Vineyard Location Impact on the Composition and Quality of Wines from International and Native Varieties Grown in Drama, Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vineyard Locations
2.2. Vinification
2.3. Chemical Analysis
2.3.1. Chemicals and Reagents
2.3.2. Physicochemical Analysis of Wine
2.4. Determination of Phenolics and Antioxidant Activity of Wines
2.5. Determination of Elemental Composition of Wines
2.6. Sensorial Evaluation of Wines
2.7. Statistical Analysis
3. Results
3.1. Physicochemical Parameters and Chromatic Characteristics of Wines
3.2. Variation in Phenolics and Antioxidant Capacity of Wines
3.3. Elemental Composition of Wine
3.4. Sensorial Analysis of Wine
3.5. PCA Analysis of the Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- OIV. State of the World Vine and Wine Sector in 2023. 2024. Available online: https://www.oiv.int/sites/default/files/2024-2004/OIV_STATE_OF_THE_WORLD_VINE_AND_WINE_SECTOR_IN_2023.pdf (accessed on 2 March 2025).
- European Commission. eAmbrosia Union Register of Geographical Indications. Available online: https://ec.europa.eu/agriculture/eambrosia/geographical-indications-register/ (accessed on 1 February 2025).
- Versari, A.; Laurie, V.F.; Ricci, A.; Laghi, L.; Parpinello, G.P. Progress in authentication, typification and traceability of grapes and wines by chemometric approaches. Food Res. Int. 2014, 60, 2–18. [Google Scholar] [CrossRef]
- Karampatea, A.; Vrentzou, E.; Skendi, A.; Bouloumpasi, E. Effect of Vineyard Location on Assyrtiko Grape Ripening in Santorini and Its Wine’s Characteristics. Biol. Life Sci. Forum 2024, 40, 47. [Google Scholar] [CrossRef]
- Roullier-Gall, C.; Boutegrabet, L.; Gougeon, R.D.; Schmitt-Kopplin, P. A grape and wine chemodiversity comparison of different appellations in Burgundy: Vintage vs terroir effects. Food Chem. 2014, 152, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.I.; Lombard, P.B. Environmental and Management Practices Affecting Grape Composition and Wine Quality—A Review. Am. J. Enol. Vitic. 1993, 44, 409. [Google Scholar] [CrossRef]
- OIV. Definition of Vitivinicultural “Terroir”. The International Organization of Vine and Wine, Resolution OIV/VITI 333/2010. 2010. Available online: http://www.oiv.int/public/medias/379/viti-2010-1-en.pdf (accessed on 2 March 2025).
- Grainger, C.; Yeh, A.; Byer, S.; Hjelmeland, A.; Lima, M.M.M.; Runnebaum, R.C. Vineyard site impact on the elemental composition of Pinot noir wines. Food Chem. 2021, 334, 127386. [Google Scholar] [CrossRef] [PubMed]
- Bora, F.D.; Călugăr, A.; Bunea, C.-I.; Rozsa, S.; Bunea, A. Assessment of Physicochemical, Macro- and Microelements, Heavy Metals, and Related Human Health Risk from Organically, Conventionally, and Homemade Romanian Wines. Horticulturae 2022, 8, 382. [Google Scholar] [CrossRef]
- Rocha, S.; Pinto, E.; Almeida, A.; Fernandes, E. Multi-elemental analysis as a tool for characterization and differentiation of Portuguese wines according to their Protected Geographical Indication. Food Control 2019, 103, 27–35. [Google Scholar] [CrossRef]
- Lippi, G.; Franchini, M.; Favaloro, E.J.; Targher, G. Moderate red wine consumption and cardiovascular disease risk: Beyond the “French paradox”. Semin. Thromb. Hemost. 2010, 36, 59–70. [Google Scholar] [CrossRef]
- Pérez-Magariño, S.; González-San José, M.L. Polyphenols and colour variability of red wines made from grapes harvested at different ripeness grade. Food Chem. 2006, 96, 197–208. [Google Scholar] [CrossRef]
- Martínez-Gil, A.M.; Gutiérrez-Gamboa, G.; Garde-Cerdán, T.; Pérez-Álvarez, E.P.; Moreno-Simunovic, Y. Characterization of phenolic composition in Carignan noir grapes ( L.) from six wine-growing sites in Maule Valley, Chile. J. Sci. Food Agric. 2018, 98, 274–282. [Google Scholar] [CrossRef]
- Monagas, M.; Hernández-Ledesma, B.; Gómez-Cordovés, C.; Bartolomé, B. Commercial dietary ingredients from Vitis vinifera L. leaves and grape skins: Antioxidant and chemical characterization. J. Agric. Food Chem. 2006, 54, 319–327. [Google Scholar] [CrossRef]
- Gonzalez-San Jose, M.L.; Santa-Maria, G.; Diez, C. Anthocyanins as parameters for differentiating wines by grape variety, wine-growing region, and wine-making methods. J. Food Compos. Anal. 1990, 3, 54–66. [Google Scholar] [CrossRef]
