | 1625 ± 323 | 233 ± 19.5 | 1.9 ± 1.3 | - | - | 1.5 ± 1.9 | - | 3.0 ± 0.8 | 1.9 ± 2.7 | - | 120.0 ± 4.4 | [74] |
Mona Lisa—Luxembourg (µg/g DW) | 611 ± 149 | 140 ± 21.8 | 3.2 ± 3.6 | - | - | 4.6 ± 0.9 | - | 0.6 ± 0.7 | 1.2 ± 1.7 | - | 31.9 ± 3.2 | [74] |
U.V.—Spain (μg/mg dry extract) | 6.013 ± 0.189 | 1.297 ± 0.086 | 0.152 ± 0.010 | - | - | 0.067 ± 0.005 | - | 0.031 ± 0.002 | - | - | - | [76] |
Average of different varieties (mg/100 g DB) | 1.0–620 | 3.3–333 | 0.02–3.3 | 40–233 | ~2 mg/100 g fw * | 0.12–31 | - | 0.02–3.3 | - | 11 * | 12 * | [18] |
Average of different varieties (mg/100 g) | 100.0–220.0 | 5.0–50 | 0.6–9 | - | 1.3–7.6 | 1.6–22.4 | - | - | - | - | - | [43] |
Average of different varieties (mg/100 g DW) | 1468.1 ± 39.3 | 172.4 ± 3.2 | 3.9 ± 2.5 | - | 7.6 ± 0.5 | 22.4 ± 2.5 | 7.84 ± 1.27 | 1.6 ± 0.9 | - | - | - | [65] |
Average of different varieties (mg/100 g DW) | 753.0–821.3 | 278.0–296.0 | 174.0–192.0 | 58.6–63.0 | 216.0–256.0 | 43.0–48.0 | 82.0–87.0 | 41.8–45.6 | - | - | - | [41,43] |
2.1.2. Glycoalkaloids in PP
3. Extraction of Bioactive Compounds
3.1. Conventional Extraction Methods
3.2. Non-Conventional Extraction Methods
Phenolic Compounds | ||||
Extraction Method | Double Extraction | Operating Conditions | TPC (mgGAE/g db) | Reference |
UAE | - | 80% methanol; ratio 1:10 (w/v); t: 30–900 min; T: 30–45 °C; f: 42 kHz | 7.67 ± 0.79 (var. Lady Rosetta) 3.80 ± 0.09 (var. Lady Claire) | [48] |
UAE | - | 80% methanol (v/v); ratio 1:10 (w/v); t: 30–900 min; T: 30–45 °C; f: 33 kHz | 4.24 ± 0.09 (var. Lady Claire) | [48] |
UAE | - | 50% methanol (v/v); ratio 1:20 (w/v); t: 30 min; T:25 °C; f: 40 Hz | 9.09 * | [86] |
UAE | SLE: methanol; t: 16 h; T: 22 °C ± 2; ratio 1:10 (w/v) | t: 20 min | 3.26 ± 0.00 | [103] |
UAE | SLE: 80% (v/v) methanol; t: 16 h; T: 22 °C ± 2; ratio 1:10 (w/v) | t: 20 min | 3.78 ± 0.00 | [103] |
UAE | SLE: ethanol; t: 16 h; T: 22 °C ± 2; ratio 1:10 (w/v) | t: 20 min | 2.61 ± 0.00 | [103] |
UAE | SLE: 80% ethanol (v/v); t: 16 h; T: 22 °C ± 2; ratio 1:10 (w/v) | t: 20 min | 3.26 ± 0.00 | [99] |
UAE | SLE: water; t: 16 h; T: 22 °C ± 2; ratio 1:10 (w/v) | t: 20 min | 1.91 ± 0.00 | [103] |
UAE | SLE: methanol/water/acetic acid (70:25:5%, v/v); t: 60 min; L/S: 0.025 | t: 20 min | n.d. (var. Russet) | [69] |
UAE | SLE: ethanol/water/acetic acid (67:24:9%, v/v); t: 60 min; L/S: 0.025 | t: 20 min | n.d. (var. Russet) | [69] |
UAE | SLE: ethanol/water/acetic acid (51:46:3%, v/v); t: 60 min; L/S: 0.025 | t: 20 min | n.d. (var. Russet) | [69] |
MAE | - | 67.33% methanol (v/v); t: 15 min; T: 25 °C; 1:20 S-L; power: 14.67% | 3.94 ± 0.21 (var. Russett Burbank) | [94] |
MAE | - | Methanol/water (30:70%, v/v) (100:0%); t: 5–15 min; L/S: 0.02; power: 63–229 W | 3.92 * | [18] |
MAE | - | Ethanol/water (20:80%, v/v) (80:20%,v/v); t: 2–8 min; T: 50–80 °C; L/S: 0.04–0.055; power: 300 W | 9.8 * | [18] |
PLE | - | 70% ethanol (v/v); T: 125 °C | 3.68 ± 0.0 (var. Lady Claire) | [90] |
SFE | - | CO2; T: 80 °C; pressure: 350 bar; MeOH 20% (v/v); flow rate 18 g/min | 2.24 mg TPC/g dry peels (var. Maris Piper) | [44] |
Glycoalkaloids | ||||
Extraction Method | Double Extraction | Operating Conditions | TGA (mg/kg db) | Reference |
UAE | - | Solvent: water/acetic acid/sodium metabisulfite (95:4.5:0.5%, v/v); t: 5–25 min; T:25–85 °C; L/S: 0.025; amplitude: 50–100% | 40.9–438 | [91] |
UAE | - | Methanol; t: 17 min; L/S: 0.01; amplitude: 61 μm | 1102 * | [104] |
UAE | - | Methanol; t: 2.5 min; ratio 1:10 w/v | 1600 * | [79] |
UAE | SLE: methanol/water/acetic acid (70:25:5%, w/w); t: 60 min; L/S: 0.025 | t: 20 min | n.d. (var. Russet) | [69] |
UAE | SLE: ethanol/water/acetic acid (67:24:9%, w/w); t: 60 min; L/S: 0.025 | t: 20 min | n.d. (var. Russet) | [69] |
UAE | SLE: ethanol/water/acetic acid (51:46:3%); t: 60 min; L/S: 0.025 | t: 20 min | n.d. (var. Russet) | [69] |
MAE | UAE (acetonitrile/formic acid = 99:1, v/v)/ water = 5:1, v/v; t: 10.70 min; power: 505 W; ratio 1:18 g mL−1 | t: 6.10 min; power: 900 W | 292.91 ± 3.90 | [95] |
PLE | - | Methanol/water (89:11%, v/v); t: 5 min preheating + 5 min static period; T: 80 °C; pressure: 1500 psi | 1.92 * mg g−1 | [57] |
4. Biological Activities of PP
4.1. Antioxidant Activity
4.2. Anti-Inflammatory Activity
4.3. Antibacterial and Antiviral Activities
4.4. Other Activities
Activity | Extract Type | Bioactive Compounds | Main Results | Reference |
---|---|---|---|---|
Antioxidant activity in cell-based in vitro assays, anti-inflammatory effects in RAW 264.7 mouse macrophages, and antiproliferative activity against cancer cell lines | PP ethanol extract 80% (v/v) | Anthocyanins, (non-anthocyanins) phenolic compounds, flavonoids, caffeic, caffeoylquinic acids, kaempferol | Rosemary extract showed strong antioxidant (IC50 = 26 µg mL−1) and anti-inflammatory effects (IC50 = 141 µg mL−1). All extracts showed antiproliferative activity against NCI-H460, HepG2, MCF-7, and HeLa cell lines (GI50 49–365 μg mL−1). The Rosemary variety exhibited the highest activity. | [111] |
Antioxidant activity by DPPH (40 µL) and FRAP (0.1 µL) methods | PP ethanol extract | Phenolic and flavonoid compounds | Lady Rosetta exhibited superior antioxidant activity (RSA = 63.32) and nutritional content compared to FT1533, with doses of 40 µL for RSA and 0.1 µL for FRAP. | [110] |
Antioxidant activity by DPPH method and anti-microbial against Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 29213, E. coli ATCC 25922, Salmonella t. ATCC14028, and C. albicans ATCC 10231 | Water, methanol, and ethanol (80 and 100%) extracts | Phenolic and flavonoid compounds (vanillic and hesperidin) | At a dose of 70 µL (200 and 400 ppm), PP methanol extract at 400 ppm was more effective in inhibiting Gram-positive and Gram-negative bacteria, as well as Candida albicans, compared to ampicillin (control). | [103] |
Antioxidant and antiviral activities (bacteriophages Av-05 and MS2 and host E. coli ATCC 4076) | PP ethanol extract and water extract | Phenolic and flavonoid compounds (quercetin and gallic acid) | At concentrations of 1, 3, and 5 mg mL−1, phenol and flavonoid compounds from ethanol extract and their derivatives inhibited the replication of MS2 and Av-05 phage viruses (foodborne viruses) and exhibited antioxidant activity. | [72] |
Antioxidant activity by DPPH method and nitric oxide activity | Ethyl acetate and methanol extract | Phenolic compounds (gallic acid) | The ethyl acetate extract had a higher phenolic content and better antioxidant capacity than the methanol extract, showing stronger DPPH and nitric oxide activity at doses of 0.2, 0.4, 0.6, 0.8, and 1 mg mL−1. | [108] |
Antioxidant activity by DPPH radical, FRAP, and ABTS methods | PP extract with acetate acid 5% | Phenolic compounds, flavonoids, and glycoalkaloids | Doses of 0.8 µL, 10 µL, and 60 µL were used for each method. The antioxidant activity of organic PP compounds was higher than that of non-organic or conventional ones, though not significantly. | [78] |
Antioxidant activity (DPPH, nitric oxide) and antidiabetic activity (L6 rat skeletal myoblast cell line) | Hexane, ethyl acetate, methanol extracts | Gallic, caffeic, ferulic, chlorogenic acids | Ethyl acetate extracts had the highest phenolic content and antioxidant activity. EYP showed the best α-glucosidase inhibition (IC50 = 197.13 µg mL−1), ROS scavenging, and glucose uptake in L6 cells. Young PP exhibited superior antioxidant and antidiabetic activity compared to mature PP, with effects observed at concentrations of 1, 10, and 100 µL mL−1. | [61] |
