Addition of Lactobacillus fermentum to Fermented Sea Buckthorn (Hippophae rhamnoides L.) Fruit Vinegar Significantly Improves Its Sour Taste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Strains
2.3. Culture Medium
2.4. Fermentation of Sea Buckthorn Vinegar
2.5. Analyses of Soluble Solids (TSS), Reducing Sugars, Ethanol, Acetic Acid, Organic Acids, Amino Acids, Total Acids, and Cell Growth (OD600)
2.6. Total Flavonoid (TFC) and Total Phenol (TPC) Substance Content
2.7. Metabolomics Analysis Using UPLC-MS/MS
2.8. Metabolic Pathway Analysis
2.9. Data Analysis
3. Results and Discussion
3.1. Influence of Lactic Acid Levels on Yeast Fermentation and Acetic Acid Fermentation Processes
3.2. Effect of Fermentation with Added Lactobacillus fermentum on Physicochemical Properties of Sea Buckthorn Fruit Vinegar
3.3. Analysis of Metabolite Composition During Fermentation of Sea Buckthorn Fruit Vinegar
3.4. Changes in Differential Metabolites in Fermentation Systems with the Addition of Lactobacillus fermentum F
3.5. Analysis of Key Metabolic Pathways in Sea Buckthorn Vinegar
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tie, F.; Dong, Q.; Zhu, X.; Ren, L.; Liu, Z.; Wang, Z.; Wang, H.; Hu, N. Optimized extraction, enrichment, identification and hypoglycemic effects of triterpenoid acids from Hippophae rhamnoides L pomace. Food Chem. 2024, 457, 140143. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Wang, T.; Sun, L.; Qiao, Z.; Pan, H.; Zhong, Y.; Zhuang, Y. Recent advances of fermented fruits: A review on strains, fermentation strategies, and functional activities. Food Chem. X 2024, 22, 101482. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Xu, Z.; Liao, X. Bioactive compounds, health benefits and functional food products of sea buckthorn: A review. Crit. Rev. Food Sci. Nutr. 2021, 62, 6761–6782. [Google Scholar] [CrossRef]
- He, W.; Bertram, H.C.; Yin, J.-Y.; Nie, S.-P. Lactobacilli and Their Fermented Foods as a Promising Strategy for Enhancing Bone Mineral Density: A Review. J. Agric. Food Chem. 2024, 72, 17730–17745. [Google Scholar] [CrossRef]
- Markkinen, N.; Pariyani, R.; Jokioja, J.; Kortesniemi, M.; Laaksonen, O.; Yang, B. NMR-based metabolomics approach on optimization of malolactic fermentation of sea buckthorn juice with Lactiplantibacillus plantarum. Food Chem. 2022, 366, 130630. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Ruan, C.; Guan, Y.; Li, H.; Du, W.; Lu, S.; Wen, X.; Tang, K.; Chen, Y. Nontargeted metabolomic and multigene expression analyses reveal the mechanism of oil biosynthesis in sea buckthorn berry pulp rich in palmitoleic acid. Food Chem. 2022, 374, 131719. [Google Scholar] [CrossRef]
- Wang, Z.; Zou, J.; Shi, Y.; Zhang, X.; Zhai, B.; Guo, D.; Sun, J.; Luan, F. Extraction techniques, structural features and biological functions of Hippophae rhamnoides polysaccharides: A review. Int. J. Biol. Macromol. 2024, 263, 130206. [Google Scholar] [CrossRef]
- Geng, Z.; Wang, J.; Zhu, L.; Yu, X.; Zhang, Q.; Li, M.; Hu, B.; Yang, X. Metabolomics provide a novel interpretation of the changes in flavonoids during sea buckthorn (Hippophae rhamnoides L.) drying. Food Chem. 2023, 413, 135598. [Google Scholar] [CrossRef]
- Ma, Y.; Yao, J.; Zhou, L.; Zhao, M.; Wang, W.; Liu, J.; Marchioni, E. Comprehensive untargeted lipidomic analysis of sea buckthorn using UHPLC-HR-AM/MS/MS combined with principal component analysis. Food Chem. 2024, 430, 136964. [Google Scholar] [CrossRef]