- Peña-Neira, A.; Hernández, T.; García-Vallejo, C.; Estrella, I.; Suarez, J.A. A survey of phenolic compounds in Spanish wines of different geographical origin. Eur. Food Res. Technol. 2000, 210, 445–448. [Google Scholar] [CrossRef]
- Colibaba, L.C.; Bosoi, I.; PuȘCalĂU, M.; Bodale, I.; Luchian, C.; Rotaru, L.; Cotea, V.V. Climatic projections vs. grapevine phenology: A regional case study. Not. Bot. Horti Agrobot. Cluj-Napoca 2024, 52, 13381. [Google Scholar] [CrossRef]
- Llanaj, C.; McGregor, G. Climate Change, Grape Phenology, and Frost Risk in Southeast England. Aust. J. Grape Wine Res. 2022, 2022, 9835317. [Google Scholar] [CrossRef]
- Baltazar, M.; Castro, I.; Gonçalves, B. Adaptation to Climate Change in Viticulture: The Role of Varietal Selection-A Review. Plants 2025, 14, 104. [Google Scholar] [CrossRef]
- Jones, G.V.; Davis, R.E. Climate Influences on Grapevine Phenology, Grape Composition, and Wine Production and Quality for Bordeaux, France. Am. J. Enol. Vitic. 2000, 51, 249. [Google Scholar] [CrossRef]
- Fraga, H.; García de Cortázar Atauri, I.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. Viticulture in Portugal: A review of recent trends and climate change projections. OENO One 2017, 51, 61–69. [Google Scholar] [CrossRef]
- Wolkovich, E.M.; García de Cortázar-Atauri, I.; Morales-Castilla, I.; Nicholas, K.A.; Lacombe, T. From Pinot to Xinomavro in the world’s future wine-growing regions. Nat. Clim. Change 2018, 8, 29–37. [Google Scholar] [CrossRef]
- Galluzzi, G.; Seyoum, A.; Halewood, M.; López Noriega, I.; Welch, E.W. The role of genetic resources in breeding for climate change: The case of public breeding programmes in eighteen developing countries. Plants 2020, 9, 1129. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Destrac-Irvine, A. Modified grape composition under climate change conditions requires adaptations in the vineyard. OENO One 2017, 51, 147–154. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, N. An update on the Impact of climate change in viticulture and potential adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef]
- Karapetsas, N.; Alexandridis, T.K.; Bilas, G.; Theocharis, S.; Koundouras, S. Delineating Natural Terroir Units in Wine Regions Using Geoinformatics. Agriculture 2023, 13, 629. [Google Scholar] [CrossRef]
- OIV. Compendium of International Methods of Wine and Must Analysis; International Organisation of Vine and Wine: Paris, France, 2018; Volume 1 and 2. [Google Scholar]
- Sudraud, P. Interpretation des courbes d’absorption des vins rouges. Ann. Technol. Agric. 1958, 7, 203–208. [Google Scholar]
- Glories, Y. La couleur des vins rouges 2: Mesure origine et interpretation. Connaiss. Vigne Vin 1984, 18, 253–271. [Google Scholar] [CrossRef]
- Simpson, R. Factors affecting oxidative browning of white wine. Vitis 1982, 21, 233–239. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Phenolic compounds. In Handbook of Enology; John Wileys Sons, Ltd.: New York, NY, USA, 2006; Volume 2, pp. 141–203. [Google Scholar]
- Mayén, M.; Barón, R.; Mérida, J.; Medina, M. Changes in phenolic compounds during accelerated browning in white wines from cv. Pedro Ximenez and cv. Baladi grapes. Food Chem. 1997, 58, 89–95. [Google Scholar] [CrossRef]
- Skendi, A.; Papageorgiou, M.; Stefanou, S. Preliminary study of microelements, phenolics as well as antioxidant activity in local, homemade wines from North-East Greece. Foods 2020, 9, 1607. [Google Scholar] [CrossRef]
- Drava, G.; Minganti, V. Mineral composition of organic and conventional white wines from Italy. Heliyon 2019, 5, e02464. [Google Scholar] [CrossRef]
- IUPAC. International Union of Pure and Applied Chemistry. Nomenclature in evaluation of analytical methods Including detection and quantification capabilities. Pure Appl. Chem. 1995, 67, 1699–1723. [Google Scholar]
- ISO 3591:1977; Sensory analysis—Apparatus—Wine-Tasting Glass: This Standard Specifies the Characteristics of a Wine-tasting Glass Used for Sensory Analysis, Detailing Aspects Such as Shape and Dimensions to Ensure Consistency in Wine Evaluations. ISO: Geneva, Switzerland, 1977.
