Nutrient and Phytochemical Composition of Nine African Leafy Vegetables: A Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acquisition of Vegetable Samples
2.2. Sample Preparation
2.3. Macronutrient Composition Analysis
2.4. Micronutrient Composition Analysis
2.4.1. Mineral Analysis
2.4.2. Vitamin C Analysis
2.5. Phytochemical Compounds’ Analysis
2.5.1. Carotenoid Analysis
2.5.2. Total Polyphenol and Total Flavonoid Analysis
2.5.3. Chlorophyll Analysis
2.6. Statistical Data Analysis
3. Results and Discussion
3.1. Macronutrient Composition of the Leafy Vegetables
3.2. Micronutrient Composition of the Leafy Vegetables
3.2.1. Mineral Profile and Content
3.2.2. Vitamin C Content
3.3. Phytochemical Composition of the Leafy Vegetables
3.3.1. Carotenoid Profile and Content
3.3.2. Total Polyphenol Content and Total Flavonoid Content
3.3.3. Chlorophyll Content
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALVs | African leafy vegetables |
BC | β-carotene |
Chl | Chlorophyll |
DW | Dry weight |
FW | Fresh weight |
GAE | Gallic acid equivalent |
Lut | Lutein |
NCDs | Non-communicable diseases |
Neo | Neoxanthin |
QE | Quercetin equivalent |
TFC | Total flavonoid content |
TPC | Total polyphenol content |
Vio | Violaxanthin |
References
- Schippers, R.R. African Indigenous Vegetables, An Overview of the Cultivated Species; Natural Resources Institute/ACP-EU Technical Centre for Agricultural and Rural Cooperation: Chatham, UK, 2000. [Google Scholar]
- Van Rensburg, W.S.J.; Venter, S.L.; Netshiluvhi, T.R.; van den Heever, E.; Vorster, H.J.; De Ronde, J.A.; Bornman, C.H. Role of indigenous leafy vegetables in combating hunger and malnutrition. S. Afr. J. Bot. 2004, 70, 52–59. [Google Scholar] [CrossRef]
- Godfrey, S.; Nahamya, P.K.; Apolo, K.K.; John, N.J.; Michael, M.; Elizabeth, B.K. Diversity and distribution of African indigenous vegetable species in Uganda. Int. J. Biodivers. Conserv. 2017, 9, 334–341. [Google Scholar] [CrossRef]
- Ntuli, N.R. Nutrient content of scarcely known wild leafy vegetables from northern KwaZulu-Natal, South Africa. S. Afr. J. Bot. 2019, 127, 19–24. [Google Scholar] [CrossRef]
- Van Jaarsveld, P.; Faber, M.; van Heerden, I.; Wenhold, F.; van Rensburg, W.J.; van Averbeke, W. Nutrient content of eight African leafy vegetables and their potential contribution to dietary reference intakes. J. Food Compos. Anal. 2014, 33, 77–84. [Google Scholar] [CrossRef]
- Omondi, E.O.; Engels, C.; Nambafu, G.; Schreiner, M.; Neugart, S.; Abukutsa-Onyango, M.; Winkelmann, T. Nutritional compound analysis and morphological characterization of spider plant (Cleome gynandra)—An African indigenous leafy vegetable. Food Res. Int. 2017, 100, 284–295. [Google Scholar] [CrossRef]
- Anju, T.; Ahmad, I.; Ramchiary, N.; Kumar, A. Valorization of Unconventional Traditional Leafy Vegetable Diversity for Minerals, Health-Promoting Phytochemicals, and Antioxidants. ACS Food Sci. Technol. 2023, 4, 190–206. [Google Scholar] [CrossRef]