Antioxidant activity by Trolox (TEAC), DPPH, and oxygen radical absorbance (ORAC) methods | Phenolic fractions | Polyphenolic compounds, anthocyanins | Purple PP exhibited the highest total phenolic content (7.2 mg g−1 peel) and antioxidant activity compared to other varieties. | [75] |
Antioxidant activity in vitro with erythrocytes; protection against FeSO4 and ascorbic acid-induced oxidative damage; inhibition of H2O2-induced morphological changes in rat erythrocytes; protection of human erythrocyte membrane proteins from ferrous ascorbate-induced damage | Aqueous PP extract | Phenolic compounds | PP extract (2.5 mg mL−1) exhibited antioxidant activity by inhibiting lipid peroxidation (80–85% inhibition in both rat and human RBC systems), protected erythrocytes from oxidative damage, prevented H2O2-induced morphological changes in rat RBCs, and safeguarded human erythrocyte membrane proteins from oxidative damage induced by ferrous ascorbate. | [112] |
Antioxidant activity, reduction in toxicity of COPs in vivo | Aqueous PP extract | Phenolic compounds | There was a significant increase in antioxidant enzyme activities and liver glutathione, with a decrease in liver enzymes, renal markers, and COP levels. A PPE diet at 2% and 3% doses effectively reduced COP toxicity in rats. | [113] |
Analgesic activity with Wistar rats by placing at hotplate 60 °C, anti-inflammatory activity with Wistar rats induced by 1% carrageenan, anti-biofilm activity with streptococcus ATCC 25175 | PP ethanol extract | Phenolic and flavonoid compounds | There were significant anti-inflammatory, anti-biofilm, and analgesic effects. The analgesic was tested at 50, 100, and 200 mg kg−1, and anti-inflammatory at 100, 200, and 400 mg kg−1. Anti-biofilm effects were assessed using 5%, 10%, and 20% extract (w/w). | [115] |
Anti- inflammatory activity with Wistar rats induced by 0.1% carrageenan | PP 70% ethanol extract | Flavonoid and phenolic compounds | At doses of 100 and 200 mg kg−1, PP ethanol extract had an anti-inflammatory effect in rats with induced edema. | [114] |
Anti-inflammatory activity with human Jurkat T cell and RAW 246.7 mouse macrophages by biomarkers IL2 and IL8 | Ethyl acetate fraction and methanol fraction | Glycoalkaloid compounds | Glycoalkaloid compounds extracted from the PP fraction exhibited anti-inflammatory effects at doses of 5, 10, and 25 μg mL−1. | [116] |
Antibacterial activity with E. coli ATCC 25922, S. enterica ATCC 1311, K. pneumonia ATCC 2473, S. aureus ATCC 6538, L. monocytogenes ATCC 19115, and antioxidant activity by DPPH method | PP ethanol extract | Phenol and flavonoid compounds | PP extract (10 mg mL−1) exhibited antibacterial activity (MIC of 7.5, 5.8, and 4.7 mg mL−1) and antioxidant properties, with its phenolic compounds inhibiting lipid oxidation and bacterial growth. | [118] |
Anti-aging activity with NHDF cell | PP ethanol extract 50% (v/v) | Phenolic and flavonoid compounds | The mRNA expression of COL 1A1 and COL 1A2 increased, promoting collagen synthesis via the Akt/PI3K and MAPK/ERK signaling pathways, with doses of 5, 10, and 15 µg mL−1 of ethanol extract. | [122] |
Antibacterial activity with (S. pyogenes PTCC 1447, S. aureus PTCC 1113, P. aeruginosa PTCC 1430, K. pneumonia PTCC 1053) | PP ethanol extract 80% (v/v) | Flavonoid compounds | A dose of 30 μL of PP extract, containing phenolic compounds, anthocyanins, and flavonoids, exhibited antibacterial effects, particularly against Gram-positive bacteria. | [117] |
Antitrichomonad activity against pathogenic strains (Trichomonas vaginalis and Tritrichomonas foetus) | PP extract (ethanol 50%/acetic acid 0.5%) | Glycoalkaloids, phenolic compounds | PP extracts inhibited the growth of three trichomonad species at a 10% w/v concentration, with Russet samples being the most effective. No inhibitory effect on normal native vaginal bacteria species was observed. | [92] |
Anti-obesity and antidiabetic activity | PP powder | Glycoalkaloids (α-chaconine, α-solanine), phenolic compounds | PP powder supplementation (10–20%) in high-fat diets reduced weight gain in mice by 17–73%, with reductions in epididymal white adipose tissue (22–80%). Weight gain was negatively correlated with glycoalkaloid content. Changes in microbiota and obesity-associated genetic biomarkers were observed. | [47] |
Anti-atopic dermatitis | PP ethanol extract | Phenolic compounds | PP reduced dermatitis severity, lowered IgE levels, decreased mast cell infiltration, modulated Th2 cytokines, restored filaggrin levels. | [123] |
5. Application of PP in Food Industry
5.1. Cereal-Based Products
5.2. Vegetable Oils
5.3. Meat and Fish Products
5.4. Dairy Products
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A Meta-Analysis of Projected Global Food Demand and Population at Risk of Hunger for the Period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef]
- FAO. Food Wastage Footprint: Impacts on Natural Resources: Summary Report; FAO: Rome, Italy, 2013; ISBN 9789251077528. [Google Scholar]
- Spizzirri, U.G.; Esposito, L.; Caputo, P.; Martuscelli, M.; Gaglianò, M.; Clodoveo, M.L.; De Luca, G.; Rossi, C.O.; Savastano, M.; Scarcelli, E.; et al. Carob Pulp Flour as an Innovative Source of Bioactive Molecules for the Preparation of High-Value-Added Jellies. Heliyon 2024, 10, e38354. [Google Scholar] [CrossRef]
- UNEP. Food Waste Index Report 2024. Think Eat Save: Tracking Progress to Halve Global Food Waste; United Nations: New York, NY, USA, 2024; ISBN 9789280741391. [Google Scholar]
- FAO. The State of Food and Agriculture; FAO: Rome, Italy, 2019; ISBN 9789251317891. [Google Scholar]
- Ravindran, R.; Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. A Review on Bioconversion of Agro-Industrial Wastes to Industrially Important Enzymes. Bioengineering 2018, 5, 93. [Google Scholar] [CrossRef]
- Hammad Hussain, M.; Sajid, S.; Martuscelli, M.; Aldahmash, W.; Zubair Mohsin, M.; Ashraf, K.; Guo, M.; Mohsin, A. Sustainable Biosynthesis of Lycopene by Using Evolutionary Adaptive Recombinant Escherichia coli from Orange Peel Waste. Heliyon 2024, 10, e34366. [Google Scholar] [CrossRef]
- Delgado-Ospina, J.; Lucas-González, R.; Viuda-Martos, M.; Fernández-López, J.; Pérez-Álvarez, J.Á.; Martuscelli, M.; Chaves-López, C. Potential of the Cocoa Shell to Improve the Quality Properties of a Burger-like Meat Product. J. Food Process Preserv. 2022, 46, e16752. [Google Scholar] [CrossRef]
- Delgado-Ospina, J.; Martuscelli, M.; Grande-Tovar, C.D.; Lucas-González, R.; Molina-Hernandez, J.B.; Viuda-Martos, M.; Fernández-López, J.; Pérez-Álvarez, J.Á.; Chaves-López, C. Cacao Pod Husk Flour as an Ingredient for Reformulating Frankfurters: Effects on Quality Properties. Foods 2021, 10, 1243. [Google Scholar] [CrossRef]
- Esposito, L.; Casolani, N.; Ruggeri, M.; Spizzirri, U.G.; Aiello, F.; Chiodo, E.; Martuscelli, M.; Restuccia, D.; Mastrocola, D. Sensory Evaluation and Consumers’ Acceptance of a Low Glycemic and Gluten-Free Carob-Based Bakery Product. Foods 2024, 13, 2815. [Google Scholar] [CrossRef]
- Martins, R.; Sales, H.; Pontes, R.; Nunes, J.; Gouveia, I. Food Wastes and Microalgae as Sources of Bioactive Compounds and Pigments in a Modern Biorefinery: A Review. Antioxidants 2023, 12, 328. [Google Scholar] [CrossRef]
- Spizzirri, U.G.; Carullo, G.; Aiello, F.; Paolino, D.; Restuccia, D. Valorisation of Olive Oil Pomace Extracts for a Functional Pear Beverage Formulation. Int. J. Food Sci. Technol. 2021, 56, 5497–5505. [Google Scholar] [CrossRef]