- ISO 4121:2003; Sensory Analysis—Guidelines for the Use of Quantitative Response Scales: This Standard Provides Guidelines on the Use of Quantitative Response Scales in Sensory Assessment, Applicable to Various Products Including Wine. It De-Scribes Different Types of Scales and Their Appropriate Application in Sensory Evaluation. ISO: Geneva, Switzerland, 2003.
- Deis, L.; Martínez, L.; da Costa, B.S.; Vilanova, M. The Influence of Climatic Conditions Associated with Altitude on the Volatile Composition of Cabernet Sauvignon Wines from Argentina, Spain and Portugal. Horticulturae 2024, 10, 870. [Google Scholar] [CrossRef]
- OIV. International Standard for the Labelling of Wines; OIV Publications: Paris, France, 2022. [Google Scholar]
- Mansour, G.; Ghanem, C.; Mercenaro, L.; Nassif, N.; Hassoun, G.; Del Caro, A. Effects of altitude on the chemical composition of grapes and wine: A review. OENO One 2022, 56, 227–239. [Google Scholar] [CrossRef]
- Robles, A.; Fabjanowicz, M.; Chmiel, T.; Płotka-Wasylka, J. Determination and identification of organic acids in wine samples. Problems and challenges. TrAC Trends Anal. Chem. 2019, 120, 115630. [Google Scholar] [CrossRef]
- Hostnik, G.; Tošović, J.; Štumpf, S.; Petek, A.; Bren, U. The influence of pH on UV/Vis spectra of gallic and ellagic acid: A combined experimental and computational study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 267, 120472. [Google Scholar] [CrossRef]
- Forino, M.; Picariello, L.; Rinaldi, A.; Moio, L.; Gambuti, A. How must pH affects the level of red wine phenols. LWT 2020, 129, 109546. [Google Scholar] [CrossRef]
- He, F.; Liang, N.N.; Mu, L.; Pan, Q.H.; Wang, J.; Reeves, M.J.; Duan, C.Q. Anthocyanins and their variation in red wines I. Monomeric anthocyanins and their color expression. Molecules 2012, 17, 1571–1601. [Google Scholar] [CrossRef]
- Berli, F.J.; Alonso, R.; Beltrano, J.; Bottini, R. High-Altitude Solar UV-B and Abscisic Acid Sprays Increase Grape Berry Antioxidant Capacity. Am. J. Enol. Vitic. 2015, 66, 65. [Google Scholar] [CrossRef]
- Kallithraka, S.; Tsoutsouras, E.; Tzourou, E.; Lanaridis, P. Principal phenolic compounds in Greek red wines. Food Chem. 2006, 99, 784–793. [Google Scholar] [CrossRef]
- Sartor, S.; Caliari, V.; Malinovski, L.I.; Toaldo, I.M.; Bordignon-Luiz, M.T. Bioactive profiling of polyphenolics and oenological properties of red wines from Italian grapes (Vitis vinifera L.) cultivated in a selected subtropical region. Int. J. Food Prop. 2017, 20, 1319–1328. [Google Scholar] [CrossRef]
- Jin, X.-d.; Wu, X.; Liu, X. Phenolic Characteristics and Antioxidant Activity of Merlot and Cabernet Sauvignon Wines Increase with Vineyard Altitude in a High-altitude Region. S. Afr. J. Enol. Vitic. 2017, 38, 132–143. [Google Scholar] [CrossRef]
- Castillo-Muñoz, N.; Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. Flavonol profiles of Vitis vinifera white grape cultivars. J. Food Compos. Anal. 2010, 23, 699–705. [Google Scholar] [CrossRef]