- Singh, S.; Singh, D.R.; Salim, K.M.; Srivastava, A.; Singh, L.B.; Srivastava, R.C. Estimation of proximate composition, micronutrients and phytochemical compounds in traditional vegetables from Andaman and Nicobar Islands. Int. J. Food Sci. Nutr. 2011, 62, 765–773. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Protein, dietary fiber, minerals, antioxidant pigments and phytochemicals, and antioxidant activity in selected red morph Amaranthus leafy vegetable. PLoS ONE 2019, 14, e0222517. [Google Scholar] [CrossRef]
- Gunathilake, K.D.P.P.; Ranaweera, K.K.D.S.; Rupasinghe, H.P.V. Influence of boiling, steaming and frying of selected leafy vegetables on the in vitro anti-inflammation associated biological activities. Plants 2018, 7, 22. [Google Scholar] [CrossRef]
- Kiyimba, T.; Yiga, P.; Bamuwamye, M.; Ogwok, P.; Van der Schueren, B.; Matthys, C. Efficacy of Dietary Polyphenols from Whole Foods and Purified Food Polyphenol Extracts in Optimizing Cardiometabolic Health: A Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2023, 14, 270–282. [Google Scholar] [CrossRef]
- Ko, S.H.; Park, J.H.; Kim, S.Y.; Lee, S.W.; Chun, S.S.; Park, E. Antioxidant effects of spinach (Spinacia oleracea L.) supplementation in hyperlipidemic rats. Prev. Nutr. Food Sci. 2014, 19, 19–26. [Google Scholar] [CrossRef]
- Borges, C.V.; Junior, S.S.; Ponce, F.S.; Lima, G.P.P. Agronomic Factors Influencing Brassica Productivity and Phytochemical Quality. In Brassica Germplasm: Characterization, Breeding and Utilization; BoD—Books on Demand: Norderstedt, Germany, 2018. [Google Scholar] [CrossRef]
- Lee, S.K.; Kader, A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef]
- Ecker, O.; Weinberger, K. Patterns and determinants of dietary micronutrient deficiencies in rural areas of East Africa. Afr. J. Agric. Resour. Econ. 2010, 4, 175–194. [Google Scholar]
- Bain, L.E.; Awah, P.K.; Geraldine, N.; Kindong, N.P.; Sigal, Y.; Bernard, N.; Tanjeko, A.T. Malnutrition in Sub–Saharan Africa: Burden, causes and prospects. Pan Afr. Med. J. 2013, 15, 120. [Google Scholar] [CrossRef]
- Galani, Y.J.H.; Orfila, C.; Gong, Y.Y. A review of micronutrient deficiencies and analysis of maize contribution to nutrient requirements of women and children in Eastern and Southern Africa. Crit. Rev. Food Sci. Nutr. 2022, 62, 1568–1591. [Google Scholar] [CrossRef]
- Yiga, P.; Ogwok, P.; Achieng, J.; Auma, M.D.; Seghers, J.; Matthys, C. Determinants of dietary and physical activity behaviours among women of reproductive age in urban Uganda, a qualitative study. Public Health Nutr. 2021, 24, 3624–3636. [Google Scholar] [CrossRef]
- AACC. Moisture—Air-Oven Methods. In AACC International Method; AACC: Arnold, MD, USA, 2009; pp. 3–6. [Google Scholar] [CrossRef]
- Krul, E.S. Calculation of Nitrogen-to-Protein Conversion Factors: A Review with a Focus on Soy Protein. J. Am. Oil Chem. Soc. 2019, 96, 339–364. [Google Scholar] [CrossRef]