- Martuscelli, M.; Esposito, L.; Mastrocola, D. The Role of Coffee Silver Skin against Oxidative Phenomena in Newly Formulated Chicken Meat Burgers after Cooking. Foods 2021, 10, 1833. [Google Scholar] [CrossRef]
- Delgado-Ospina, J.; Esposito, L.; Molina-Hernandez, J.B.; Pérez-Álvarez, J.Á.; Martuscelli, M.; Chaves-López, C. Cocoa Shell Infusion: A Promising Application for Added-Value Beverages Based on Cocoa’s Production Coproducts. Foods 2023, 12, 2442. [Google Scholar] [CrossRef]
- Spizzirri, U.G.; Caputo, P.; Oliviero Rossi, C.; Crupi, P.; Muraglia, M.; Rago, V.; Malivindi, R.; Clodoveo, M.L.; Restuccia, D.; Aiello, F. A Tara Gum/Olive Mill Wastewaters Phytochemicals Conjugate as a New Ingredient for the Formulation of an Antioxidant-Enriched Pudding. Foods 2022, 11, 158. [Google Scholar] [CrossRef]
- Wali, E.; Collins, W.H.; Nwankwoala, H.O. Waste-To-Wealth, Towards a Sustainable Zero-Waste in a Circular Economy: An Overview. Int. J. Emerg. Eng. Res. Technol. 2019, 7, 1–10. [Google Scholar]
- FAO. FAOSTAT—Potato Production Data (2023); FAO: Rome, Italy, 2024. [Google Scholar]
- Almeida, P.V.; Gando-Ferreira, L.M.; Quina, M.J. Biorefinery Perspective for Industrial Potato Peel Management: Technology Readiness Level and Economic Assessment. J. Environ. Chem. Eng. 2023, 11, 110049. [Google Scholar] [CrossRef]
- Wang, Z.J.; Liu, H.; Zeng, F.K.; Yang, Y.C.; Xu, D.; Zhao, Y.C.; Liu, X.F.; Kaur, L.; Liu, G.; Singh, J. Potato Processing Industry in China: Current Scenario, Future Trends and Global Impact. Potato Res. 2023, 66, 543–562. [Google Scholar] [CrossRef]
- Chauhan, A.; Islam, F.; Imran, A.; Ikram, A.; Zahoor, T.; Khurshid, S.; Shah, M.A. A Review on Waste Valorization, Biotechnological Utilization, and Management of Potato. Food Sci. Nutr. 2023, 11, 5773–5785. [Google Scholar] [CrossRef]
- Khanal, S.; Karimi, K.; Majumdar, S.; Kumar, V.; Verma, R.; Bhatia, S.K.; Kuca, K.; Esteban, J.; Kumar, D. Sustainable Utilization and Valorization of Potato Waste: State of the Art, Challenges, and Perspectives. Biomass Convers. Biorefin. 2023, 14, 23335–23360. [Google Scholar] [CrossRef]
- Sampaio, S.L.; Petropoulos, S.A.; Alexopoulos, A.; Heleno, S.A.; Santos-Buelga, C.; Barros, L.; Ferreira, I.C.F.R. Potato Peels as Sources of Functional Compounds for the Food Industry: A Review. Trends Food Sci. Technol. 2020, 103, 118–129. [Google Scholar] [CrossRef]
- Salem, M.A.; Mansour, H.E.A.; Mosalam, E.M.; El-Shiekh, R.A.; Ezzat, S.M.; Zayed, A. Valorization of By-Products Derived from Onions and Potato: Extraction Optimization, Metabolic Profile, Outstanding Bioactivities, and Industrial Applications. Waste Biomass Valorization 2023, 14, 1823–1858. [Google Scholar] [CrossRef]
- Vaitkevičienė, N. A Comparative Study on Proximate and Mineral Composition of Coloured Potato Peel and Flesh. J. Sci. Food Agric. 2019, 99, 6227–6233. [Google Scholar] [CrossRef]
- Burgos, G.; Zum Felde, T.; Andre, C.; Kubow, S. The Potato and Its Contribution to the Human Diet and Health. In The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind; Springer International Publishing: Berlin, Germany, 2019; pp. 37–74. ISBN 9783030286835. [Google Scholar]
- Camire, M.E.; Kubow, S.; Donnelly, D.J. Potatoes and Human Health. Crit. Rev. Food Sci. Nutr. 2009, 49, 823–840. [Google Scholar] [CrossRef] [PubMed]
- Buckenhuskes, H.J. Potato in Progress; Haverkort, A.J., Struik, P.C., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2005; ISBN 978-90-76998-84-8. [Google Scholar]
- Ramadan, M.F.; Oraby, H.F. Fatty Acids and Bioactive Lipids of Potato Cultivars: An Overview. J. Oleo Sci. 2016, 65, 459–470. [Google Scholar] [CrossRef]
- Beals, K.A. Potatoes, Nutrition and Health. Am. J. Potato Res. 2019, 96, 102–110. [Google Scholar] [CrossRef]
- Liang, S.; Li, Y.; Zhang, M.; Gao, X.; Feng, S.; Wang, Z. Influence of Nutritional Components on Colour, Texture Characteristics and Sensory Properties of Cooked Potatoes. CYTA—J. Food 2023, 21, 141–150. [Google Scholar] [CrossRef]
- Han, J.S.; Kozukue, N.; Young, K.S.; Lee, K.R.; Friedman, M. Distribution of Ascorbic Acid in Potato Tubers and in Home-Processed and Commercial Potato Foods. J. Agric. Food Chem. 2004, 52, 6516–6521. [Google Scholar] [CrossRef]
- Mooney, S.; Chen, L.; Kühn, C.; Navarre, R.; Knowles, N.R.; Hellmann, H. Genotype-Specific Changes in Vitamin B6 Content and the PDX Family in Potato. Biomed. Res. Int. 2013, 2013, 389723. [Google Scholar] [CrossRef]
- Burgos, G.; Salas, E.; Amoros, W.; Auqui, M.; Muñoa, L.; Kimura, M.; Bonierbale, M. Total and Individual Carotenoid Profiles in Solanum Phureja of Cultivated Potatoes: I. Concentrations and Relationships as Determined by Spectrophotometry and HPLC. J. Food Compos. Anal. 2009, 22, 503–508. [Google Scholar] [CrossRef]
- Burgos, G.; Amoros, W.; Muñoa, L.; Sosa, P.; Cayhualla, E.; Sanchez, C.; Díaz, C.; Bonierbale, M. Total Phenolic, Total Anthocyanin and Phenolic Acid Concentrations and Antioxidant Activity of Purple-Fleshed Potatoes as Affected by Boiling. J. Food Compos. Anal. 2013, 30, 6–12. [Google Scholar] [CrossRef]
- Friedman, M. Chemistry and Anticarcinogenic Mechanisms of Glycoalkaloids Produced by Eggplants, Potatoes, and Tomatoes. J. Agric. Food Chem. 2015, 63, 3323–3337. [Google Scholar] [CrossRef]
- de los Ángeles Rosell, M.; Quizhpe, J.; Ayuso, P.; Peñalver, R.; Nieto, G. Proximate Composition, Health Benefits, and Food Applications in Bakery Products of Purple-Fleshed Sweet Potato (Ipomoea batatas L.) and Its By-Products: A Comprehensive Review. Antioxidants 2024, 13, 954. [Google Scholar] [CrossRef]
- RedCorn, R.; Fatemi, S.; Engelberth, A.S. Comparing End-Use Potential for Industrial Food-Waste Sources. Engineering 2018, 4, 371–380. [Google Scholar] [CrossRef]
- Gaudino, E.C.; Colletti, A.; Grillo, G.; Tabasso, S.; Cravotto, G. Emerging Processing Technologies for the Recovery of Valuable Bioactive Compounds from Potato Peels. Foods 2020, 9, 1598. [Google Scholar] [CrossRef] [PubMed]
- Arapoglou, D.; Varzakas, T.; Vlyssides, A.; Israilides, C. Ethanol Production from Potato Peel Waste (PPW). Waste Manag. 2010, 30, 1898–1902. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; McDonald, A.G. Chemical and Thermal Characterization of Potato Peel Waste and Its Fermentation Residue as Potential Resources for Biofuel and Bioproducts Production. J. Agric. Food Chem. 2014, 62, 8421–8429. [Google Scholar] [CrossRef]
- Javed, A.; Ahmad, A.; Tahir, A.; Shabbir, U.; Nouman, M.; Hameed, A. Potato Peel Waste—Its Nutraceutical, Industrial and Biotechnological Applacations. AIMS Agric. Food 2019, 4, 807–823. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, F.; Ma, R.; Yang, T.; Liu, C.; Shen, W.; Jin, W.; Tian, Y. Advances in Valorization of Sweet Potato Peels: A Comprehensive Review on the Nutritional Compositions, Phytochemical Profiles, Nutraceutical Properties, and Potential Industrial Applications. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13400. [Google Scholar] [CrossRef]
- Ijaz, N.; Bashir, S.; Ikram, A.; Zafar, A.; Ul Ain, H.B.; Ambreen, S.; Ahmad, M.; Almalki, R.S.; Khalid, M.Z.; Khalid, W.; et al. Valorization of Potato Peel: A Sustainable Eco-Friendly Approach. CYTA—J. Food 2024, 22, 2306951. [Google Scholar] [CrossRef]
- de Andrade Lima, M.; Andreou, R.; Charalampopoulos, D.; Chatzifragkou, A. Supercritical Carbon Dioxide Extraction of Phenolic Compounds from Potato (Solanum tuberosum) Peels. Appl. Sci. 2021, 11, 3410. [Google Scholar] [CrossRef]
- USDA. USDA National Nutrient Database—FoodData Central; USDA: Washington, DC, USA, 2022.
