Recent Advances in the Assessment of Cereal and Cereal-Based Product Quality
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zareef, M.; Arslan, M.; Hassan, M.M.; Ahmad, W.; Ali, S.; Li, H.; Ouyang, Q.; Wu, X.; Hashim, M.M.; Chen, Q. Recent advances in assessing qualitative and quantitative aspects of cereals using nondestructive techniques: A review. Trends Food Sci. Technol. 2021, 116, 815–828. [Google Scholar] [CrossRef]
- An, D.; Zhang, L.; Liu, Z.; Liu, J.; Wei, Y. Advances in infrared spectroscopy and hyperspectral imaging combined with artificial intelligence for the detection of cereals quality. Crit. Rev. Food Sci. Nutr. 2023, 63, 9766–9796. [Google Scholar] [CrossRef]
- Das Graças Costa, E.; de Souza, P.M. Introduction to cereals. In Cereal-Based Food Products; Shah, M.A., Sunooj, K.V., Mir, S.A., Eds.; Springer: Cham, Switzerland, 2023; pp. 1–24. [Google Scholar]
- Liu, Y.; Zhang, J.; Yuan, H.; Song, M.; Zhu, Y.; Cao, W.; Jiang, X.; Ni, J. Non-destructive quality-detection techniques for cereal grains: A systematic review. Agronomy 2022, 12, 3187. [Google Scholar] [CrossRef]
- Olakanmi, S.J.; Bharathi, V.S.; Jayas, D.S.; Paliwal, J. Innovations in nondestructive assessment of baked products: Current trends and future prospects. Compr. Rev. Food Sci. Food Saf. 2024, 23, 13385. [Google Scholar] [CrossRef]
- Ng, T.S.; McKinley, G.H.; Ewoldt, R.H. Large amplitude oscillatory shear flow of gluten dough: A model power-law gel. J. Rheol. 2011, 55, 627–654. [Google Scholar] [CrossRef]
- Yazar, G.; Duvarci, O.C.; Tavman, S.; Kokini, J.L. Effect of mixing on LAOS properties of hard wheat flour dough. J. Food Eng. 2016, 190, 195–204. [Google Scholar] [CrossRef]
- Erturk, M.Y.; Le, A.N.M.; Kokini, J. Advances in large amplitude oscillatory shear Rheology of food materials. Front. Food Sci. Technol. 2023, 3, 1130165. [Google Scholar] [CrossRef]
- Helmick, H.; Jain, A.; Terashi, G.; Liceaga, A.; Bhunia, A.K.; Kihara, D.; Kokini, J.L. Bioinformatic approaches for characterizing molecular structure and function of food proteins. Annu. Rev. Food Sci. Technol. 2023, 14, 203–224. [Google Scholar] [CrossRef]
- López-Pedrouso, M.; Lorenzo, J.M.; Alché, J.D.D.; Moreira, R.; Franco, D. Advanced proteomic and bioinformatic tools for predictive analysis of allergens in novel foods. Biology 2023, 12, 714. [Google Scholar] [CrossRef]
- Van Dalen, G.; Nootenboom, P.; Van Vliet, L.J.; Voortman, L.; Esveld, E. 3-D imaging, analysis and modelling of porous cereal products using X-Ray microtomography. Image Anal. Stereol. 2007, 26, 169–177. [Google Scholar] [CrossRef]
- Besançon, L.; Rondet, E.; Grabulos, J.; Lullien-Pellerin, V.; Lhomond, L.; Cuq, B. Study of the microstructure of durum wheat endosperm using X-Ray micro-computed tomography. J. Cereal Sci. 2020, 96, 103115. [Google Scholar] [CrossRef]
- Ramachandran, R.P.; Erkinbaev, C.; Thakur, S.; Paliwal, J. Three dimensional characterization of micronized soybean seeds using X-Ray microtomography. Food Bioprod. Process. 2021, 127, 388–397. [Google Scholar] [CrossRef]
- Marti, A.; Ragg, E.M.; Pagani, M.A. Effect of processing conditions on water mobility and cooking quality of gluten-free pasta. A Magnetic Resonance Imaging study. Food Chem. 2018, 266, 17–23. [Google Scholar] [CrossRef]
- Zhao, W.; Weng, J.; Zhang, X.; Wang, Y.; Li, P.; Yang, L.; Sheng, Q.; Liu, J. The impact of magnetic field-assisted freeze–thaw treatment on the quality of foxtail millet sourdough and steamed bread. Food Chem. 2024, 450, 139219. [Google Scholar] [CrossRef]