- Vanleenhove, B.; Wouwer, B.V.D.; Verwee, E.; Slachmuylders, L.; Joossens, M.; Brijs, K.; Dewettinck, K.; De Meester, S.; Raes, K. Impact of potato trimming acidification on protein characteristics and bacterial community during long-term storage. LWT 2024, 191, 115572. [Google Scholar] [CrossRef]
- Gwala, S.; Kyomugasho, C.; Wainaina, I.; Rousseau, S.; Hendrickx, M.; Grauwet, T. Ageing, dehulling and cooking of Bambara groundnuts: Consequences for mineral retention and: In vitro bioaccessibility. Food Funct. 2020, 11, 2509–2521. [Google Scholar] [CrossRef]
- Verbeyst, L.; Bogaerts, R.; Van der Plancken, I.; Hendrickx, M.; Van Loey, A. Modelling of Vitamin C Degradation during Thermal and High-Pressure Treatments of Red Fruit. Food Bioprocess Technol. 2013, 6, 1015–1023. [Google Scholar] [CrossRef]
- Vancoillie, F.; Verkempinck, S.H.; Sluys, L.; De Mazière, S.; Delbaere, S.M.; Van Poucke, C.; Hendrickx, M.E.; Van Loey, A.M.; Grauwet, T. Impact of refrigerated storage on (bio)chemical conversions of health-related compounds in pretreated, pasteurized Brussels sprouts and leek. Food Res. Int. 2023, 175, 113764. [Google Scholar] [CrossRef]
- Britton, G.; Liaaen-Jensen, S.; Pfander, H. The Carotenoids. Volume 1B: Spectroscopy. In Carotenoids; Birkhäuser: Basel, Switzerland, 1995; pp. 46–62. [Google Scholar]
- Agcam, E.; Akyildiz, A.; Evrendilek, G.A. Comparison of phenolic compounds of orange juice processed by pulsed electric fields (PEF) and conventional thermal pasteurisation. Food Chem. 2014, 143, 354–361. [Google Scholar] [CrossRef]
- Hossain, N.; Sarker, U.; Raihan, S.; Al-huqail, A.A.; Siddiqui, M.H. Influence of Salinity Stress on Color Parameters, Leaf Pigmentation, Polyphenol and Flavonoid Contents, and Antioxidant Activity of Amaranthus lividus Leafy Vegetables. Molecules 2022, 27, 1821. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Gupta, S.; Lakshmi, A.J.; Manjunath, M.N.; Prakash, J. Analysis of nutrient and antinutrient content of underutilized green leafy vegetables. LWT 2005, 38, 339–345. [Google Scholar] [CrossRef]
- Punna, R.; Paruchuri, U.R. Effect of maturity and processing on total, insoluble and soluble dietary fiber contents of Indian green leafy vegetables. Int. J. Food Sci. Nutr. 2004, 55, 561–567. [Google Scholar] [CrossRef]
- Celmeli, T.; Sari, H.; Canci, H.; Sari, D.; Adak, A.; Eker, T.; Toker, C. The nutritional content of common bean (Phaseolus vulgaris L.) landraces in comparison to modern varieties. Agronomy 2018, 8, 166. [Google Scholar] [CrossRef]
- Aulia, R.; Amanah, H.Z.; Lee, H.; Kim, M.S.; Baek, I.; Qin, J.; Cho, B.-K. Protein and lipid content estimation in soybeans using Raman hyperspectral imaging. Front. Plant Sci. 2023, 14, 1167139. [Google Scholar] [CrossRef]
