Integrating Life Cycle Assessment in Innovative Berry Processing with Edible Coating and Osmotic Dehydration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope
2.1.1. Product Systems and System’s Boundaries
2.1.2. Process Analysis
Osmotic Dehydration
Edible Coating
Packaging
2.1.3. Functional Unit
2.1.4. Assumptions and Limitations
2.1.5. Data Requirements
2.2. Life Cycle Inventory
3. Results and Discussion
3.1. Life Cycle Impact Assessment
3.2. Interpretation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
Abbreviations
References
- Kussmann, M.; Abe Cunha, D.H.; Berciano, S. Bioactive Compounds for Human and Planetary Health. Front. Nutr. 2023, 10, 1193848. [Google Scholar] [CrossRef]
- Beattie, J.; Crozier, A.; Duthie, G. Potential Health Benefits of Berries. Curr. Nutr. Food Sci. 2005, 1, 71–86. [Google Scholar] [CrossRef]
- Devirgiliis, C.; Guberti, E.; Mistura, L.; Raffo, A. Effect of Fruit and Vegetable Consumption on Human Health: An Update of the Literature. Foods 2024, 13, 3149. [Google Scholar] [CrossRef] [PubMed]
- Slavin, J.L.; Lloyd, B. Health Benefits of Fruits and Vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef]
- Shah, H.M.S.; Singh, Z.; Kaur, J.; Hasan, M.U.; Woodward, A.; Afrifa-Yamoah, E. Trends in Maintaining Postharvest Freshness and Quality of Rubus Berries. Compr. Rev. Food Sci. Food Saf. 2023, 22, 4600–4643. [Google Scholar] [CrossRef]
- Martini, D.; Marino, M.; Angelino, D.; Del Bo’, C.; Del Rio, D.; Riso, P.; Porrini, M. Role of Berries in Vascular Function: A Systematic Review of Human Intervention Studies. Nutr. Rev. 2020, 78, 189–206. [Google Scholar] [CrossRef]
- Dhall, R.K. Advances in Edible Coatings for Fresh Fruits and Vegetables: A Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 435–450. [Google Scholar] [CrossRef]
- Nowacka, M.; Dadan, M.; Tylewicz, U. Current Applications of Ultrasound in Fruit and Vegetables Osmotic Dehydration Processes. Appl. Sci. 2021, 11, 1269. [Google Scholar] [CrossRef]
- Menéndez-Cañamares, S.; Blázquez, A.; Albertos, I.; Poveda, J.; Díez-Méndez, A. Probiotic Bacillus Subtilis SB8 and Edible Coatings for Sustainable Fungal Disease Management in Strawberry. Biol. Control 2024, 196, 105572. [Google Scholar] [CrossRef]
- Ma, M.; Sun, Q.J.; Li, M.; Zhu, K.X. Deterioration Mechanisms of High-Moisture Wheat-Based Food—A Review from Physicochemical, Structural, and Molecular Perspectives. Food Chem. 2020, 318, 126495. [Google Scholar] [CrossRef]
- Karanth, S.; Feng, S.; Patra, D.; Pradhan, A.K. Linking Microbial Contamination to Food Spoilage and Food Waste: The Role of Smart Packaging, Spoilage Risk Assessments, and Date Labeling. Front. Microbiol. 2023, 14, 1198124. [Google Scholar] [CrossRef]
- Dey, T.; Bhattacharjee, T.; Nag, P.; Ritika; Ghati, A.; Kuila, A. Valorization of Agro-Waste into Value Added Products for Sustainable Development. Bioresour. Technol. Rep. 2021, 16, 100834. [Google Scholar] [CrossRef]
- Seberini, A. Economic, Social and Environmental World Impacts of Food Waste on Society and Zero Waste as a Global Approach to Their Elimination. SHS Web Conf. 2020, 74, 03010. [Google Scholar] [CrossRef]
- Gribova, N.A.; Perov, V.I.; Eliseeva, L.G.; Berketova, L.V.; Nikolayeva, M.A.; Soltaeva, N.L. Innovative Technology of Processing Berries by Osmotic Dehydration. In IOP Conference Series: Earth and Environmental Science, Proceedings of the International Conference on World Technological Trends in Agribusiness, Omsk City, Russia, 4–5 July 2020; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 624. [Google Scholar]