- Boulton, R. The Copigmentation of Anthocyanins and Its Role in the Color of Red Wine: A Critical Review. Am. J. Enol. Vitic. 2001, 52, 67. [Google Scholar] [CrossRef]
- Gutiérrez-Escobar, R.; Aliaño-González, M.J.; Cantos-Villar, E. Wine Polyphenol Content and Its Influence on Wine Quality and Properties: A Review. Molecules 2021, 26, 718. [Google Scholar] [CrossRef] [PubMed]
- Kallithraka, S.; Arvanitoyannis, I.S.; Kefalas, P.; El-Zajouli, A.; Soufleros, E.; Psarra, E. Instrumental and sensory analysis of Greek wines; implementation of principal component analysis (PCA) for classification according to geographical origin. Food Chem. 2001, 73, 501–514. [Google Scholar] [CrossRef]
- Mpelasoka, B.S.; Schachtman, D.P.; Treeby, M.T.; Thomas, M.R. A review of potassium nutrition in grapevines with special emphasis on berry accumulation. Aust. J. Grape Wine Res. 2003, 9, 154–168. [Google Scholar] [CrossRef]
- Đurđić, S.; Pantelić, M.; Trifković, J.; Vukojević, V.; Natić, M.; Tešić, Ž.; Mutić, J. Elemental composition as a tool for the assessment of type, seasonal variability, and geographical origin of wine and its contribution to daily elemental intake. RSC Adv. 2017, 7, 2151–2162. [Google Scholar] [CrossRef]
- Birch, R.M.; Ciani, M.; Walker, G.M. Magnesium, calcium and fermentative metabolism in mine yeasts. J. Wine Res. 2003, 14, 3–15. [Google Scholar] [CrossRef]
- Pasvanka, K.; Kostakis, M.; Tarapoulouzi, M.; Nisianakis, P.; Thomaidis, N.S.; Proestos, C. ICP–MS Analysis of Multi-Elemental Profile of Greek Wines and Their Classification According to Variety, Area and Year of Production. Separations 2021, 8, 119. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Frankowski, M.; Simeonov, V.; Polkowska, Ż.; Namieśnik, J. Determination of Metals Content in Wine Samples by Inductively Coupled Plasma-Mass Spectrometry. Molecules 2018, 23, 2886. [Google Scholar] [CrossRef]
- Leder, R.; Kubanovic, V.; Petric, I.; Vahcić, N.; Banović, M. Chemometric prediction of the geographical origin of Croatian wines through their elemental profiles. J. Food Nutr. Res. 2015, 54, 229–238. [Google Scholar]
- Goldammer, T. Wine Production: Science and Technology of Winemaking; Apex Publishers: Haymarket, VA, USA, 2023. [Google Scholar]
- Skendi, A.; Stefanou, S.; Papageorgiou, M. Characterization of Semisweet and Sweet Wines from Kos Island Produced Traditionally and Conventionally. Foods 2023, 12, 3762. [Google Scholar] [CrossRef] [PubMed]
- Galani-Nikolakaki, S.; Kallithrakas-Kontos, N.; Katsanos, A.A. Trace element analysis of Cretan wines and wine products. Sci. Total Environ. 2002, 285, 155–163. [Google Scholar] [CrossRef]
- Nicolini, G.; Larcher, R.; Pangrazzi, P.; Bontempo, L. Changes in the contents of micro-and trace-elements in wine due to winemaking treatments. Vitis 2004, 43, 41–45. [Google Scholar]
- Catarino, S.; Madeira, M.; Monteiro, F.; Caldeira, I.; Bruno de Sousa, R.; Curvelo-Garcia, A. Mineral Composition through Soil-Wine System of Portuguese Vineyards and Its Potential for Wine Traceability. Beverages 2018, 4, 85. [Google Scholar] [CrossRef]