- Yuan, H.; Huang, H.; Du, Y.; Zhao, J.; Yu, S.; Lin, Y.; Chen, Y.; Shan, C.; Zhao, Y.; Belwal, T.; et al. Sea buckthorn polyphenols on gastrointestinal health and the interactions with gut microbiota. Food Chem. 2025, 469, 142591. [Google Scholar] [CrossRef]
- Gao, X.; Xia, Y.; Yu, L.; Tian, F.; Zhao, J.; Chen, W.; Zhai, Q. Exploring the physicochemical, structural, metabolic, and flavor com-pounds of limosilactobacillus fermentum in fermented yogurt through comparative genomics. Food Chem. 2025, 465, 142000. [Google Scholar] [PubMed]
- Luzón-Quintana, L.M.; Castro, R.; Durán-Guerrero, E. Biotechnological Processes in Fruit Vinegar Production. Foods 2021, 10, 945. [Google Scholar] [CrossRef]
- Sengun, I.Y.; Kilic, G.; Charoenyingcharoen, P.; Yukphan, P.; Yamada, Y. Investigation of the microbiota associated with traditionally produced fruit vinegars with focus on acetic acid bacteria and lactic acid bacteria. Food Biosci. 2022, 47, 101636. [Google Scholar] [CrossRef]
- Kasperek, M.C.; Galeas, A.V.; Caetano-Silva, M.E.; Xie, Z.; Ulanov, A.; La Frano, M.; Devkota, S.; Miller, M.J.; Allen, J.M. Microbial aromatic amino acid metabolism is modifiable in fermented food matrices to promote bioactivity. Food Chem. 2024, 454, 139798. [Google Scholar] [CrossRef]
- Zhou, M.; Sun, Y.; Mao, Q.; Luo, L.; Pan, H.; Zhang, Q.; Yu, C. Comparative metabolomics profiling reveals the unique bioactive compounds and astringent taste formation of rosehips. Food Chem. 2024, 452, 139584. [Google Scholar] [CrossRef]
- Yu, X.; Gu, C.; Guo, X.; Guo, R.; Zhu, L.; Qiu, X.; Chai, J.; Liu, F.; Feng, Z. Dynamic changes of microbiota and metabolite of traditional Hainan dregs vinegar during fermentation based on metagenomics and metabolomics. Food Chem. 2024, 444, 138641. [Google Scholar] [CrossRef]
- Liu, Y.; Sheng, J.; Li, J.; Zhang, P.; Tang, F.; Shan, C. Influence of lactic acid bacteria on physicochemical indexes, sensory and flavor characteristics of fermented sea buckthorn juice. Food Biosci. 2022, 46, 101519. [Google Scholar] [CrossRef]
- Lyu, X.; Wang, Y.; Gao, S.; Wang, X.; Cao, W.; Cespedes-Acuña, C.L. Sea buckthorn leaf extract on the stability and antioxidant activity of microencapsulated sea buckthorn oil. Food Biosci. 2022, 48, 101818. [Google Scholar] [CrossRef]
- Du, R.; Guo, W.; Shen, Y.; Dai, J.; Zhang, H.; Fu, M.; Wang, X. In situ assay of the reducing sugars in hydrophilic natural deep eutectic solvents by a modified DNS method. J. Mol. Liq. 2023, 385, 122286. [Google Scholar] [CrossRef]
- Li, T.; Jiang, T.; Liu, N.; Wu, C.; Xu, H.; Lei, H. Biotransformation of phenolic profiles and improvement of antioxidant capacities in jujube juice by select lactic acid bacteria. Food Chem. 2020, 339, 127859. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, Y.; Yang, N.; Jiang, T.; Xu, H.; Lei, H. Fermentation of kiwifruit juice from two cultivars by probiotic bacteria: Bioactive phenolics, antioxidant activities and flavor volatiles. Food Chem. 2022, 373, 131455. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Teng, J.; Lyu, Y.; Hu, X.; Zhao, Y.; Wang, M. Enhanced Antioxidant Activity for Apple Juice Fermented with Lactobacillus plantarum ATCC14917. Molecules 2019, 24, 51. [Google Scholar] [CrossRef]