- Pateiro, M.; Vargas-Ramella, M.; Franco, D.; Gomes da Cruz, A.; Zengin, G.; Kumar, M.; Dhama, K.; Lorenzo, J.M. The Role of Emerging Technologies in the Dehydration of Berries: Quality, Bioactive Compounds, and Shelf Life. Food Chem. X 2022, 16, 100465. [Google Scholar] [CrossRef]
- Márquez-Villacorta, L.; Pretell-Vásquez, C.; Hayayumi-Valdivia, M. Optimization of Edible Coating with Essential Oils in Blueberries. Ciência Agrotecnologia 2022, 46, 198. [Google Scholar] [CrossRef]
- César de Albuquerque Sousa, T.; de Lima Costa, I.H.; Gandra, E.A.; Meinhart, A.D. Use of Edible Coatings as a New Sustainable Alternative to Extend the Shelf Life of Strawberries (Fragaria ananassa): A Review. J. Stored Prod. Res. 2024, 108, 102375. [Google Scholar] [CrossRef]
- Mari, A.; Parisouli, D.N.; Krokida, M. Exploring Osmotic Dehydration for Food Preservation: Methods, Modelling, and Modern Applications. Foods 2024, 13, 2783. [Google Scholar] [CrossRef]
- Pié-Amill, A.; Colás-Medà, P.; Viñas, I.; Falcó, I.; Alegre, I. Efficacy of an Edible Coating with Carvacrol and Citral in Frozen Strawberries and Blueberries to Control Foodborne Pathogens. Foods 2024, 13, 3167. [Google Scholar] [CrossRef]
- Peña, C.; Civit, B.; Gallego-Schmid, A.; Druckman, A.; Pires, A.C.-; Weidema, B.; Mieras, E.; Wang, F.; Fava, J.; Canals, L.M.i; et al. Using Life Cycle Assessment to Achieve a Circular Economy. Int. J. Life Cycle Assess. 2021, 26, 215–220. [Google Scholar] [CrossRef]
- Cacace, F.; Bottani, E.; Rizzi, A.; Vignali, G. Evaluation of the Economic and Environmental Sustainability of High Pressure Processing of Foods. Innov. Food Sci. Emerg. Technol. 2020, 60, 102281. [Google Scholar] [CrossRef]
- Smol, M.; Mejia, A.; Gastaldi, M.; D’Adamo, I. Environmental Indicators for Assessment of Circular Economy (CE) Implementation in the Water and Wastewater Sector. Bus. Strategy Environ. 2025, 34, 1993–2011. [Google Scholar] [CrossRef]
- Stramarkou, M.; Boukouvalas, C.; Koskinakis, S.E.; Serifi, O.; Bekiris, V.; Tsamis, C.; Krokida, M. Life Cycle Assessment and Preliminary Cost Evaluation of a Smart Packaging System. Sustainability 2022, 14, 7080. [Google Scholar] [CrossRef]
- Boukouvalas, C.; Kekes, T.; Oikonomopoulou, V.; Krokida, M. Life Cycle Assessment of Energy Production from Solid Waste Valorization and Wastewater Purification: A Case Study of Meat Processing Industry. Energies 2024, 17, 487. [Google Scholar] [CrossRef]
- Akharume, F.U.; Singh, K.; Sivanandan, L. Characteristics of Apple Juice and Sugar Infused Fresh and Frozen Blueberries. LWT 2016, 73, 448–457. [Google Scholar] [CrossRef]
- Tsakiri-Mantzorou, Z.; Drosou, C.; Mari, A.; Stramarkou, M.; Laina, K.T.; Krokida, M. Edible Coating with Encapsulated Antimicrobial and Antibrowning Agents via the Emerging Electrospinning Process and the Conventional Spray Drying: Effect on Quality and Shelf Life of Fresh-Cut Potatoes. Potato Res. 2024. [Google Scholar] [CrossRef]
- Mari, A.; Fafalis, C.; Krokida, M. Extension of Blueberry Shelf-Life with Edible Coatings from Chlorella Vulgaris. Chem. Eng. Trans. 2024, 110, 79. [Google Scholar]
- Verghese, K.; Lewis, H.; Lockrey, S.; Williams, H. Packaging’s Role in Minimizing Food Loss and Waste Across the Supply Chain. Packag. Technol. Sci. 2015, 28, 603–620. [Google Scholar] [CrossRef]