- CREA Tabelle Di Composizione Degli Alimenti. Available online: https://www.alimentinutrizione.it/tabelle-nutrizionali/006500 (accessed on 19 November 2024).
- Elkahoui, S.; Bartley, G.E.; Yokoyama, W.H.; Friedman, M. Dietary Supplementation of Potato Peel Powders Prepared from Conventional and Organic Russet and Non-Organic Gold and Red Potatoes Reduces Weight Gain in Mice on a High-Fat Diet. J. Agric. Food Chem. 2018, 66, 6064–6072. [Google Scholar] [CrossRef]
- Kumari, B.; Tiwari, B.K.; Hossain, M.B.; Rai, D.K.; Brunton, N.P. Ultrasound-Assisted Extraction of Polyphenols from Potato Peels: Profiling and Kinetic Modelling. Int. J. Food Sci. Technol. 2017, 52, 1432–1439. [Google Scholar] [CrossRef]
- Jeddou, K.B.; Chaari, F.; Maktouf, S.; Nouri-Ellouz, O.; Helbert, C.B.; Ghorbel, R.E. Structural, Functional, and Antioxidant Properties of Water-Soluble Polysaccharides from Potatoes Peels. Food Chem. 2016, 205, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Amado, I.R.; Franco, D.; Sánchez, M.; Zapata, C.; Vázquez, J.A. Optimisation of Antioxidant Extraction from Solanum tuberosum Potato Peel Waste by Surface Response Methodology. Food Chem. 2014, 165, 290–299. [Google Scholar] [CrossRef]
- Adegunloye, D.V.; Oparinde, T.C. Effects of Fermentation on the Proximate Composition of Irish (Solanum tuberosum) and Sweet Potato (Ipomoea batatas) Peels. Adv. Microbiol. 2017, 7, 565–574. [Google Scholar] [CrossRef]
- Hijosa-Valsero, M.; Paniagua-García, A.I.; Díez-Antolínez, R. Industrial Potato Peel as a Feedstock for Biobutanol Production. New Biotechnol. 2018, 46, 54–60. [Google Scholar] [CrossRef]
- Melini, V.; Melini, F.; Acquistucci, R. Phenolic Compounds and Bioaccessibility Thereof in Functional Pasta. Antioxidants 2020, 9, 343. [Google Scholar] [CrossRef]
- Khanday, A.H.; Badroo, I.A.; Wagay, N.A.; Rafiq, S. Role of Phenolic Compounds in Disease Resistance to Plants. In Plant Phenolics in Biotic Stress Management; Springer Nature: Singapore, 2024; pp. 455–479. [Google Scholar]
- Kumar, S.; Abedin, M.M.; Singh, A.K.; Das, S. Role of Phenolic Compounds in Plant-Defensive Mechanisms. In Plant Phenolics in Sustainable Agriculture; Springer: Singapore, 2020; pp. 517–532. [Google Scholar]
- González-Burgos, E.; Gómez-Serranillos, M.P. Effect of Phenolic Compounds on Human Health. Nutrients 2022, 13, 3922. [Google Scholar] [CrossRef]
- Hossain, M.B.; Rawson, A.; Aguiló-Aguayo, I.; Brunton, N.P.; Rai, D.K. Recovery of Steroidal Alkaloids from Potato Peels Using Pressurized Liquid Extraction. Molecules 2015, 20, 8560–8573. [Google Scholar] [CrossRef]
- Benkeblia, N. Potato Glycoalkaloids: Occurrence, Biological Activities and Extraction for Biovalorisation—A Review. Int. J. Food Sci. Technol. 2020, 55, 2305–2313. [Google Scholar] [CrossRef]
- Knuthsen, P.; Jensen, U.; Schmidt, B.; Larsen, I.K. Glycoalkaloids in Potatoes: Content of Glycoalkaloids in Potatoes for Consumption. J. Food Compos. Anal. 2009, 22, 577–581. [Google Scholar] [CrossRef]
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.; Nebbia, C.S.; Nielsen, E.; et al. Risk Assessment of Glycoalkaloids in Feed and Food, in Particular in Potatoes and Potato-derived Products. EFSA J. 2020, 18, e06222. [Google Scholar] [CrossRef]
- Arun, K.B.; Chandran, J.; Dhanya, R.; Krishna, P.; Jayamurthy, P.; Nisha, P. A Comparative Evaluation of Antioxidant and Antidiabetic Potential of Peel from Young and Matured Potato. Food Biosci. 2015, 9, 36–46. [Google Scholar] [CrossRef]
- Franková, H.; Musilová, J.; Árvay, J.; Harangozo, L.; Šnirc, M.; Vollmannová, A.; Lidiková, J.; Hegedűsová, A.; Jaško, E. Variability of Bioactive Substances in Potatoes (Solanum tuberosum L.) Depending on Variety and Maturity. Agronomy 2022, 12, 1454. [Google Scholar] [CrossRef]
- Gil-Martín, E.; Forbes-Hernández, T.; Romero, A.; Cianciosi, D.; Giampieri, F.; Battino, M. Influence of the Extraction Method on the Recovery of Bioactive Phenolic Compounds from Food Industry By-Products. Food Chem. 2022, 378, 131918. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic Compounds in Potato (Solanum tuberosum L.) Peel and Their Health-Promoting Activities. Int. J. Food Sci. Technol. 2020, 55, 2273–2281. [Google Scholar] [CrossRef]
- Mäder, J.; Rawel, H.; Kroh, L.W. Composition of Phenolic Compounds and Glycoalkaloids α-Solanine and α-Chaconine during Commercial Potato Processing. J. Agric. Food Chem. 2009, 57, 6292–6297. [Google Scholar] [CrossRef] [PubMed]
- Akyol, H.; Riciputi, Y.; Capanoglu, E.; Caboni, M.F.; Verardo, V. Phenolic Compounds in the Potato and Its Byproducts: An Overview. Int. J. Mol. Sci. 2016, 17, 835. [Google Scholar] [CrossRef]
- Finotti, E.; Bertone, A.; Vivanti, V. Balance between Nutrients and Anti-Nutrients in Nine Italian Potato Cultivars. Food Chem. 2006, 99, 698–701. [Google Scholar] [CrossRef]
- Al-Weshahy, A.; Venket Rao, A. Isolation and Characterization of Functional Components from Peel Samples of Six Potatoes Varieties Growing in Ontario. Food Res. Int. 2009, 42, 1062–1066. [Google Scholar] [CrossRef]
- Sánchez Maldonado, A.F.; Mudge, E.; Gänzle, M.G.; Schieber, A. Extraction and Fractionation of Phenolic Acids and Glycoalkaloids from Potato Peels Using Acidified Water/Ethanol-Based Solvents. Food Res. Int. 2014, 65, 27–34. [Google Scholar] [CrossRef]
- Furrer, A.N.; Chegeni, M.; Ferruzzi, M.G. Impact of Potato Processing on Nutrients, Phytochemicals, and Human Health. Crit. Rev. Food Sci. Nutr. 2018, 58, 146–168. [Google Scholar] [CrossRef]
- Riciputi, Y.; Diaz-de-Cerio, E.; Akyol, H.; Capanoglu, E.; Cerretani, L.; Caboni, M.F.; Verardo, V. Establishment of Ultrasound-Assisted Extraction of Phenolic Compounds from Industrial Potato by-Products Using Response Surface Methodology. Food Chem. 2018, 269, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Silva-Beltrán, N.P.; Chaidez-Quiroz, C.; López-Cuevas, O.; Ruiz-Cruz, S.; López-Mata, M.A.; Del-Toro-sánchez, C.L.; Marquez-Rios, E.; Ornelas-Paz, J.D.J. Phenolic Compounds of Potato Peel Extracts: Their Antioxidant Activity and Protection against Human Enteric Viruses. J. Microbiol. Biotechnol. 2017, 27, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Champi, D.; Romero-Orejon, F.L.; Moran-Reyes, A.; Muñoz, A.M.; Ramos-Escudero, F. Bioactive Compounds in Potato Peels, Extraction Methods, and Their Applications in the Food Industry: A Review. CYTA—J. Food 2023, 21, 418–432. [Google Scholar] [CrossRef]
- Deußer, H.; Guignard, C.; Hoffmann, L.; Evers, D. Polyphenol and Glycoalkaloid Contents in Potato Cultivars Grown in Luxembourg. Food Chem. 2012, 135, 2814–2824. [Google Scholar] [CrossRef]
- Albishi, T.; John, J.A.; ahman Al-Khalifa, A.S.; eidoon Shahidi, F. Phenolic content and antioxidant activities of selected potato varieties and their processing by-products. J. Funct. Foods. 2013, 5, 590–600. [Google Scholar] [CrossRef]
- Martínez-Inda, B.; Esparza, I.; Moler, J.A.; Jiménez-Moreno, N.; Ancín-Azpilicueta, C. Valorization of Agri-Food Waste through the Extraction of Bioactive Molecules. Prediction of Their Sunscreen Action. J. Environ. Manag. 2023, 325, 116460. [Google Scholar] [CrossRef]