- Fabani, M.P.; Toro, M.E.; Vázquez, F.; Díaz, M.P.; Wunderlin, D.A. Differential absorption of metals from soil to diverse vine varieties from the Valley of Tulum (Argentina): Consequences to evaluate wine provenance. J. Agric. Food Chem. 2009, 57, 7409–7416. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation. Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. Off. J. Eur. Union 2023, 119, 103–157. Available online: http://data.europa.eu/eli/reg/2023/915/oj (accessed on 2 March 2025).
- Li, X.; Dong, S.; Su, X. Copper and other heavy metals in grapes: A pilot study tracing influential factors and evaluating potential risks in China. Sci. Rep. 2018, 8, 17407. [Google Scholar] [CrossRef]
- Dumitriu, G.-D.; Teodosiu, C.; Morosanu, I.; Plavan, O.; Gabur, I.; Cotea, V.V. Heavy metals assessment in the major stages of winemaking: Chemometric analysis and impacts on human health and environment. J. Food Compos. Anal. 2021, 100, 103935. [Google Scholar] [CrossRef]
- Malinovski, L.I.; Brighenti, A.F.; Borghezan, M.; Guerra, M.P.; Silva, A.L.; Porro, D.; Stefanini, M.; Vieira, H.J. Viticultural performance of Italian grapevines in high altitude regions of Santa Catarina State, Brazil. In Proceedings of the XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): IV 1115, IV International Symposium on Tropical Wines and International Symposium on Grape and Wine Production in Diverse Regions, Brisbane, Australia, 17–22 August 2016; pp. 203–210. [Google Scholar]
- Panceri, C.P.; Gomes, T.M.; De Gois, J.S.; Borges, D.L.G.; Bordignon-Luiz, M.T. Effect of dehydration process on mineral content, phenolic compounds and antioxidant activity of Cabernet Sauvignon and Merlot grapes. Food Res. Int. 2013, 54, 1343–1350. [Google Scholar] [CrossRef]
- King, E.S.; Dunn, R.L.; Heymann, H. The influence of alcohol on the sensory perception of red wines. Food Qual. Prefer. 2013, 28, 235–243. [Google Scholar] [CrossRef]
- Gambuti, A.; Picariello, L.; Rinaldi, A.; Moio, L. Evolution of Sangiovese Wines With Varied Tannin and Anthocyanin Ratios During Oxidative Aging. Front. Chem. 2018, 6, 63. [Google Scholar] [CrossRef]
- Martins, V.; Lopez, R.; Garcia, A.; Teixeira, A.; Gerós, H. Vineyard calcium sprays shift the volatile profile of young red wine produced by induced and spontaneous fermentation. Food Res. Int. 2020, 131, 108983. [Google Scholar] [CrossRef]
- Walker, G.; Nicola, R.; Hall, N. Zinc accumulation and utilization by wine yeasts. Int. J. Wine Res. 2009, 1, 85–94. [Google Scholar] [CrossRef]
Sample Code | Grape Variety | Vineyard Location | Vineyard Coordinates | Altitude (m) | Winery |
---|---|---|---|---|---|
Sb-Do | Sauvignon blanc (Sbl) | Doxato (Dox) | 41°07′00″ N/24°14′39″ E | 100 | W1 |
Sb-Ad | Adriani (Adr) | 41°07′23.1″ N/4°15′15.3″ E | 160 | W2 | |
Sb-Pe | Perichora (Per) | 41°05′39.6″ N/23°56′57.4″ E | 180 | W3 | |
Sb-Ag | Agora (Ago) | 41°07′36.4″ N/24°16′18.5″ E | 180 | W4 | |
Sb-Kv | Kali Vrisi (Kvr) | 41°09′43.0″ N/23°53′48.9″ E | 220 | W5 | |
Sb-Kl | Kallifitos (Klf) | 41°11′30.9″ N/24°11′27.0″ E | 280 | W5 | |