- Dodevska, M.S.; Djordjevic, B.I.; Sobajic, S.S.; Miletic, I.D.; Djordjevic, P.B.; Dimitrijevic-Sreckovic, V.S. Characterisation of dietary fibre components in cereals and legumes used in Serbian diet. Food Chem. 2013, 141, 1624–1629. [Google Scholar] [CrossRef]
- Chen, Y.; McGee, R.; Vandemark, G.; Brick, M.; Thompson, H.J. Dietary fiber analysis of four pulses using AOAC 2011.25: Implications for human health. Nutrients 2016, 8, 829. [Google Scholar] [CrossRef]
- Barber, T.M.; Kabisch, S.; Pfei, A.F.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef]
- Thovhogi, F.; Ntushelo, N.; Gwata, E.T. A Comparative Study of the Presence of Minerals, Flavonoids and Total Phenolic Compounds in the Leaves of Common Traditional Vegetables. Appl. Sci. 2023, 13, 8503. [Google Scholar] [CrossRef]
- Schönfeldt, H.C.; Pretorius, B. The nutrient content of five traditional South African dark green leafy vegetables-A preliminary study. J. Food Compos. Anal. 2011, 24, 1141–1146. [Google Scholar] [CrossRef]
- Jiménez-Aguilar, D.M.; Grusak, M.A. Minerals, vitamin C, phenolics, flavonoids and antioxidant activity of Amaranthus leafy vegetables. J. Food Compos. Anal. 2017, 58, 33–39. [Google Scholar] [CrossRef]
- Jiménez-Aguilar, D.M.; Grusak, M.A. Evaluation of Minerals, Phytochemical Compounds and Antioxidant Activity of Mexican, Central American, and African Green Leafy Vegetables. Plant Foods Hum. Nutr. 2015, 70, 357–364. [Google Scholar] [CrossRef]
- Kalmpourtzidou, A.; Eilander, A.; Talsma, E.F. Global vegetable intake and supply compared to recommendations: A systematic review. Nutrients 2020, 12, 22–29. [Google Scholar] [CrossRef]
- EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific Opinion on Dietary Reference Values for calcium. EFSA J. 2015, 13, 4101. [Google Scholar] [CrossRef]
- EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific Opinion on Dietary Reference Values for magnesium. EFSA J. 2015, 13, 4186. [Google Scholar] [CrossRef]
- Lo, D.; Wang, H.; Wu, W.; Yang, R. Anti-nutrient components and their concentrations in edible parts in vegetable families Anti-nutrient components and their concentrations in edible parts in vegetable families. CABI Rev. 2018, 13, 1–30. [Google Scholar] [CrossRef]
- Sax, L. The Institute of Medicine’s “Dietary Reference Intake” for Phosphorus: A Critical Perspective. J. Am. Coll. Nutr. 2001, 20, 271–278. [Google Scholar] [CrossRef]
- Kemi, V.E.; Kärkkäinen, M.U.M.; Rita, H.J.; Laaksonen, M.M.L.; Outila, T.A.; Lamberg-Allardt, C.J.E. Low calcium:phosphorus ratio in habitual diets affects serum parathyroid hormone concentration and calcium metabolism in healthy women with adequate calcium intake. Br. J. Nutr. 2010, 103, 561–568. [Google Scholar] [CrossRef]
- EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific Opinion on Dietary Reference Values for zinc. EFSA J. 2014, 12, 3844. [Google Scholar] [CrossRef]
- FAO/WHO. Vitamin and Mineral Requirements in Human Nutrition, 2nd ed; World Health Organization and Food and Agriculture Organization of the United Nations: Bangkok, Thailand, 2004. [Google Scholar]