- Schieber, A.; Saldana, M. Potato Peels: A Source of Nutritionally and Pharmacologically Interesting Compounds—A Review; Global Science Books: East Sussex, UK, 2009. [Google Scholar]
- Friedman, M.; Kozukue, N.; Kim, H.J.; Choi, S.H.; Mizuno, M. Glycoalkaloid, Phenolic, and Flavonoid Content and Antioxidative Activities of Conventional Nonorganic and Organic Potato Peel Powders from Commercial Gold, Red, and Russet Potatoes. J. Food Compos. Anal. 2017, 62, 69–75. [Google Scholar] [CrossRef]
- Martínez-García, I.; Gaona-Scheytt, C.; Morante-Zarcero, S.; Sierra, I. Development of a Green, Quick, and Efficient Method Based on Ultrasound-Assisted Extraction Followed by HPLC-DAD for the Analysis of Bioactive Glycoalkaloids in Potato Peel Waste. Foods 2024, 13, 651. [Google Scholar] [CrossRef]
- Fogelman, E.; Oren-Shamir, M.; Hirschberg, J.; Mandolino, G.; Parisi, B.; Ovadia, R.; Tanami, Z.; Faigenboim, A.; Ginzberg, I. Nutritional Value of Potato (Solanum tuberosum) in Hot Climates: Anthocyanins, Carotenoids, and Steroidal Glycoalkaloids. Planta 2019, 249, 1143–1155. [Google Scholar] [CrossRef]
- Rytel, E.; Tajner-Czopek, A.; Kita, A.; Kucharska, A.Z.; Sokół-Łętowska, A.; Hamouz, K. Content of Anthocyanins and Glycoalkaloids in Blue-fleshed Potatoes and Changes in the Content of A-solanine and A-chaconine during Manufacture of Fried and Dried Products. Int. J. Food Sci. Technol. 2018, 53, 719–727. [Google Scholar] [CrossRef]
- Brahmi, F.; Mateos-Aparicio, I.; Garcia-Alonso, A.; Abaci, N.; Saoudi, S.; Smail-Benazzouz, L.; Guemghar-Haddadi, H.; Madani, K.; Boulekbache-Makhlouf, L. Optimization of Conventional Extraction Parameters for Recovering Phenolic Compounds from Potato (Solanum tuberosum L.) Peels and Their Application as an Antioxidant in Yogurt Formulation. Antioxidants 2022, 11, 1401. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Martínez, B.; Gullón, B.; Yáñez, R. Identification and Recovery of Valuable Bioactive Compounds from Potato Peels: A Comprehensive Review. Antioxidants 2021, 10, 1630. [Google Scholar] [CrossRef] [PubMed]
- Mohdaly, A.A.A.; Sarhan, M.A.; Smetanska, I.; Mahmoud, A. Antioxidant Properties of Various Solvent Extracts of Potato Peel, Sugar Beet Pulp and Sesame Cake. J. Sci. Food Agric. 2010, 90, 218–226. [Google Scholar] [CrossRef]
- Joly, N.; Souidi, K.; Depraetere, D.; Wils, D.; Martin, P. Potato By-Products as a Source of Natural Chlorogenic Acids and Phenolic Compounds: Extraction, Characterization, and Antioxidant Capacity. Molecules 2020, 26, 177. [Google Scholar] [CrossRef]
- Wang, S.; Lin, A.H.M.; Han, Q.; Xu, Q. Evaluation of Direct Ultrasound-Assisted Extraction of Phenolic Compounds from Potato Peels. Processes 2020, 8, 1665. [Google Scholar] [CrossRef]
- Sabeena Farvin, K.H.; Grejsen, H.D.; Jacobsen, C. Potato Peel Extract as a Natural Antioxidant in Chilled Storage of Minced Horse Mackerel (Trachurus trachurus): Effect on Lipid and Protein Oxidation. Food Chem. 2012, 131, 843–851. [Google Scholar] [CrossRef]
- Zhang, Z.; Poojary, M.M.; Choudhary, A.; Rai, D.K.; Lund, M.N.; Tiwari, B.K. Ultrasound Processing of Coffee Silver Skin, Brewer’s Spent Grain and Potato Peel Wastes for Phenolic Compounds and Amino Acids: A Comparative Study. J. Food Sci. Technol. 2021, 58, 2273–2282. [Google Scholar] [CrossRef]
- Venturi, F.; Bartolini, S.; Sanmartin, C.; Orlando, M.; Taglieri, I.; Macaluso, M.; Lucchesini, M.; Trivellini, A.; Zinnai, A.; Mensuali, A. Potato Peels as a Source of Novel Green Extracts Suitable as Antioxidant Additives for Fresh-Cut Fruits. Appl. Sci. 2019, 9, 2431. [Google Scholar] [CrossRef]
- Wijngaard, H.H.; Ballay, M.; Brunton, N. The Optimisation of Extraction of Antioxidants from Potato Peel by Pressurised Liquids. Food Chem. 2012, 133, 1123–1130. [Google Scholar] [CrossRef]
- Apel, C.; Lyng, J.G.; Papoutsis, K.; Harrison, S.M.; Brunton, N.P. Screening the Effect of Different Extraction Methods (Ultrasound-Assisted Extraction and Solid–Liquid Extraction) on the Recovery of Glycoalkaloids from Potato Peels: Optimisation of the Extraction Conditions Using Chemometric Tools. Food Bioprod. Process. 2020, 119, 277–286. [Google Scholar] [CrossRef]
- Friedman, M.; Huang, V.; Quiambao, Q.; Noritake, S.; Liu, J.; Kwon, O.; Chintalapati, S.; Young, J.; Levin, C.E.; Tam, C.; et al. Potato Peels and Their Bioactive Glycoalkaloids and Phenolic Compounds Inhibit the Growth of Pathogenic Trichomonads. J. Agric. Food Chem. 2018, 66, 7942–7947. [Google Scholar] [CrossRef] [PubMed]
- Bouchez, A.; Vauchel, P.; Périno, S.; Dimitrov, K. Multi-Criteria Optimization Including Environmental Impacts of a Microwave-Assisted Extraction of Polyphenols and Comparison with an Ultrasound-Assisted Extraction Process. Foods 2023, 12, 1750. [Google Scholar] [CrossRef]
- Singh, A.; Sabally, K.; Kubow, S.; Donnelly, D.J.; Gariepy, Y.; Orsat, V.; Raghavan, G.S.V. Microwave-Assisted Extraction of Phenolic Antioxidants from Potato Peels. Molecules 2011, 16, 2218–2232. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Chen, Q.; Xu, Y.; Han, C.; Wang, M.; Zhao, T.; Zhao, H.; Fu, M. Ultrasonic-Microwave Extraction of Glucoside Alkaloids from Potato Peel Residue and Its Antibacterial Activity. Nat. Prod. Res. 2023, 38, 4141–4145. [Google Scholar] [CrossRef]
- Antony, A.; Farid, M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Pappas, V.M.; Samanidis, I.; Stavropoulos, G.; Athanasiadis, V.; Chatzimitakos, T.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Analysis of Five-Extraction Technologies’ Environmental Impact on the Polyphenols Production from Moringa Oleifera Leaves Using the Life Cycle Assessment Tool Based on ISO 14040. Sustainability 2023, 15, 2328. [Google Scholar] [CrossRef]
- Rifna, E.J.; Misra, N.N.; Dwivedi, M. Recent Advances in Extraction Technologies for Recovery of Bioactive Compounds Derived from Fruit and Vegetable Waste Peels: A Review. Crit. Rev. Food Sci. Nutr. 2023, 63, 719–752. [Google Scholar] [CrossRef]
- Pai, S.; Hebbar, A.; Selvaraj, S. A Critical Look at Challenges and Future Scopes of Bioactive Compounds and Their Incorporations in the Food, Energy, and Pharmaceutical Sector. Environ. Sci. Pollut. Res. 2022, 29, 35518–35541. [Google Scholar] [CrossRef]
- Pagano, I.; Campone, L.; Celano, R.; Piccinelli, A.L.; Rastrelli, L. Green Non-Conventional Techniques for the Extraction of Polyphenols from Agricultural Food by-Products: A Review. J. Chromatogr. A 2021, 1651, 462295. [Google Scholar] [CrossRef]
- Bello, U.; Adamu, H.; Amran, N.A.; Qamar, M. Green Extraction Technologies: Process Systems, Techno-Economic and Lifecycle Analyses. Clean. Eng. Technol. 2025; 100881, in press. [Google Scholar] [CrossRef]
- Khalati, E.; Oinas, P.; Favén, L. Techno-Economic and Safety Assessment of Supercritical CO2 Extraction of Essential Oils and Extracts. J. CO2 Util. 2023, 74, 102547. [Google Scholar] [CrossRef]