Sb-Pl | Platania (Pla) | 41°11′59.8″ N/24°25′37.9″ E | 350 | W2 | |
Sb-Ne | Nevrokopi (Nev) | 41°22′18.5″ N/23°41′43.0″ E | 820 | W2 | |
As-Mi | Assyrtiko (Asy) | Mikrochori (Mik) | 41°06′18.2″ N/24°10′10.7″ E | 80 | W5 |
As-Pe | Perichora (Per) | 41°05′41.9″ N/23°56′55.4″ E | 180 | W3 | |
Me-Kv | Merlot (Mer) | Kali Vrisi (Kvr) | 41°09′04.8″ N/23°55′25.5″ E | 150 | W2 |
Me-Ad | Adriani (Adr) | 41°07′10.2″ N/24°14′44.3″ E | 150 | W2 | |
Me-Ag | Agora (Ago) | 41°07′33.6″ N/24°16′21.7″ E | 190 | W4 | |
Me-Ne | Nevrokopi (Nev) | 41°22′07.5″ N/23°41′32.7″ E | 860 | W2 | |
Cs-Mi | Cabernet Sauvignon (Csa) | Mikrochori (Mik) | 41°06′38.0″ N/24°11′11.4″ E | 100 | W5 |
Cs-Ag | Agora (Ago) | 41°07′38.0″ N/24°16′35.3″ E | 190 | W4 | |
Cs-Kv | Kali Vrisi (Kvr) | 41°10′00.9″ N/23°53′20.6″ E | 200 | W4 | |
Ag-Mi | Agiorgitiko (Agi) | Mikrochori (Mik) | 41°06′27.6″ N/24°10′51.6″ E | 100 | W5 |
Ag-Pe | Perichora (Per) | 41°05′41.9″ N/23°56′49.8″ E | 190 | W3 | |
Ag-Kv | Kali Vrisi (Kvr) | 41°09′25.7″ N/23°54′22.0″ E | 210 | W2 |
Color | Variety | Location | pH | Total Acidity (g Tartaric Acid/L) | Alcohol (% Vol.) | Residual Sugars (g/L) | ||||
---|---|---|---|---|---|---|---|---|---|---|
white | Asy | Per | 3.37 ± 0.03 | 1 | 6.45 ± 0.04 | 1 | 12.30 ± 0.14 | 2 | 3.00 ± 0.35 | 1 |
Mik | 3.31 ± 0.02 | 1 | 7.36 ± 0.02 | 2 | 9.10 ± 0.03 | 1 | 3.40 ± 0.02 | 1 | ||
Sbl | Per | 3.23 ± 0.02 | 4 | 7.66 ± 0.03 | 2 | 12.50 ± 0.04 | 8 | 2.40 ± 0.02 | 5 | |
Adr | 3.43 ± 0.01 | 6 | 6.70 ± 0.01 | 1 | 12.00 ± 0.07 | 6 | 2.70 ± 0.01 | 6 | ||
Pla | 3.25 ± 0.01 | 4 | 8.41 ± 0.03 | 4 | 11.10 ± 0.01 | 5 | 0.60 ± 0.03 | 1 | ||
Dox | 3.16 ± 0.01 | 3 | 10.50 ± 0.02 | 7 | 9.60 ± 0.02 | 1 | 3.50 ± 0.01 | 8 | ||
Ago | 3.30 ± 0.02 | 5 | 8.33 ± 0.01 | 3 | 10.20 ± 0.03 | 4 | 3.30 ± 0.02 | 7 | ||
Kvr | 3.14 ± 0.02 | 3 | 10.85 ± 0.03 | 8 | 9.70 ± 0.03 | 2 | 1.80 ± 0.03 | 3 | ||
Nev | 2.92 ± 0.02 | 1 | 10.00 ± 0.02 | 6 | 12.40 ± 0.03 | 7 | 0.90 ± 0.01 | 2 | ||
Klf | 3.03 ± 0.01 | 2 | 9.00 ± 0.02 | 5 | 10.00 ± 0.02 | 3 | 2.30 ± 0.01 | 4 | ||
red | Mer | Adr | 3.82 ± 0.01 | 3 | 5.97 ± 0.02 | 1 | 12.10 ± 0.04 | 2 | 0.07 ± 0.00 | 1 |
Ago | 3.58 ± 0.01 | 2 | 6.65 ± 0.02 | 2 | 11.60 ± 0.04 | 1 | 0.60 ± 0.01 | 2 | ||
Kvr | 3.61 ± 0.01 | 2 | 6.66 ± 0.02 | 2 | 12.10 ± 0.04 | 2 | 0.10 ± 0.01 | 1 | ||
Nev | 3.42 ± 0.02 | 1 | 8.02 ± 0.026 | 3 | 13.60 ± 0.04 | 3 | 2.90 ± 0.01 | 3 | ||
Agi | Per | 3.45 ± 0.01 | 1,2 | 7.31 ± 0.017 | 2 | 11.20 ± 0.03 | 3 | 1.70 ± 0.02 | 2 | |
Kvr | 3.42 ± 0.03 | 1 | 6.93 ± 0.011 | 1 | 10.90 ± 0.04 | 2 | 1.10 ± 0.01 | 1 | ||
Mik | 3.53 ± 0.03 | 2 | 7.82 ± 0.028 | 3 | 9.90 ± 0.03 | 1 | 3.60 ± 0.02 | 3 | ||
Csa | Ago | 3.73 ± 0.01 | 1 | 7.60 ± 0.012 | 2 | 12.70 ± 0.05 | 2 | 3.10 ± 0.01 | 3 | |
Kvr | 3.68 ± 0.02 | 1 | 7.01 ± 0.031 | 1 | 13.50 ± 0.04 | 3 | 1.80 ± 0.02 | 1 | ||
Mik | 3.99 ± 0.03 | 2 | 8.45 ± 0.032 | 3 | 10.30 ± 0.03 | 1 | 2.70 ± 0.02 | 2 |
Color | Variety | Location | K | Ca | Mg | Na | ||||
---|---|---|---|---|---|---|---|---|---|---|
white | Asy | Per | 542.4 ± 0.3 | 2 | 22.5 ± 0.2 | 1 | 50.5 ± 0.3 | 2 | 9.12 ± 0.14 | 1 |