- Wawire, M.; Oey, I.; Mathooko, F.; Njoroge, C.; Shitanda, D.; Hendrickx, M. Thermal stability of ascorbic acid and ascorbic acid oxidase in African cowpea leaves (Vigna unguiculata) of different maturities. J. Agric. Food Chem. 2011, 59, 1774–1783. [Google Scholar] [CrossRef]
- Medoua, G.N.; Oldewage-Theron, W.H. Effect of drying and cooking on nutritional value and antioxidant capacity of morogo (Amaranthus hybridus) a traditional leafy vegetable grown in South Africa. J. Food Sci. Technol. 2014, 51, 736–742. [Google Scholar] [CrossRef]
- Ejoh, S.I.; Wireko-Manu, F.D.; Page, D.; Renard, C.M.G.C. Traditional green leafy vegetables as underutilised sources of micronutrients in a rural farming community in south-west Nigeria I: Estimation of vitamin C, carotenoids and mineral contents. S. Afr. J. Clin. Nutr. 2021, 34, 40–45. [Google Scholar] [CrossRef]
- Carr, A.C.; Block, G.; Lykkesfeldt, J. Estimation of Vitamin C Intake Requirements Based on Body Weight: Implications for Obesity. Nutrients 2022, 14, 1460. [Google Scholar] [CrossRef]
- Raju, M.; Varakumar, S.; Lakshminarayana, R.; Krishnakantha, T.P.; Baskaran, V. Carotenoid composition and vitamin A activity of medicinally important green leafy vegetables. Food Chem. 2007, 101, 1598–1605. [Google Scholar] [CrossRef]
- Song, M.; Yu, J.; Lee, J.; Ahn, H.; Keum, Y. Profiling of Nutritionally Vital Bioactive Compounds in Emerging Green Leafy Vegetables: A Comparative Study. Foods 2022, 11, 3867. [Google Scholar] [CrossRef]
- Bunea, A.; Andjelkovic, M.; Socaciu, C.; Bobis, O.; Neacsu, M.; Verhé, R.; Van Camp, J. Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chem. 2008, 108, 649–656. [Google Scholar] [CrossRef]
- Lee, H.W.; Bi, X.; Henry, C.J. Carotenoids, tocopherols and phylloquinone content of 26 green leafy vegetables commonly consumed in Southeast Asia. Food Chem. 2022, 385, 132729. [Google Scholar] [CrossRef]
- Chandrika, U.G.; Basnayake, B.M.L.B.; Athukorala, I.; Colombagama, P.W.N.M.; Goonetilleke, A. Carotenoid content and in vitro bioaccessibility of lutein in some leafy vegetables popular in Sri Lanka. J. Nutr. Sci. Vitaminol. 2010, 56, 203–207. [Google Scholar] [CrossRef]
- EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific Opinion on Dietary Reference Values for vitamin A. EFSA J. 2015, 13, 4028. [Google Scholar] [CrossRef]
- Arunkumar, R.; Gorusupudi, A.; Bernstein, P.S. The Macular Carotenoids: A Biochemical Overview. Biochim. Et Biophys. Acta (BBA)–Mol. Cell Biol. Lipids 2020, 1865, 158617. [Google Scholar] [CrossRef]
- Lemmens, L.; Colle, I.; Van Buggenhout, S.; Palmero, P.; Van Loey, A.; Hendrickx, M. Carotenoid bioaccessibility in fruit- and vegetable-based food products as affected by product (micro)structural characteristics and the presence of lipids: A review. Trends Food Sci. Technol. 2014, 38, 125–135. [Google Scholar] [CrossRef]