- Helal, M.M.; Adawy, T.A.E.-; Beltagy, A.E.E.-; Bedawey, A.A.E.-; Youssef, S.M. Evaluation of Potato Peel Extract as a Source Of Antioxidant and Antimicrobial Substances. Menoufia J. Food Dairy Sci. 2020, 5, 79–90. [Google Scholar] [CrossRef]
- Hossain, M.B.; Tiwari, B.K.; Gangopadhyay, N.; O’Donnell, C.P.; Brunton, N.P.; Rai, D.K. Ultrasonic Extraction of Steroidal Alkaloids from Potato Peel Waste. Ultrason. Sonochem 2014, 21, 1470–1476. [Google Scholar] [CrossRef] [PubMed]
- Al-Weshahy, A.; Rao, V.A. Potato Peel as a Source of Important Phytochemical Antioxidant Nutraceuticals and Their Role in Human Health-A Review. Phytochem. Nutraceuticals-Glob. Approaches Their Role Nutr. Health 2011, 10, 207–224. [Google Scholar]
- Hidayat, W.; Sufiawati, I.; Ichwan, S.; Satari, M.H.; Lesmana, R. Pharmacological Activity of Chemical Compounds of Potato Peel Waste (Solanum tuberosum L.) in Vitro: A Scoping Review. J. Exp. Pharmacol. 2024, 16, 61–69. [Google Scholar] [PubMed]
- Wu, Z.-G.; Xu, H.-Y.; Ma, Q.; Cao, Y.; Ma, J.-N.; Ma, C.-M. Isolation, Identification and Quantification of Unsaturated Fatty Acids, Amides, Phenolic Compounds and Glycoalkaloids from Potato Peel. Food Chem. 2012, 135, 2425–2429. [Google Scholar] [CrossRef]
- Chauhan, K. Study of Antioxidant Potential of Solanum tuberosum Peel Extracts. J. Integr. Sci. Technol. 2014, 2, 27–31. [Google Scholar]
- Jeddou, K.B.; Bouaziz, F.; Helbert, C.B.; Nouri-Ellouz, O.; Maktouf, S.; Ellouz-Chaabouni, S.; Ellouz-Ghorbel, R. Structural, Functional, and Biological Properties of Potato Peel Oligosaccharides. Int. J. Biol. Macromol. 2018, 112, 1146–1155. [Google Scholar] [CrossRef]
- Ansari, Z.; Goomer, S. Nutritional and Pharmacological Potential of Potato Peels: A Valuable Multi-Functional Waste of Food Industry. Plant Arc. 2020, 20, 84–87. [Google Scholar]
- Sampaio, S.L.; Petropoulos, S.A.; Dias, M.I.; Pereira, C.; Calhelha, R.C.; Fernandes, Â.; Leme, C.M.M.; Alexopoulos, A.; Santos-Buelga, C.; Ferreira, I.C.F.R.; et al. Phenolic Composition and Cell-Based Biological Activities of Ten Coloured Potato Peels (Solanum tuberosum L.). Food Chem. 2021, 363, 130360. [Google Scholar] [CrossRef]
- Singh, N.; Rajini, P.S. Antioxidant-Mediated Protective Effect of Potato Peel Extract in Erythrocytes against Oxidative Damage. Chem. Biol. Interact. 2008, 173, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.-L.; Yeh, Y.-H.; Lee, Y.-T.; Huang, C.-Y. Dietary Potato Peel Extract Reduces the Toxicity of Cholesterol Oxidation Products in Rats. J. Funct. Foods 2016, 27, 461–471. [Google Scholar] [CrossRef]
- Verma, K.; Gupta, N.; Adlak, P.; KumarBhopte, D.; Dwivedi, A.; Sagar, R. Anti-Inflammatory Activity of Solanum tuberosum Peel Extracts on Carrageenan-Induced Rat Paw Edema. Adv. Pharmacol. Toxicol. 2017, 18, 13–18. [Google Scholar]
- Wahyudi, I.A.; Ramadhan, F.R.; Wijaya, R.I.K.; Ardhani, R.; Utami, T.W. Analgesic, Anti-Inflammatory and Anti-Biofilm-Forming Activity of Potato (Solanum tuberosum L.) Peel Extract. Indones. J. Cancer Chemo Prev. 2020, 11, 30. [Google Scholar] [CrossRef]
- Kenny, O.M.; McCarthy, C.M.; Brunton, N.P.; Hossain, M.B.; Rai, D.K.; Collins, S.G.; Jones, P.W.; Maguire, A.R.; O’Brien, N.M. Anti-Inflammatory Properties of Potato Glycoalkaloids in Stimulated Jurkat and Raw 264.7 Mouse Macrophages. Life Sci. 2013, 92, 775–782. [Google Scholar] [CrossRef]
- Amanpour, R.; Abbasi-Maleki, S.; Neyriz-Naghadehi, M.; Asadi-Samani, M. Antibacterial Effects of Solanum tuberosum Peel Ethanol Extract in Vitro. J. HerbMed Pharmacol. 2015, 4, 45–48. [Google Scholar]
- Gebrechristos, H.Y.; Ma, X.; Xiao, F.; He, Y.; Zheng, S.; Oyungerel, G.; Chen, W. Potato Peel Extracts as an Antimicrobial and Potential Antioxidant in Active Edible Film. Food Sci. Nutr. 2020, 8, 6338–6345. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.; Henika, P.R.; Mackey, B.E. Feeding of Potato, Tomato and Eggplant Alkaloids Affects Food Consumption and Body and Liver Weights in Mice. J. Nutr. 1996, 126, 989–999. [Google Scholar] [CrossRef]
- Parkar, S.G.; Trower, T.M.; Stevenson, D.E. Fecal Microbial Metabolism of Polyphenols and Its Effects on Human Gut Microbiota. Anaerobe 2013, 23, 12–19. [Google Scholar] [CrossRef]
- Kubow, S.; Hobson, L.; Iskandar, M.M.; Sabally, K.; Donnelly, D.J.; Agellon, L.B. Extract of Irish Potatoes (Solanum tuberosum L.) Decreases Body Weight Gain and Adiposity and Improves Glucose Control in the Mouse Model of Diet-induced Obesity. Mol. Nutr. Food Res. 2014, 58, 2235–2238. [Google Scholar] [CrossRef]
- Suto, M.; Masutomi, H.; Ishihara, K.; Masaki, H. A potato peel extract stimulates type I collagen synthesis via Akt and ERK signaling in normal human dermal fibroblasts. Biol. Pharm. Bull. 2019, 42, 1510–1516. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Cheon, S.-Y.; Chung, K.-S.; Lee, S.-J.; Hong, C.-H.; Lee, K.-T.; Jang, D.-S.; Jeong, J.-C.; Kwon, O.-K.; Nam, J.-H.; et al. Solanum tuberosum L. Cv Jayoung Epidermis Extract Inhibits Mite Antigen-Induced Atopic Dermatitis in NC/Nga Mice by Regulating the Th1/Th2 Balance and Expression of Filaggrin. J. Med. Food 2015, 18, 1013–1021. [Google Scholar] [CrossRef]
- Curti, E.; Carini, E.; Diantom, A.; Vittadini, E. The Use of Potato Fibre to Improve Bread Physico-Chemical Properties during Storage. Food Chem. 2016, 195, 64–70. [Google Scholar] [CrossRef]
- Crawford, L.M.; Kahlon, T.S.; Wang, S.C.; Friedman, M. Acrylamide Content of Experimental Flatbreads Prepared from Potato, Quinoa, and Wheat Flours with Added Fruit and Vegetable Peels and Mushroom Powders. Foods 2019, 8, 228. [Google Scholar] [CrossRef]
- Jacinto, G.; Stieven, A.; Maciel, M.J.; de Souza, C.F.V. Effect of Potato Peel, Pumpkin Seed, and Quinoa Flours on Sensory and Chemical Characteristics of Gluten-Free Breads. Braz. J. Food Technol. 2020, 23, e2019169. [Google Scholar] [CrossRef]
- Ben Jeddou, K.; Bouaziz, F.; Zouari-Ellouzi, S.; Chaari, F.; Ellouz-Chaabouni, S.; Ellouz-Ghorbel, R.; Nouri-Ellouz, O. Improvement of Texture and Sensory Properties of Cakes by Addition of Potato Peel Powder with High Level of Dietary Fiber and Protein. Food Chem. 2017, 217, 668–677. [Google Scholar] [CrossRef]
- Akter, M.; Anjum, N.; Roy, F.; Yasmin, S.; Sohany, M.; Mahomud, M.S. Effect of Drying Methods on Physicochemical, Antioxidant and Functional Properties of Potato Peel Flour and Quality Evaluation of Potato Peel Composite Cake. J. Agric. Food Res. 2023, 11, 100508. [Google Scholar] [CrossRef]
- Dhingra, D.; Michael, M. Hradesh Rajput Physico-Chemical Characteristics of Dietary Fibre from Potato Peel and Its Effect on Organoleptic Characteristics of Biscuits. J. Agric. Eng. 2012, 49, 25–32. [Google Scholar] [CrossRef]
- Hallabo, S.A.S.; Helmy, S.A.; Elhassaneen, Y.; Shaaban, M. Utilization of Mango, Onion and Potato Peels as Sources of Bioactive Compounds in Biscuits Processing. Agric. Biol. Sci. 2018, 15, 3634–3644. [Google Scholar]
- Fradinho, P.; Oliveira, A.; Domínguez, H.; Torres, M.D.; Sousa, I.; Raymundo, A. Improving the Nutritional Performance of Gluten-Free Pasta with Potato Peel Autohydrolysis Extract. Innov. Food Sci. Emerg. Technol. 2020, 63, 102374. [Google Scholar] [CrossRef]
