Enzymatic Hydrolysis-Derived Water-Soluble Carbohydrates from Cacalia firma: Evaluation of Antioxidant Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Enzyme Treatment of C. firma Using Various Types of Enzymes
2.3. Enzyme Treatment of C. firma Using Various Treatment Conditions of Enzymes
2.4. Water-Soluble Carbohydrate Extraction
2.5. Response Surface Methodology (RSM) Analysis for Carbohydrate Extraction from C. firma
2.6. Bioactive Analysis of the Water-Soluble Carbohydrate Extracted Under Optimal Conditions
2.6.1. Total Polyphenol Content Analysis
2.6.2. Flavonoid Content Analysis
2.6.3. DPPH Radical-Scavenging Activity Analysis
2.6.4. ABTS Antioxidant Activity Analysis
2.7. Statistical Analysis
3. Results
3.1. Carbohydrate Content of Enzyme Treated C. firma as Various Enzymes Types
3.2. Effect of Enzyme Treatment Conditions on Carbohydrate Content of Enzyme Treated C. firma
3.3. Optimization of Enzyme Treatment Conditions for Maximum Carbohydrate Content of C. firma
3.4. Total Polyphenol Content of Carbohydrate Extracted from C. firma
3.5. Flavonoid Content of Carbohydrate Extracted from C. firma
3.6. Antioxidant Activity (DPPH Radical-Scavenging Activity and ABTS Antioxidant Activity) of Carbohydrate Extracted from C. firma
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Popkin, B.M. Relationship between shifts in food system dynamics and acceleration of the global nutrition transition. Nutr. Rev. 2017, 75, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Alae-Carew, C.; Green, R.; Stewart, C.; Cook, B.; Dangour, A.D.; Scheelbeek, P.F. The role of plant-based alternative foods in sustainable and healthy food systems: Consumption trends in the UK. Sci. Total Environ. 2022, 807, 151041. [Google Scholar] [CrossRef]
- Marczak, A.; Mendes, A.C. Dietary fibers: Shaping textural and functional properties of processed meats and plant-based meat alternatives. Foods 2024, 13, 1952. [Google Scholar] [CrossRef]
- Tejada-Ortigoza, V.; Garcia-Amezquita, L.E.; Serna-Saldívar, S.O.; Welti-Chanes, J. Advances in the functional characterization and extraction processes of dietary fiber. Food Eng. Rev. 2016, 8, 251–271. [Google Scholar] [CrossRef]
- Choi, S.W.; Lim, S.; Park, W.G.; Choi, Y.E. Plant regeneration from the segments of petioles of Cacalia firma. Korean J. Plant Resour. 2011, 24, 483–488. [Google Scholar] [CrossRef]
- Yoon, J.H.; Jeon, K.S.; Song, K.S.; Park, Y.B.; Moon, Y.S.; Lee, D.H. The growth and physiological responses of Cacalia firma seedlings by shading conditions in forest farming. J. Korean Soc. For. Sci. 2014, 103, 65–71. [Google Scholar] [CrossRef]
- Tocai, A.C.; Kokeric, T.; Tripon, S.; Barbu-Tudoran, L.; Barjaktarevic, A.; Cupara, S.; Vicas, S.I. Sanguisorba minor scop.: An overview of its phytochemistry and biological effects. Plants 2023, 12, 2128. [Google Scholar] [CrossRef]
- Joana Gil-Chávez, G.; Villa, J.A.; Fernando Ayala-Zavala, J.; Basilio Heredia, J.; Sepulveda, D.; Yahia, E.M.; González-Aguilar, G.A. Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: An overview. Compr. Rev. Food Sci. Food Saf. 2013, 12, 5–23. [Google Scholar] [CrossRef]