- Park, M.K.; Kim, Y.-S. Comparative metabolic expressions of fermented soybeans according to different microbial starters. Food Chem. 2020, 305, 125461. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Li, Y.; Lai, X.; Hao, M.; Sun, L.; Li, Q.; Chen, R.; Li, Q.; Sun, S.; Wang, B.; et al. Effects of fermentation duration on the flavour quality of large leaf black tea based on metabolomics. Food Chem. 2024, 444, 138680. [Google Scholar] [CrossRef]
- Wang, H.; He, X.; Li, J.; Wu, J.; Jiang, S.; Xue, H.; Zhang, J.; Jha, R.; Wang, R. Lactic acid bacteria fermentation improves physicochemical properties, bioactivity, and metabolic profiles of Opuntia ficus-indica fruit juice. Food Chem. 2024, 453, 139646. [Google Scholar] [CrossRef]
- Liu, S.; Peng, Y.-J.; He, W.-W.; Song, X.-X.; He, Y.-X.; Hu, X.-Y.; Bian, S.-G.; Li, Y.-H.; Yin, J.-Y.; Nie, S.-P.; et al. Metabolomics-based mechanistic insights into antioxidant enhancement in mango juice fermented by various lactic acid bacteria. Food Chem. 2025, 466, 142078. [Google Scholar] [CrossRef]
- Román-Camacho, J.J.; Mauricio, J.C.; Santos-Dueñas, I.M.; García-Martínez, T.; García-García, I. Functional metaproteomic analysis of alcohol vinegar microbiota during an acetification process: A quantitative proteomic approach. Food Microbiol. 2021, 98, 103799. [Google Scholar] [CrossRef]
- Sevindik, O.; Guclu, G.; Agirman, B.; Selli, S.; Kadiroglu, P.; Bordiga, M.; Capanoglu, E.; Kelebek, H. Impacts of selected lactic acid bacteria strains on the aroma and bioactive compositions of fermented gilaburu (Viburnum opulus) juices. Food Chem. 2022, 378, 132079. [Google Scholar] [CrossRef]
- Feng, J.; Huang, Z.; Cui, C.; Zhao, M.; Feng, Y. Synthesis, taste characteristics and taste mechanism of N-lactoyl leucine from soy sauce using sensory analysis and UPLC-MS/MS. Food Chem. 2024, 454, 139670. [Google Scholar] [CrossRef]
- Ferrero-Del-Teso, S.; Arapitsas, P.; Jeffery, D.W.; Ferreira, C.; Mattivi, F.; Fernández-Zurbano, P.; Sáenz-Navajas, M.-P. Exploring UPLC-QTOF-MS-based targeted and untargeted approaches for understanding wine mouthfeel: A sensometabolomic approach. Food Chem. 2024, 437, 137726. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, W.; Xu, B.; Yao, W. Comparison of rice bran characteristics fermented by mono- or di-strain probiotics based on omics technology. LWT 2024, 209, 116763. [Google Scholar] [CrossRef]
- Hu, Y.; Peng, S.; Huang, H.; Wang, X.; Zou, Y.; Zhang, L.; Chen, T.; Gong, X.; Liao, L.; Li, J.; et al. Effects of acetic acid fermentation on the phytochemicals content, taste and aroma of pineapple vinegar. LWT 2024, 210, 116861. [Google Scholar] [CrossRef]
- Liu, M.; Feng, Y.; Zhao, M.; Huang, M. Decoding the molecular basis for temperature control by metabolomics to improve the taste quality of soy sauce fermented in winter. Food Biosci. 2023, 54, 102889. [Google Scholar] [CrossRef]
- Li, S.; Zhang, A.; Zhao, W.; Li, P.; Si, X.; Liu, J.; Yi, H. Physicochemical properties of whole grain foxtail millet sourdough and steamed bread quality: Co-fermentation of lactic acid bacteria and yeast in whole grain fermented foods. Food Biosci. 2024, 57, 103581. [Google Scholar] [CrossRef]