- Nyero, A.; Anywar, G.U.; Achaye, I.; Malinga, G.M. Phytochemical composition and antioxidant activities of some wild edible plants locally consumed by rural communities in northern Uganda. Front. Nutr. 2023, 10, 1070031. [Google Scholar] [CrossRef]
- Sarker, U.; Rabbani, G.; Oba, S.; Eldehna, W.M.; Al-Rashood, S.T.; Mostafa, N.M.; Eldahshan, O.A. Phytonutrients, Colorant Pigments, Phytochemicals, and Antioxidant Potential of Orphan Leafy Amaranthus Species. Molecules 2022, 27, 2899. [Google Scholar] [CrossRef]
- Nartnampong, S.; Kittiwongsunthon, A.; Porasuphatana, W. Blanching process increases health promoting phytochemicals in green leafy Thai vegetables. Int. Food Res. J. 2016, 23, 2426–2435. [Google Scholar]
- Martins, T.; Barros, A.N.; Rosa, E.; Antunes, L. Enhancing Health Benefits through Chlorophylls and Chlorophyll-Rich Agro-Food: A Comprehensive Review. Molecules 2023, 28, 5344. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; You, Y.; Hua, M.; Wu, P.; Liu, Y.; Chen, Z.; Zhang, L.; Wei, H.; Li, Y.; Luo, M.; et al. Chlorophyllin Modulates Gut Microbiota and Inhibits Intestinal Inflammation to Ameliorate Hepatic Fibrosis in Mice. Front. Physiol. 2018, 9, 1671. [Google Scholar] [CrossRef] [PubMed]
Vegetable | Moisture (g/100 g FW) | Dietary Fibre | Crude Protein | True Protein | Total Ash | Total Starch |
---|---|---|---|---|---|---|
g/100 g DW | ||||||
African nightshade | 89.51 ± 0.60 a | 35.78 ± 0.18 bc | 37.53 ± 0.21 b | 31.29 ± 0.39 b | 17.18 ± 0.45 bc | 0.47 ± 0.05 f |
Nightshade | 88.82 ± 0.18 a | 28.67 ± 0.13 e | 39.53 ± 0.07 a | 33.41 ± 0.40 a | 13.91 ± 0.29 d | 1.74 ± 0.07 c |
Green amaranthus | 84.72 ± 0.51 cd | 36.91 ± 0.12 b | 30.63 ± 0.44 e | 27.76 ± 0.38 de | 17.62 ± 0.08 b | 1.64 ± 0.10 c |
Red amaranthus | 88.79 ± 0.26 a | 36.27 ± 0.35 bc | 32.38 ± 0.72 d | 26.77 ± 0.14 e | 20.04 ± 0.16 a | 0.77 ± 0.04 e |
Collard leaves | 83.81 ± 0.35 d | 35.02 ± 0.41 c | 26.38 ± 0.18 f | 21.17 ± 0.26 f | 13.03 ± 0.14 e | 1.67 ± 0.12 c |
Cowpeas leaves | 85.55 ± 0.49 bc | 30.45 ± 0.29 de | 31.06 ± 0.45 e | 29.38 ± 0.26 c | 10.69 ± 0.07 g | 5.11 ± 0.13 a |
Malakwang | 86.29 ± 0.48 b | 43.39 ± 0.25 a | 14.96 ± 0.05 g | 13.27 ± 0.05 g | 7.68 ± 0.13 h | 2.11 ± 0.07 b |
Pumpkin leaves | 85.58 ± 0.33 bc | 30.09 ± 0.19 e | 33.84 ± 0.42 c | 30.36 ± 0.12 bc | 11.33 ± 0.31 f | 0.96 ± 0.03 d |
Spider plant | 85.36 ± 0.53 bc | 32.41 ± 0.20 d | 36.43 ± 0.16 b | 28.19 ± 0.31 d | 16.74 ± 0.16 c | 0.96 ± 0.03 d |
Leafy Vegetable | K | Ca | Mg | P | Fe | Zn |
---|---|---|---|---|---|---|
African nightshade | 1562.74 ± 374.29 c | 1265.35 ± 67.67 e | 423.83 ± 42.58 ef | 548.34 ± 5.39 e | 64.85 ± 4.17 bc | 3.12 ± 0.53 ef |
Nightshade | 2458.51 ± 333.58 ab | 1689.89 ± 16.14 d | 513.83 ± 1.30 d | 542.39 ± 2.23 e | 29.03 ± 0.98 e | 4.03 ± 0.06 cd |
Green amaranthus | 2854.68 ± 337.63 ab | 2466.37 ± 129.83 b | 1322.95 ± 11.72 b | 566.23 ± 1.97 e | 78.30 ± 1.16 a | 5.23 ± 0.02 ab |