Mik | 511.5 ± 3.5 | 1 | 25.9 ± 0.0 | 2 | 47.9 ± 0.1 | 1 | 9.86 ± 0.01 | 2 | ||
Sbl | Per | 541.2 ± 3.8 | 5 | 22.0 ± 0.2 | 1 | 55.2 ± 0.5 | 7 | 8.26 ± 0.05 | 2 | |
Adr | 701.6 ± 1.5 | 7 | 22.5 ± 0.0 | 1 | 51.1 ± 0.1 | 5 | 10.23 ± 0.03 | 4 | ||
Pla | 599.6 ± 14.0 | 6 | 26.4 ± 0.1 | 2 | 50.5 ± 0.2 | 4,5 | 10.26 ± 0.05 | 4 | ||
Dox | 504.5 ± 1.2 | 3 | 32.4 ± 0.6 | 4 | 48.7 ± 0.7 | 2 | 11.30 ± 0.26 | 5 | ||
Ago | 592.2 ± 1.3 | 6 | 33.0 ± 0.1 | 5 | 44.2 ± 0.1 | 1 | 7.02 ± 0.02 | 1 | ||
Kvr | 471.4 ± 6.5 | 2 | 35.0 ± 0.1 | 6 | 52.9 ± 0.5 | 6 | 12.17 ± 0.15 | 6 | ||
Nev | 444.7 ± 2.9 | 1 | 28.3 ± 0.3 | 3 | 50.0 ± 0.5 | 3,4 | 8.74 ± 0.08 | 3 | ||
Klf | 521.2 ± 11.3 | 4 | 38.8 ± 0.3 | 7 | 49.3 ± 0.2 | 2,3 | 12.91 ± 0.20 | 7 | ||
red | Mer | Adr | 925.2 ± 66.0 | 3 | 32.6 ± 0.0 | 3 | 63.3 ± 0.1 | 3 | 9.36 ± 0.02 | 2 |
Ago | 794.1 ± 6.0 | 2 | 33.1 ± 0.0 | 4 | 53.3 ± 0.2 | 1 | 9.73 ± 0.02 | 3 | ||
Kvr | 786.4 ± 6.5 | 2 | 30.6 ± 0.1 | 2 | 57.7 ± 0.2 | 2 | 9.32 ± 0.05 | 2 | ||
Nev | 685.1 ± 4.2 | 1 | 26.2 ± 0.0 | 1 | 66.0 ± 0.5 | 4 | 8.16 ± 0.05 | 1 | ||
Agi | Per | 771.3 ± 5.1 | 2 | 23.5 ± 0.1 | 1 | 68.5 ± 0.6 | 2 | 7.16 ± 0.07 | 2 | |
Kvr | 711.7 ± 8.4 | 1 | 26.8 ± 0.1 | 2 | 59.1 ± 0.3 | 1 | 5.84 ± 0.03 | 1 | ||
Mik | 854.7 ± 4.7 | 3 | 29.9 ± 0.1 | 3 | 73.7 ± 0.2 | 3 | 8.82 ± 0.01 | 3 | ||
Csa | Ago | 1204.8 ± 6.9 | 2 | 32.6 ± 0.1 | 3 | 65.3 ± 0.3 | 2 | 9.07 ± 0.09 | 1 | |
Kvr | 1054.2 ± 17.3 | 1 | 19.8 ± 0.0 | 1 | 63.6 ± 0.5 | 1 | 11.26 ± 0.20 | 2 | ||
Mik | 1951.5 ± 27.1 | 3 | 24.1 ± 0.1 | 2 | 73.0 ± 0.5 | 3 | 10.91 ± 0.08 | 2 | ||
color | variety | location | Fe | Cu | Zn | Mn | ||||
white | Asy | Per | 1.043 ± 0.016 | 2 | 0.037 ± 0.006 | 1 | 0.629 ± 0.008 | 1 | 0.226 ± 0.002 | 1 |
Mik | 0.931 ± 0.010 | 1 | 0.376 ± 0.001 | 2 | 0.715 ± 0.003 | 2 | 0.230 ± 0.001 | 1 | ||
Sbl | Per | 1.034 ± 0.003 | 2 | <LOQ | 1 | 0.923 ± 0.010 | 4 | 0.360 ± 0.002 | 2 | |
Adr | 1.153 ± 0.000 | 5 | 0.250 ± 0.002 | 3 | 0.862 ± 0.021 | 3 | 0.341 ± 0.002 | 1,2 | ||
Pla | 1.150 ± 0.009 | 5 | 0.046 ± 0.000 | 1 | 0.848 ± 0.017 | 3 | 0.312 ± 0.004 | 1 | ||
Dox | 1.258 ± 0.003 | 7 | 0.014 ± 0.005 | 1 | 0.785 ± 0.011 | 2 | 0.657 ± 0.011 | 4 | ||
Ago | 1.114 ± 0.003 | 4 | <LOQ | 1 | 0.750 ± 0.014 | 1 | 0.312 ± 0.004 | 1 | ||
Kvr | 1.175 ± 0.006 | 6 | 0.143 ± 0.061 | 2 | 0.749 ± 0.005 | 1 | 0.912 ± 0.043 | 6 | ||
Nev | 1.022 ± 0.003 | 1 | <LOQ | 1 | 0.856 ± 0.007 | 3 | 0.708 ± 0.003 | 5 | ||
Klf | 1.050 ± 0.001 | 3 | 0.011 ± 0.013 | 1 | 0.851 ± 0.004 | 3 | 0.594 ± 0.003 | 3 | ||
red | Mer | Adr | 2.616 ± 0.012 | 3 | <LOQ | 1 | 0.844 ± 0.010 | 3 | 0.470 ± 0.006 | 1 |
Ago | 1.435 ± 0.002 | 1 | 0.096 ± 0.010 | 2 | 0.578 ± 0.011 | 1 | 0.583 ± 0.013 | 2 | ||
Kvr | 1.643 ± 0.020 | 2 | 0.150 ± 0.004 | 3 | 0.698 ± 0.008 | 2 | 0.724 ± 0.003 | 3 | ||
Nev | 2.974 ± 0.021 | 4 | 0.189 ± 0.008 | 4 | 0.688 ± 0.030 | 2 | 0.817 ± 0.017 | 4 | ||
Agi | Per | 2.193 ± 0.012 | 3 | <LOQ | 1 | 0.888 ± 0.007 | 3 | 1.263 ± 0.005 | 3 | |
Kvr | 1.690 ± 0.001 | 1 | 0.007 ± 0.001 | 2 | 0.671 ± 0.008 | 1 | 0.542 ± 0.002 | 2 | ||