- Puri, M.; Sharma, D.; Barrow, C.J. Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol. 2012, 30, 37–44. [Google Scholar] [CrossRef]
- Chandran, A.S.; Suri, S.; Choudhary, P. Sustainable plant protein: An up-to-date overview of sources, extraction techniques and utilization. Sustain. Food Technol. 2023, 1, 466–483. [Google Scholar] [CrossRef]
- Harris, P.J.; Smith, B.G. Plant cell walls and cell-wall polysaccharides: Structures, properties and uses in food products. Int. J. Food Sci. Technol. 2006, 41, 129–143. [Google Scholar] [CrossRef]
- Zhou, Y.; Tian, Y.; Beltrame, G.; Laaksonen, O.; Yang, B. Ultrasonication-assisted enzymatic bioprocessing as a green method for valorizing oat hulls. Food Chem. 2023, 426, 136658. [Google Scholar] [CrossRef]
- Hwang, Y.J.; Yoon, K.Y. Enzymatic hydrolysis of perilla seed meal yields water-soluble dietary fiber as a potential functional carbohydrate source. Food Sci. Biotechnol. 2020, 29, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Son, Y.; Lee, B.K.; Lee, B.; Kim, H.J.; Park, J.Y.; Lee, H.S.; Kim, J.S.; Park, H.H.; Han, O.K.; et al. Analysis of total polyphenol content and antioxidant activity in puffed oats. Korean J. Food Sci. Technol. 2018, 50, 117–121. [Google Scholar] [CrossRef]
- Pinelo, M.; Arnous, A.; Meyer, A.S. Upgrading of grape skins: Significance of plant cell-wall structural components and extraction techniques for phenol release. Trends Food Sci. Technol. 2006, 17, 579–590. [Google Scholar] [CrossRef]
- Liu, X.; Le Bourvellec, C.; Renard, C.M. Interactions between cell wall polysaccharides and polyphenols: Effect of molecular internal structure. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3574–3617. [Google Scholar] [CrossRef]
- Hammed, A.M.; Jaswir, I.; Amid, A.; Alam, Z.; Asiyanbi-H, T.T.; Ramli, N. Enzymatic hydrolysis of plants and algae for extraction of bioactive compounds. Food Rev. Int. 2013, 29, 352–370. [Google Scholar] [CrossRef]
- van’t Slot, G.; Humpf, H.U. Degradation and metabolism of catechin, epigallocatechin-3-gallate (EGCG), and related compounds by the intestinal microbiota in the pig cecum model. J. Agric. Food Chem. 2009, 57, 8041–8048. [Google Scholar] [CrossRef]
- Hamdan, N.; Lee, C.H.; Wong, S.L.; Fauzi, C.E.N.C.A.; Zamri, N.M.A.; Lee, T.H. Prevention of enzymatic browning by natural extracts and genome-editing: A review on recent progress. Molecules 2022, 27, 1101. [Google Scholar] [CrossRef]
- Badhani, B.; Sharma, N.; Kakkar, R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. Rsc. Adv. 2015, 5, 27540–27557. [Google Scholar] [CrossRef]
- Verduzco-Oliva, R.; Gutierrez-Uribe, J.A. Beyond enzyme production: Solid state fermentation (SSF) as an alternative approach to produce antioxidant polysaccharides. Sustainability 2020, 12, 495. [Google Scholar] [CrossRef]