- Adebo, O.A.; Kayitesi, E.; Tugizimana, F.; Njobeh, P.B. Differential metabolic signatures in naturally and lactic acid bacteria (LAB) fermented ting (a Southern African food) with different tannin content, as revealed by gas chromatography mass spectrometry (GC–MS)-based metabolomics. Food Res. Int. 2019, 121, 326–335. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Y.; Jia, H.; Zhang, J.; Wei, Y.; Deng, W.-W.; Ning, J. Effects of Microbial Action and Moist-Heat Action on the Nonvolatile Components of Pu-Erh Tea, as Revealed by Metabolomics. J. Agric. Food Chem. 2022, 70, 15602–15613. [Google Scholar] [CrossRef] [PubMed]
- Román-Camacho, J.J.; Santos-Dueñas, I.M.; García-García, I.; García-Martínez, T.; Peinado, R.A.; Mauricio, J.C. Correlating Microbial Dynamics with Key Metabolomic Profiles in Three Submerged Culture-Produced Vinegars. Foods 2025, 14, 56. [Google Scholar] [CrossRef]
- Gao, Z.; Zhou, M.C.; Lin, J.; Lu, Y.; Liu, S.Q. Metabolomics analysis of okara probiotic beverages fermented with Lactobacillus gasseri and Limosilactobacillus fermentum by LC-QTOF-MS/MS. Food Chem. X 2024, 21, 101178. [Google Scholar] [CrossRef]
- Ho, C.W.; Lazim, A.M.; Fazry, S.; Zaki, U.K.H.H.; Lim, S.J. Varieties, production, composition and health benefits of vinegars: A review. Food Chem. 2017, 221, 1621–1630. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, Y.; An, H.; Liu, J.; Jiang, Y.; Ying, J.; Li, S.; Liu, Z.; Huang, J. Effects of isolated scenting on the taste quality of broken green tea based on metabolomics. Food Chem. X 2024, 22, 101454. [Google Scholar] [CrossRef]
- Mamy, D.; Boateng, I.D.; Chen, X. Metabolomic changes in Citrus reticulata peel after conventional and ultrasound-assisted solid-state fermentation with Aspergillus niger: A focus on flavonoid metabolism. Food Chem. 2025, 467, 142224. [Google Scholar] [CrossRef] [PubMed]
- Saud, S.; Xiaojuan, T.; Fahad, S. The consequences of fermentation metabolism on the qualitative qualities and biological activity of fermented fruit and vegetable juices. Food Chem. X 2024, 21, 101209. [Google Scholar] [CrossRef] [PubMed]
- Lan, T.; Lv, X.; Zhao, Q.; Lei, Y.; Gao, C.; Yuan, Q.; Sun, X.; Liu, X.; Ma, T. Optimization of strains for fermentation of kiwifruit juice and effects of mono- and mixed culture fermentation on its sensory and aroma profiles. Food Chem. X 2023, 17, 100595. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, B.; Liu, R.; Liu, X.; Lv, M.; Zhou, S.; Mu, Y.; Zhao, Y.; Wang, L. Addition of Lactobacillus fermentum to Fermented Sea Buckthorn (Hippophae rhamnoides L.) Fruit Vinegar Significantly Improves Its Sour Taste. Foods 2025, 14, 1223. https://doi.org/10.3390/foods14071223
Feng B, Liu R, Liu X, Lv M, Zhou S, Mu Y, Zhao Y, Wang L. Addition of Lactobacillus fermentum to Fermented Sea Buckthorn (Hippophae rhamnoides L.) Fruit Vinegar Significantly Improves Its Sour Taste. Foods. 2025; 14(7):1223. https://doi.org/10.3390/foods14071223
Chicago/Turabian StyleFeng, Benhao, Ruoqing Liu, Xiaolu Liu, Mingshan Lv, Shengchang Zhou, Ying Mu, Yao Zhao, and Liang Wang. 2025. "Addition of Lactobacillus fermentum to Fermented Sea Buckthorn (Hippophae rhamnoides L.) Fruit Vinegar Significantly Improves Its Sour Taste" Foods 14, no. 7: 1223. https://doi.org/10.3390/foods14071223
APA StyleFeng, B., Liu, R., Liu, X., Lv, M., Zhou, S., Mu, Y., Zhao, Y., & Wang, L. (2025). Addition of Lactobacillus fermentum to Fermented Sea Buckthorn (Hippophae rhamnoides L.) Fruit Vinegar Significantly Improves Its Sour Taste. Foods, 14(7), 1223. https://doi.org/10.3390/foods14071223