Red amaranthus | 3183.60 ± 329.95 a | 3395.46 ± 59.21 a | 1428.10 ± 27.96 a | 737.97 ± 16.65 c | 42.32 ± 1.36 d | 5.94 ± 0.49 a |
Collard leaves | 2074.52 ± 314.03 bc | 2361.28 ± 18.51 b | 467.89 ± 2.34 de | 634.05 ± 4.94 d | 14.05 ± 0.26 g | 2.74 ± 0.07 fg |
Cowpeas | 1533.44 ± 83.99 c | 1795.44 ± 51.62 d | 397.91 ± 6.77 f | 494.26 ± 14.79 f | 68.77 ± 2.39 b | 3.53 ± 0.17 de |
Malakwang | 609.44 ± 29.07 d | 2151.95 ± 75.33 c | 323.74 ± 11.98 g | 258.41 ± 9.13 g | 16.99 ± 0.80 g | 2.27 ± 0.12 g |
Pumpkin leaves | 2447.39 ± 59.56 b | 629.50 ± 3.49 f | 434.18 ± 3.17 ef | 1104.17 ± 6.72 a | 22.38 ± 1.51 f | 5.83 ± 0.02 a |
Spider plant | 2402.75 ± 157.13 b | 2004.62 ± 9.67 c | 700.76 ± 2.62 c | 923.33 ± 1.62 b | 62.42 ± 0.50 c | 4.57 ± 0.05 bc |
Leafy Vegetable | TPC (mg GAE/g DW) | TFC (mg QE/g DW) | Vitamin C (mg/100 g DW) | β-Carotene (mg/100 g DW) | Total Carotenoids (mg/100 g DW) | Total Chlorophyll (mg/100 g DW) |
---|---|---|---|---|---|---|
African nightshade | 35.7 ± 0.4 b | 14.7 ± 0.7 b | 28.2 ± 0.5 f | 29.5 ±0 0.9 a | 127.5 ± 1.7 a | 1568.0 ± 42.0 a |
Nightshade | 24.1 ± 0.7 d | 14.8 ± 0.3 b | 134.0 ± 8.9 d | 23.3 ± 0.2 e | 105.6 ± 1.9 c | 1337.0 ± 29.4 b |
Green amaranth | 21.6 ± 0.8 ef | 13.1 ± 0.2 c | 36.0 ± 2.2 f | 24.4 ± 0.1 de | 89.6 ± 1.3 d | 1094.4 ± 32.4 c |
Red amaranth | 27.1 ± 0.3 c | 12.3 ± 0.1 d | 125.8 ± 4.7 de | 27.8 ± 0.3 b | 111.4 ± 1.6 b | 1299.3 ± 40.3 b |
Collard leaves | 20.8 ± 0.6 f | 11.5 ± 0.2 e | 213.3 ± 4.0 b | 12.6 ± 0.3 g | 52.2 ± 0.7 e | 722.6 ± 20.9 e |
Cowpeas leaves | 20.6 ± 0.8 f | 15.2 ± 0.2 b | 115.8 ± 2.3 e | 25.4 ± 0.7 cd | 105.6 ± 0.8 c | 1090.5 ± 10.7 c |
Malakwang | 42.5 ± 0.3 a | 16.3 ± 0.5 a | 253.2 ± 13.0 a | 12.5 ± 0.2 g | 46.0 ± 0.4 f | 279.3 ± 3.0 f |
Pumpkin leaves | 16.8 ± 1.3 g | 12.2 ± 0.4 de | 166.7 ± 4.0 c | 18.0 ± 0.1 f | 102.9 ± 1.0 c | 946.1 ± 17.7 d |
Spider plant | 23.7 ± 1.0 de | 16.1 ± 0.9 a | 23.8 ± 1.3 f | 26.4 ± 0.5 c | 106.5 ± 1.8 c | 1037.6 ± 5.4 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lugumira, R.; Tafiire, H.; Vancoillie, F.; Ssepuuya, G.; Van Loey, A. Nutrient and Phytochemical Composition of Nine African Leafy Vegetables: A Comparative Study. Foods 2025, 14, 1304. https://doi.org/10.3390/foods14081304
Lugumira R, Tafiire H, Vancoillie F, Ssepuuya G, Van Loey A. Nutrient and Phytochemical Composition of Nine African Leafy Vegetables: A Comparative Study. Foods. 2025; 14(8):1304. https://doi.org/10.3390/foods14081304
Chicago/Turabian StyleLugumira, Robert, Henry Tafiire, Flore Vancoillie, Geoffrey Ssepuuya, and Ann Van Loey. 2025. "Nutrient and Phytochemical Composition of Nine African Leafy Vegetables: A Comparative Study" Foods 14, no. 8: 1304. https://doi.org/10.3390/foods14081304
APA StyleLugumira, R., Tafiire, H., Vancoillie, F., Ssepuuya, G., & Van Loey, A. (2025). Nutrient and Phytochemical Composition of Nine African Leafy Vegetables: A Comparative Study. Foods, 14(8), 1304. https://doi.org/10.3390/foods14081304