- Guerrero, L.; Castillo, J.; Quinones, M.; Garcia-Vallve, S.; Arola, L.; Pujadas, G.; Muguerza, B. Inhibition of angiotensin-converting enzyme activity by flavonoids: Structure-activity relationship studies. PLoS ONE 2012, 7, e49493. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gonzalez, A.I.; Díaz-Sánchez, Á.G.; de la Rosa, L.A.; Vargas-Requena, C.L.; Bustos-Jaimes, I.; Alvarez-Parrilla, E. Polyphenolic compounds and digestive enzymes: In vitro non-covalent interactions. Molecules 2017, 22, 669. [Google Scholar] [CrossRef] [PubMed]
Enzyme | Characteristics | |||
---|---|---|---|---|
Sources | Optimal pH | Optimal Temperature (°C) | Enzyme Activity Target | |
Cellic CTec3 HS | Trichoderma reesei | 4.7–5.2 | 50–55 | Cellulase, β-glucosidases, hemicellulase |
Celluclast 1.5 L | Trichoderma reesei | 4.5–6.0 | 50–60 | Cellulase |
Viscozyme L | Aspergillus aculeatus | 3.5–5.5 | 25–55 | Arabanase, cellulase, β-glucanase, hemicellulose, xylanase |
Pectinex ultraSP-L | Aspergillus aculeatus | 4.0–5.0 | 55–60 | Polygalacturonase |
Amylase AG | Aspergillus niger | 4.5 | 60 | Glucoamylase |
Factor | Code | ||
---|---|---|---|
−1 | 0 | 1 | |
pH | 3.0 | 4.0 | 5.0 |
Treatment temperature (°C) | 30 | 50 | 60 |
Treatment time (h) | 24 | 48 | 72 |
Run | pH | Treatment Temperature, °C | Treatment Time, h | Carbohydrate Content, mg/g |
---|---|---|---|---|
1 | 5 | 40 | 48 | 105.18 |
2 | 3 | 60 | 48 | 80.00 |
3 | 3 | 50 | 72 | 119.54 |
4 | 4 | 50 | 48 | 129.62 |
5 | 3 | 50 | 24 | 105.83 |
6 | 4 | 50 | 48 | 128.99 |
7 | 3 | 40 | 48 | 97.09 |
8 | 4 | 60 | 24 | 97.57 |
9 | 4 | 50 | 48 | 131.71 |
10 | 5 | 50 | 72 | 113.12 |
11 | 4 | 50 | 48 | 130.59 |
12 | 4 | 40 | 24 | 121.33 |
13 | 4 | 40 | 72 | 125.63 |
14 | 4 | 50 | 48 | 129.98 |
15 | 5 | 50 | 24 | 113.12 |
16 | 4 | 60 | 72 | 97.57 |
17 | 5 | 60 | 48 | 88.25 |
Source | F-Value | p-Value | |
---|---|---|---|
Model | 38.54 | <0.0001 | Significant |
A | 3.05 | 0.1240 | |
B | 75.93 | <0.0001 | |
C | 3.34 | 0.1102 | |
AB | 0.0005 | 0.9832 | |
AC | 3.88 | 0.0896 | |
BC | 0.3805 | 0.5568 | |
A2 | 107.31 | <0.0001 | |
B2 | 138.31 | <0.0001 | |
C2 | 0.0334 | 0.8601 | |
Lack of fit | 4.67 | 0.0854 | Not significant |
R2 = 0.9802 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, S.-Y.; Kim, H.-C.; Yang, J.-K. Enzymatic Hydrolysis-Derived Water-Soluble Carbohydrates from Cacalia firma: Evaluation of Antioxidant Properties. Foods 2025, 14, 1326. https://doi.org/10.3390/foods14081326
Ha S-Y, Kim H-C, Yang J-K. Enzymatic Hydrolysis-Derived Water-Soluble Carbohydrates from Cacalia firma: Evaluation of Antioxidant Properties. Foods. 2025; 14(8):1326. https://doi.org/10.3390/foods14081326
Chicago/Turabian StyleHa, Si-Young, Hyeon-Cheol Kim, and Jae-Kyung Yang. 2025. "Enzymatic Hydrolysis-Derived Water-Soluble Carbohydrates from Cacalia firma: Evaluation of Antioxidant Properties" Foods 14, no. 8: 1326. https://doi.org/10.3390/foods14081326
APA StyleHa, S.-Y., Kim, H.-C., & Yang, J.-K. (2025). Enzymatic Hydrolysis-Derived Water-Soluble Carbohydrates from Cacalia firma: Evaluation of Antioxidant Properties. Foods, 14(8), 1326. https://doi.org/10.3390/foods14081326