- Müller, A.; Coradi, P.C.; Nunes, M.T.; Grohs, M.; Bressiani, J.; Teodoro, P.E.; Anschau, K.F.; Flores, E.M.M. Effects of cultivars and fertilization levels on the quality of rice milling: A diagnosis using near-infrared spectroscopy, X-Ray diffraction, and scanning electron microscopy. Food Res. Int. 2021, 147, 110524. [Google Scholar] [CrossRef]
- Ziegler, D.; Buck, L.; Scherf, K.A.; Popper, L.; Schaum, A.; Hitzmann, B. Improved prediction of wheat baking quality by three novel approaches involving spectroscopic, rheological and analytical measurements and an optimized baking test. J. Food Meas. Charact. 2025, 19, 1673–1692. [Google Scholar] [CrossRef]
- Amir, R.M.; Anjum, F.M.; Khan, M.I.; Khan, M.R.; Pasha, I.; Nadeem, M. Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties. J. Food Sci. Technol. 2013, 50, 1018–1023. [Google Scholar] [CrossRef]
- Rouf, T.B.; Díaz-Amaya, S.; Stanciu, L.; Kokini, J. Application of corn zein as an anchoring molecule in a carbon nanotube enhanced electrochemical sensor for the detection of gliadin. Food Control 2020, 117, 107350. [Google Scholar] [CrossRef]
- Lin, H.; Bean, S.R.; Tilley, M.; Peiris, K.H.S.; Brabec, D. Qualitative and quantitative analysis of sorghum grain composition including protein and tannins using ATR-FTIR spectroscopy. Food Anal. Methods 2021, 14, 268–279. [Google Scholar] [CrossRef]
- Turksoy, S.; Erturk, M.Y.; Kokini, J. Behavior of semolina, hard, soft wheat flour dough at different aging times and temperatures through LAOS properties and molecular interactions of proteins. J. Food Eng. 2021, 301, 110549. [Google Scholar] [CrossRef]
- Kniese, J.; Race, A.M.; Schmidt, H. Classification of cereal flour species using Raman spectroscopy in combination with spectra quality control and multivariate statistical analysis. J. Cereal Sci. 2021, 101, 103299. [Google Scholar] [CrossRef]
- Nagel-Held, J.; Kaiser, L.; Longin, C.F.H.; Hitzmann, B. Prediction of wheat quality parameters combining Raman, fluorescence, and near-infrared spectroscopy (NIRS). Cereal Chem. 2022, 99, 830–842. [Google Scholar] [CrossRef]
- Salimi Khorshidi, A.; Storsley, J.; Malunga, L.N.; Thandapilly, S.J.; Ames, N. Advancing the science of wheat quality evaluation using nuclear magnetic resonance (NMR) and ultrasound-based techniques. Cereal Chem. 2018, 95, 347–364. [Google Scholar] [CrossRef]
- Leys, S.; De Bondt, Y.; Bosmans, G.; Courtin, C.M. Assessing the impact of xylanase activity on the water distribution in wheat dough: A 1H NMR study. Food Chem. 2020, 325, 126828. [Google Scholar] [CrossRef]
- Riley, I.M.; Nivelle, M.A.; Ooms, N.; Delcour, J.A. The use of time domain 1H NMR to study proton dynamics in starch-rich foods: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4738–4775. [Google Scholar] [CrossRef]
- Zhang, L.; Noort, M.; van Bommel, K. Towards the creation of personalized bakery products using 3D food printing. Adv. Food Nutr. Res. 2022, 99, 1–35. [Google Scholar]
- Lisovska, T.; Harasym, J. 3D printing progress in gluten-free food—Clustering analysis of advantages and obstacles. Appl. Sci. 2023, 13, 12362. [Google Scholar] [CrossRef]
- Liu, C.; Chen, G.; Zheng, D.; Yin, J.; Cui, C.; Lu, H. Analysis of Heat and Moisture Transfer and Fungi-Induced Hot Spots in Maize Bulk with Different Broken Kernel Contents. Agriculture 2025, 15, 338. [Google Scholar] [CrossRef]
- Chen, Z.; Wassgren, C.; Ambrose, K. A review of grain kernel damage: Mechanisms, modeling, and testing procedures. Trans. ASABE 2020, 63, 455–475. [Google Scholar] [CrossRef]