- Elhassaneen, Y. Improvement of Bioactive Compounds Content and Antioxidant Properties in Crackers with the Incorporation of Prickly Pear and Potato Peels Powder. Int. J. Nutr. Food Sci. 2016, 5, 53. [Google Scholar] [CrossRef]
- Durmaz, A.; Yuksel, F. Deep Fried Wheat Chips Added with Potato Peel Flour—Effect on Quality Parameters. Qual. Assur. Saf. Crops Foods 2021, 13, 115–124. [Google Scholar] [CrossRef]
- Singh, L.; Kaur, S.; Aggarwal, P. Techno and Bio Functional Characterization of Industrial Potato Waste for Formulation of Phytonutrients Rich Snack Product. Food Biosci. 2022, 49, 101824. [Google Scholar] [CrossRef]
- Franco, D.; Pateiro, M.; Rodríguez Amado, I.; López Pedrouso, M.; Zapata, C.; Vázquez, J.A.; Lorenzo, J.M. Antioxidant Ability of Potato (Solanum tuberosum) Peel Extracts to Inhibit Soybean Oil Oxidation. Eur. J. Lipid Sci. Technol. 2016, 118, 1891–1902. [Google Scholar] [CrossRef]
- Mohdaly, A.A.A.; Sarhan, M.A.; Mahmoud, A.; Ramadan, M.F.; Smetanska, I. Antioxidant Efficacy of Potato Peels and Sugar Beet Pulp Extracts in Vegetable Oils Protection. Food Chem. 2010, 123, 1019–1026. [Google Scholar] [CrossRef]
- Saeed, A.; Shabbir, A.; Khan, A. Stabilization of Sunflower Oil by Using Potato Peel Extract as a Natural Antioxidant. Biomass Convers. Biorefin 2024, 14, 5275–5284. [Google Scholar] [CrossRef]
- Samotyja, U. Potato Peel as a Sustainable Resource of Natural Antioxidants for the Food Industry. Potato Res. 2019, 62, 435–451. [Google Scholar] [CrossRef]
- Kanatt, S.R.; Chander, R.; Radhakrishna, P.; Sharma, A. Potato Peel Extracta Natural Antioxidant for Retarding Lipid Peroxidation in Radiation Processed Lamb Meat. J. Agric. Food Chem. 2005, 53, 1499–1504. [Google Scholar] [CrossRef]
- Saed, B.; El-Waseif, M. Effect of Dietary Fiber in Potato Peels Powder Addition as Fat Replacer on Quality Characteristics and Energy Value of Beef Meatballs. J. Biol. Chem. Environ. Sci. 2018, 13, 145–160. [Google Scholar]
- Marconato, A.M.; Hartmann, G.L.; Santos, M.M.R.; do Amaral, L.A.; de Souza, G.H.O.; dos Santos, E.F.; Novello, D. Sweet Potato Peel Flour in Hamburger: Effect on Physicochemical, Technological and Sensorial Characteristics. Braz. J. Food Technol. 2020, 23, e2019115. [Google Scholar] [CrossRef]
- Espinoza-García, D.A.; Torres-Martínez, B.d.M.; Vargas-Sánchez, R.D.; Torrescano-Urrutia, G.R.; Sánchez-Escalante, A. Valorization of Potato Peel Waste as Natural Additive for Use in Meat Products. Resources 2023, 12, 148. [Google Scholar] [CrossRef]
- Teklehaymanot, L.T.; Nadew, T.T.; Ayele, A.T. Efficiency of Potato Peel Extract in the Preservation of Cow Butter. Heliyon 2024, 10, e40949. [Google Scholar] [CrossRef] [PubMed]
- Salama, W.M.; Aly, E.A.; Dosuky, A.S. High Nutritional Value Processed Cheese Containing Potato Peels. Microb. Biosyst. 2024, 8, 52–75. [Google Scholar]
- Carocho, M.; Morales, P.; Ferreira, I.C.F.R. Antioxidants: Reviewing the Chemistry, Food Applications, Legislation and Role as Preservatives. Trends Food Sci. Technol. 2018, 71, 107–120. [Google Scholar] [CrossRef]
Potato Peel Variety | α-Chaconine | α-Solanine | TGA | Reference |
---|---|---|---|---|
Bintjie (µg/g DW) | 1047 ± 188 | 551 ± 139 | 1597 | [74] |
Kennebec (µg/g DW) | 1833 ± 139 | 1750 ± 272 | 3583 | [74] |
Mona Lisa (µg/g DW) | 1051 ± 223 | 535 ± 172 | 1586 | [74] |
Spunta (µg/g DW) | 1021 ± 46.4 | 446 ± 22.2 | 1467 | [74] |
Vitelotte (µg/g DW) | 1762 ± 228 | 980 ± 156 | 2742 | [74] |
Lady Rosetta (µg/g DW) | 1358 ± 63 | 1012 ± 109 | 2370 | [74] |
Conventional gold (μg/g of powder weight) | 670 ± 130 | 253 ± 44 | 920 ± 140 | [78] |
Conventional red (μg/g of powder weight) | 1297 ± 56 | 412 ± 24 | 1709 ± 61 | [78] |
Conventional Russet (μg/g of powder weight) | 424 ± 30 | 215 ± 43 | 639 ± 52 | [78] |
Organic gold (μg/g of powder weight) | 2830 ± 370 | 750 ± 120 | 3580 ± 390 | [78] |
Organic red (μg/g of powder weight) | 610 ± 110 | 239 ± 34 | 850 ± 120 | [78] |
Organic Russet (μg/g of powder weight) | 1180 ± 110 | 374 ± 54 | 1550 ± 120 | [78] |
Red potato (μg/g) | 1604 * | 572 * | 2180 ± 170 | [47] |
Gold potato (μg/g) | 1301 * | 636 * | 1940 ± 170 | [47] |
Organic Russet (μg/g) | 593 * | 268 * | 861 ± 10 | [47] |
Non-organic Russet (μg/g) | 781 * | 347 * | 1128 ± 1 | [47] |
Desirèè (mg/g FW) | 118.81 ± 4.77 | 52.94 ± 4.98 | 171.75 ± 6.57 | [80] |
Agria (mg/kg DW) | 251 ± 41 | 234 ± 32 | 485 ± 72 | [79] |
Mona Lisa (mg/kg DW) | 892 ± 29 | 306 ± 19 | 1198 ± 40 | [79] |
Vivaldi (mg/kg DW) | 117 ± 9 | 143 ± 9 | 260 ± 8 | [79] |
Amandine (mg/kg DW) | 1742 ± 8 | 1081 ± 27 | 2823 ± 33 | [79] |
Valfi (mg/100 g DM) | 58.2 ± 0.2 | 24.9 ± 0.2 | 83.1 ± 0.2 | [81] |
Blaue Elise (mg/100 g DM) | 45.5 ± 0.3 | 21.2 ± 0.1 | 66.6 ± 0.2 | [81] |
Solvent | Operating Conditions | TPC (mgGAE/g DW) | Reference |
---|---|---|---|
Methanol | t: overnight; T: ~25 °C; ratio 1:10 (w/v) | 2.91 ± 0.02 (var. Diamond) | [84] |
Ethanol | t: overnight; T: ~25 °C; ratio 1:10 (w/v) | 2.74 ± 0.03 (var. Diamond) | [84] |
Acetone | t: overnight; T: ~25 °C; ratio 1:10 (w/v) | 2.39 ± 0.04 (var. Diamond) | [84] |
Hexane | t: overnight; T: ~25 °C; ratio 1:10 (w/v) | 1.12 ± 0.04 (var. Diamond) | [84] |
Diethyl ether | t: overnight; T: ~25 °C; ratio 1:10 (w/v) | 1.12 ± 0.03 (var. Diamond) | [84] |
Petroleum ether | t: overnight; T: ~25 °C; ratio 1:10 (w/v) | 1.08 ± 0.04 (var. Diamond) | [84] |
Ethanol/acetic acid (95:5%, v/v) | t: 72 h; L/S: 0.01 | 14.031 ± 1.881 (var. Fianna) | [72] |
Water | t: 72 h; L/S: 0.01 | 4.160 ± 0.974 (var. Fianna) | [72] |
Methanol/water (50:50%, v/v) | t: 60 min; T: 25 °C; ratio 1:20 (w/v) | 6.26 * | [86] |
Ethanol/water (20:80%, v/v)-(90:10%) | t: 10–150 min; T: 23 °C; L/S: 0.01–0.09 | 9.68 a * | [18] |
Methanol | t: 30 min; T: 75 °C; L/S: 0.05 | 3.33 a * | [18] |
Ethanol | t: overnight; T: 5 °C; L/S: 0.01 | 2.5 a * | [18] |
Methanol and 75% ethanol | t: 22 min; T: 80 °C | 1.26–3.94 | [83] |
Methanol/water (80:20%, v/v) | t:15 h; T:23 °C | 2.17 ± 0.02 (var. Lady Claire) | [48] |
Methanol/water (80:20%, v/v) | t:15 h; T:23 °C | 3.28 ± 0.07 (var. Lady Rosetta) | [48] |
Ethanol/water (80:20%, v/v) | t: 150 min; ratio 1:30 (w/v) | 204.41 ± 8.64 mgGAE/100 g DW | [82] |
Ethanol (36.2–100%, v/v) | t: 5–150 min; T: 25–90 °C; ratio 1:20 (w/v) | 3.2–10.3 * mgGAE/100 g DB (var. Agria) | [50] |
Ethanol | t: overnight; T: ~25 °C; ratio 1:10 (w/v) | 68.7 * mgGAE/100 g DB (var. Sava) | [87] |
Water | t: overnight; T: ~25 °C; ratio 1:20 (w/v) | 26.1 * mgGAE/100 g DB (var. Sava) | [87] |
Water | t: 24 min; T: 25 °C; L/S: 0.02 | 2.51 * | [88] |
Ethanol/water (10:90%) | t: 24 h; T: 27 °C; ratio 1:20 (w/v) | 3.95 ± 0.02 (var. organic yellow potatoes “Bologna”) | [89] |
Water | t: 24 h; T: 27 °C; ratio 1:20 (w/v) | 2.92 ± 0.41 (var. organic yellow potatoes “Bologna”) | [89] |
Ethanol/water (75:25%) | t: 22 min; T: 80 °C | 3.94 ± 0.01 (var. Lady Claire) | [90] |
Solvent | Operating Conditions | TGA (mg/kg DB) | Reference |
---|---|---|---|