Mik | 1.844 ± 0.010 | 2 | <LOQ | 1 | 0.834 ± 0.010 | 2 | 0.456 ± 0.003 | 1 | ||
Csa | Ago | 1.391 ± 0.018 | 2 | <LOQ | 1 | 0.751 ± 0.009 | 1 | 0.426 ± 0.003 | 2 | |
Kvr | 1.233 ± 0.002 | 1 | 0.109 ± 0.001 | 2 | 0.843 ± 0.009 | 2 | 0.705 ± 0.005 | 3 | ||
Mik | 1.469 ± 0.009 | 3 | 0.004 ± 0.002 | 1 | 0.864 ± 0.010 | 2 | 0.360 ± 0.007 | 1 |
Color | Variety | Location | Cd | Pb | Ni | Cr | ||||
---|---|---|---|---|---|---|---|---|---|---|
white | Asy | Per | <LOD | <LOD | 152.45 ± 0.81 | 2 | <LOD | |||
Mik | <LOD | <LOD | 76.95 ± 3.93 | 1 | <LOD | |||||
Sbl | Per | 8.66 ± 0.05 | 5 | 47.35 ± 3.63 | 5 | 94.42 ± 0.08 | 4 | <LOD | ||
Adr | 3.59 ± 0.30 | 3 | 17.63 ± 0.86 | 3 | 91.45 ± 0.78 | 3,4 | <LOD | |||
Pla | 3.99 ± 0.25 | 4 | 11.08 ± 0.36 | 2 | 78.99 ± 4.18 | 1 | <LOD | |||
Dox | <LOD | <LOD | 84.57 ± 1.94 | 1,2 | <LOD | |||||
Ago | <LOD | <LOD | 83.33 ± 1.21 | 1,2 | <LOD | |||||
Kvr | <LOD | <LOD | 87.41 ± 2.99 | 2,3 | <LOD | |||||
Nev | 2.19 ± 0.11 | 1 | 27.14 ± 3.16 | 4 | 95.55 ± 1.89 | 4 | <LOD | |||
Klf | 2.71 ± 0.05 | 2 | 4.90 ± 0.32 | 1 | 90.61 ± 3.10 | 3,4 | <LOD | |||
red | Mer | Adr | 7.94 ± 0.06 | 2 | 64.90 ± 0.90 | 3 | 74.39 ± 2.05 | 2 | 7.11 ± 0.48 | 3 |
Ago | <LOD | 36.68 ± 0.97 | 1 | 86.63 ± 0.22 | 3 | 1.91 ± 0.09 | 1 | |||
Kvr | 1.37 ± 0.09 | 1 | 56.99 ± 2.37 | 2 | 61.38 ± 2.18 | 1 | 3.33 ± 0.31 | 2 | ||
Nev | 1.34 ± 0.37 | 1 | <LOD | 119.82 ± 1.94 | 4 | <LOD | ||||
Agi | Per | 8.13 ± 0.83 | 2 | 39.98 ± 8.52 | 1 | 68.26 ± 0.65 | 1 | 2.31 ± 0.12 | 1 | |
Kvr | 1.03 ± 0.00 | 1 | <LOD | 81.01 ± 0.67 | 2 | <LOD | ||||
Mik | 1.77 ± 0.40 | 1 | 40.85 ± 0.25 | 1 | 110.11 ± 0.22 | 3 | 11.39 ± 0.21 | 2 | ||
Csa | Ago | 1.39 ± 0.32 | 1 | 48.19 ± 1.08 | 1 | 75.73 ± 1.24 | 2 | 1.44 ± 0.30 | 1 | |
Kvr | 7.10 ± 0.57 | 2 | 58.90 ± 0.83 | 2 | 70.74 ± 0.86 | 1 | 1.08 ± 0.16 | 1 | ||
Mik | 0.96 ± 0.12 | 1 | <LOD | 72.66 ± 0.67 | 1 | <LOD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skendi, A.; Karampatea, A.; Bouloumpasi, E.; Tseine, G.; Stefanou, S.; Mamalis, S. Vineyard Location Impact on the Composition and Quality of Wines from International and Native Varieties Grown in Drama, Greece. Foods 2025, 14, 1268. https://doi.org/10.3390/foods14071268
Skendi A, Karampatea A, Bouloumpasi E, Tseine G, Stefanou S, Mamalis S. Vineyard Location Impact on the Composition and Quality of Wines from International and Native Varieties Grown in Drama, Greece. Foods. 2025; 14(7):1268. https://doi.org/10.3390/foods14071268
Chicago/Turabian StyleSkendi, Adriana, Aikaterini Karampatea, Elisavet Bouloumpasi, Georgia Tseine, Stefanos Stefanou, and Spyridon Mamalis. 2025. "Vineyard Location Impact on the Composition and Quality of Wines from International and Native Varieties Grown in Drama, Greece" Foods 14, no. 7: 1268. https://doi.org/10.3390/foods14071268
APA StyleSkendi, A., Karampatea, A., Bouloumpasi, E., Tseine, G., Stefanou, S., & Mamalis, S. (2025). Vineyard Location Impact on the Composition and Quality of Wines from International and Native Varieties Grown in Drama, Greece. Foods, 14(7), 1268. https://doi.org/10.3390/foods14071268