- Fan, C.; Wang, W.; Cui, T.; Liu, Y.; Qiao, M. Maize kernel broken rate prediction using machine vision and machine learning algorithms. Foods 2024, 13, 4044. [Google Scholar] [CrossRef]
- Espinoza-Herrera, J.; Martínez, L.M.; Serna-Saldívar, S.O.; Chuck-Hernández, C. Methods for the modification and evaluation of cereal proteins for the substitution of wheat gluten in dough systems. Foods 2021, 10, 118. [Google Scholar] [CrossRef]
- Yazar, G.; Duvarci, O.; Tavman, S.; Kokini, J.L. Non-linear rheological behavior of gluten-free flour doughs and correlations of LAOS parameters with gluten-free bread properties. J. Cereal Sci. 2017, 74, 28–36. [Google Scholar] [CrossRef]
- Uthayakumaran, S.; Newberry, M.; Keentok, M.; Stoddard, F.L.; Bekes, F. Basic rheology of bread dough with modified protein content and glutenin-to-gliadin ratios. Cereal Chem. 2000, 77, 744–749. [Google Scholar] [CrossRef]
- Fan, C.; Liu, Y.; Cui, T.; Qiao, M.; Yu, Y.; Xie, W.; Huang, Y. Quantitative prediction of protein content in corn kernel based on near-infrared spectroscopy. Foods 2024, 13, 4173. [Google Scholar] [CrossRef]
- Mefleh, M.; Motzo, R.; Boukid, F.; Giunta, F. Clipping effect on the grain nitrogen and protein fractions of ancient and old wheats grown in a mediterranean environment. Foods 2023, 12, 2582. [Google Scholar] [CrossRef]
- Dobraszczyk, B.J.; Morgenstern, M.P. Rheology and the breadmaking process. J. Cereal Sci. 2003, 38, 229–245. [Google Scholar] [CrossRef]
- Yazar, G. Wheat flour quality assessment by fundamental non-linear rheological methods: A critical review. Foods 2023, 12, 3353. [Google Scholar] [CrossRef]
- Shewry, P.R.; Prins, A.; Kosik, O.; Lovegrove, A. Challenges to increasing dietary fiber in white flour and bread. J. Agric. Food Chem. 2024, 72, 13513–13522. [Google Scholar] [CrossRef]
- Sempio, R.; Segura Godoy, C.; Nyhan, L.; Sahin, A.W.; Zannini, E.; Walter, J.; Arendt, E.K. Closing the fibre gap—The impact of combination of soluble and insoluble dietary fibre on bread quality and health benefits. Foods 2024, 13, 1980. [Google Scholar] [CrossRef]
- Liceaga, A.M.; Aguilar-Toalá, J.E.; Vallejo-Cordoba, B.; González-Córdova, A.F.; Hernández-Mendoza, A. Insects as an alternative protein source. Annu. Rev. Food Sci. Technol. 2022, 13, 19–34. [Google Scholar] [CrossRef]
- Lisboa, H.M.; Nascimento, A.; Arruda, A.; Sarinho, A.; Lima, J.; Batista, L.; Dantas, M.F.; Andrade, R. Unlocking the Potential of Insect-Based Proteins: Sustainable Solutions for Global Food Security and Nutrition. Foods 2024, 13, 1846. [Google Scholar] [CrossRef]
- Herdeiro, F.M.; Carvalho, M.O.; Nunes, M.C.; Raymundo, A. Development of healthy snacks incorporating meal from Tenebrio molitor and Alphitobius diaperinus using 3D printing technology. Foods 2024, 13, 179. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yazar, G.; Kokini, J.L. Recent Advances in the Assessment of Cereal and Cereal-Based Product Quality. Foods 2025, 14, 1220. https://doi.org/10.3390/foods14071220
Yazar G, Kokini JL. Recent Advances in the Assessment of Cereal and Cereal-Based Product Quality. Foods. 2025; 14(7):1220. https://doi.org/10.3390/foods14071220
Chicago/Turabian StyleYazar, Gamze, and Jozef L. Kokini. 2025. "Recent Advances in the Assessment of Cereal and Cereal-Based Product Quality" Foods 14, no. 7: 1220. https://doi.org/10.3390/foods14071220
APA StyleYazar, G., & Kokini, J. L. (2025). Recent Advances in the Assessment of Cereal and Cereal-Based Product Quality. Foods, 14(7), 1220. https://doi.org/10.3390/foods14071220