Water/acetic acid/sodium metabisulfite (95:4.5:0.5%, v/v) | t: 5.5–69.5 min; T: 25.5–89.5 °C; L/S: 0.025 | 42.1 ± 0.8–630.1 ± 70.2 (var. Rooster) | [91] |
Ethanol/water/acetic acid (50:49.5:0.5%, v/v) | t: 60 min; L/S: 0.01 | 1200–5300 * | [92] |
Methanol/water/acetic acid (80:19.5:0.5%, v/v) | t: 30 min; T: 4 °C; L/S: 0.01 | 1026–5342 * | [74] |
Methanol | t: 17 min; T: 23 °C; L/S: 0.01 | 711 * | [18] |
Methanol/water (90:10%, v/v) | t: 60 min; T: 23 °C; L/S: 0.01 | 0.981 * | [57] |
0.02 M heptanesulfonic acid in 1% (v/v) aqueous acetic acid | t: -; T: 25 °C; ratio 1:10 (w/v) | 171.75 ± 6.57 (mg/g FW–var. Desirèè) | [80] |
Food Industry | Food Product | % PP | Effects of PP Incorporation | Reference |
---|---|---|---|---|
Cereal-based products | Bread (+PP fiber) | 0.4% (w/w) PP fiber | Reduced staling by maintaining moisture, increasing frozen water content, and improving softness, even at low levels of incorporation | [124] |
Flatbread | 5% (w/w) PP powder | Modified color attributes, resulting in darker tones with increased a* values and lower L* values, and reduced acrylamide content | [125] | |
Gluten-free bread | 2.5, 5.0, 7.5% (w/w) PPF | Improved nutritional profile by increasing mineral, lipid, and protein content, supporting a balanced diet for individuals with celiac disease | [126] | |
Cake | 2–10% (w/w) PPF | Improved dough texture, reduced cake hardness, increased dough strength and elasticity, and enhanced fiber and protein content | [127] | |
Cake | 4, 6, 8% (w/w) PPF | Increased nutrient retention, total phenolic and antioxidant content in cabinet-dried PP flour, enhanced cake quality and acceptability at 4% incorporation, and provided a sustainable alternative for cereal products | [128] | |
Biscuits (+PP fiber) | 5, 10, 15% (w/w) PP fiber | Improved nutritional profile by increasing dietary fiber, carbohydrates, ash, and fat content, while also influencing sensory properties such as color and overall acceptability | [129] | |
Biscuits | 6% (w/w) of flour weight | Increased water absorption, prolonged dough development time, enhanced dough stability, higher fiber content, and improved antioxidant activity | [130] | |
Gluten-free pasta | 4% (w/w) PP extract | Increased phenolic content and antioxidant activity while maintaining good texture and color | [131] | |
Cracker | 5% (w/w) PP powder | Increased dietary fiber, phenolic content, and antioxidant activity, enhancing the nutritional and functional properties of crackers | [132] | |
Chips | 2, 4, 6, 8, 10% (w/w) PPF | Reduced lipid content, increased phenolics and dietary fiber, decreased the glycemic index, and improved texture | [133] | |
Chickpea flour-based snack | 5% (w/w) PP powder | Enhanced nutritional profile by increasing dietary fiber, minerals, phenolic compounds, and protein content, while also improving oxidative stability and maintaining product quality during storage. | [134] | |
Vegetable oils | Soybean oil | 1.25% (v/v) PP extract | Reduced peroxide, totox, and p-anisidine indices, as well as minimized oxidation products, enhancing oxidative stability of soybean oil | [50] |
Soybean oil | - | Lowered peroxide values, inhibited hexanal production, and improved oxidative stability of soybean oil across all tested chlorogenic acid concentrations | [135] | |
Sunflower and soybean oil | 5, 10, 50, 100, 200 ppm PP extract | Superior antioxidant activity over synthetic antioxidants, reducing peroxide and p-anisidine values in sunflower and soybean oils under accelerated oxidation | [136] | |
Sunflower oil | 0.32% (w/v) PP extract | Reduced FFA, PV, and p-anisidine values, minimizing oxidation products and enhancing the oxidative stability of sunflower oil, comparable to synthetic antioxidants | [137] | |
Rapseed and sunflower oil | - | Reduced oxidation of rapeseed and sunflower oils, minimizing conjugated diene and volatile formation, and enhancing oxidative stability | [138] | |
Meat and fish products | Irradiated lamb meat | 0.04% (w/w) PP extract | Increased total phenolic and chlorogenic acid content, enhanced radical scavenging activity and oxidative stability, and reduced lipid peroxidation in irradiated lamb meat | [139] |
Beef meatballs | 5, 10, 15, 20% (w/w) PP powder | Increased crude dietary fiber, protein, and ash content, enhanced water-holding capacity and cooking yield, and reduced cooking loss and energy intake in beef meatballs | [140] | |
Hamburger | 0.75, 1.5, 2.25% (w/w) PPF | Enhanced nutritional profile and technological properties of bovine hamburgers, with minimal impact on sensory attributes and overall acceptance | [141] | |
Pork patties | 2, 5, 10% (w/w) PP powder | Increased antioxidant activity and total phenolic content, enhanced water-holding capacity and oxidative stability, and reduced pH changes, lipid oxidation, and cooking loss in pork patties | [142] | |
Minced horse mackerel | 0.24, 0.48% (w/w) PP extract | Reduced lipid and protein oxidation, increased phenolic content, and preserved α-tocopherol and amino acid residues | [87] | |
Cooked salmon | 0.02% (w/w) ** | Reduced lipid oxidation in cooked salmon, with Russet PP extract showing the highest TBARS inhibition (83.4%), outperforming synthetic antioxidants and enhancing oxidative stability during storage | [75] | |
Dairy products | Yogurt | 0.8% (w/w) PP powder | Improved nutritional, antioxidant, and sensory qualities, with increased phenolic content and antioxidant capacity in yogurt | [82] |
Cow butter | 0.3% (w/w) PP extract | Improved oxidative stability, shelf-life, and microbial growth control in cow butter | [143] | |
Processed cheese | 1,2,4% (w/w) PP powder | Increased protein and ash content, enhanced antioxidant activity, and reduced meltability and oil separation, modifying texture and functional properties of processed cheese | [144] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vescovo, D.; Manetti, C.; Ruggieri, R.; Spizzirri, U.G.; Aiello, F.; Martuscelli, M.; Restuccia, D. The Valorization of Potato Peels as a Functional Ingredient in the Food Industry: A Comprehensive Review. Foods 2025, 14, 1333. https://doi.org/10.3390/foods14081333
Vescovo D, Manetti C, Ruggieri R, Spizzirri UG, Aiello F, Martuscelli M, Restuccia D. The Valorization of Potato Peels as a Functional Ingredient in the Food Industry: A Comprehensive Review. Foods. 2025; 14(8):1333. https://doi.org/10.3390/foods14081333
Chicago/Turabian StyleVescovo, Domizia, Cesare Manetti, Roberto Ruggieri, Umile Gianfranco Spizzirri, Francesca Aiello, Maria Martuscelli, and Donatella Restuccia. 2025. "The Valorization of Potato Peels as a Functional Ingredient in the Food Industry: A Comprehensive Review" Foods 14, no. 8: 1333. https://doi.org/10.3390/foods14081333
APA StyleVescovo, D., Manetti, C., Ruggieri, R., Spizzirri, U. G., Aiello, F., Martuscelli, M., & Restuccia, D. (2025). The Valorization of Potato Peels as a Functional Ingredient in the Food Industry: A Comprehensive Review. Foods, 14(8), 1333. https://doi.org/10.3390/foods14081333