- Boz, Z.; Korhonen, V.; Koelsch Sand, C. Consumer Considerations for the Implementation of Sustainable Packaging: A Review. Sustainability 2020, 12, 2192. [Google Scholar] [CrossRef]
- Hussain, S.; Akhter, R.; Maktedar, S.S. Advancements in Sustainable Food Packaging: From Eco-Friendly Materials to Innovative Technologies. Sustain. Food Technol. 2024, 2, 1297–1364. [Google Scholar] [CrossRef]
- Bou-Mitri, C.; Abdessater, M.; Zgheib, H.; Akiki, Z. Food Packaging Design and Consumer Perception of the Product Quality, Safety, Healthiness and Preference. Nutr. Food Sci. 2021, 51, 71–86. [Google Scholar] [CrossRef]
- Khanali, M.; Kokei, D.; Aghbashlo, M.; Nasab, F.K.; Hosseinzadeh-Bandbafha, H.; Tabatabaei, M. Energy Flow Modeling and Life Cycle Assessment of Apple Juice Production: Recommendations for Renewable Energies Implementation and Climate Change Mitigation. J. Clean. Prod. 2020, 246, 118997. [Google Scholar] [CrossRef]
- Mari, A.; Kekes, T.; Boukouvalas, C.; Drosou, C.; Krokida, M.; Tsartsaris, C. Evaluating the Environmental and Economic Benefits of New Technologies in Low-Salt Olive Fermentation. Agriculture 2024, 14, 2077. [Google Scholar] [CrossRef]
- Nsonzi, F.; Ramaswamy, H.S. Osmotic Dehydration Kinetics of Blueberries. Dry. Technol. 1998, 16, 725–741. [Google Scholar] [CrossRef]
- Panagiotou, N.M.; Karathanos, V.T.; Maroulis, Z.B. Effect of osmotic agent on osmotic dehydration of fruits. Dry. Technol. 1999, 17, 175–189. [Google Scholar] [CrossRef]
- Ciurzyńska, A.; Kowalska, H.; Czajkowska, K.; Lenart, A. Osmotic Dehydration in Production of Sustainable and Healthy Food. Trends Food Sci. Technol. 2016, 50, 186–192. [Google Scholar] [CrossRef]
- Rajendran, N.; Runge, T.; Bergman, R.D.; Nepal, P.; Pottackal, N.T.; Rahman, M.M. Economic and Environmental Analysis of Producing Soy Protein-Cellulose-Based Bionanocomposite Fruit Coating. Ind. Crops Prod. 2024, 211, 118213. [Google Scholar] [CrossRef]
- Lecart, B.; Baumsteiger, C.; Monie, F.; Di Maria, A.; Detrembleur, C.; Richel, A.; Vanderschuren, H. Towards Green Chemicals and Edible Coatings from Barks and Peels with near Critical Extraction of Suberin. Green Chem. 2023, 25, 9282–9291. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Chen, X.; Yu, X.; Li, W.; Zhang, S.; Meng, X.; Zhao, Z.M.; Dong, T.; Anderson, A.; et al. Sustainable Bioplastics Derived from Renewable Natural Resources for Food Packaging. Matter 2023, 6, 97–127. [Google Scholar] [CrossRef]
- Arfelli, F.; Roguszewska, M.; Torta, G.; Iurlo, M.; Cespi, D.; Ciacci, L.; Passarini, F. Environmental Impacts of Food Packaging: Is It All a Matter of Raw Materials? Sustain. Prod. Consum. 2024, 49, 318–328. [Google Scholar] [CrossRef]
Process | Flow | Quantity |
---|---|---|
Osmotic dehydration | [In] Blueberries (kg) | 0.91 |
[In] Apple juice (kg) | 1.20 | |
[In] Water (kg) | 1.02 | |
[In] Electricity (MJ) | 0.25 | |
[Out] Blueberries (kg) | 0.90 | |
[Out] Wastewater (kg) | 1.72 | |
Edible coating | [In] Berries (kg) | 0.90 |
[In] Protein (kg) | 0.01 | |
[In] Tween 20 (kg) | 3.58 × 10−4 | |
[In] Glycerol (kg) | 2.69 × 10−3 | |
[In] Water (kg) | 0.08 | |
[Out] Blueberries (kg) | 0.99 | |
Packaging | [In] Blueberries (kg) | 0.99 |
[In] HDPE (kg) | 0.01 | |
[Out] Blueberries (kg) | 1.00 |
Process | Flow | Quantity |
---|---|---|
Osmotic dehydration | [In] Raspberries (kg) | 1.17 |
[In] Apple juice (kg) | 1.52 | |
[In] Water (kg) | 1.30 | |
[In] Electricity (MJ) | 0.20 | |
[Out] Raspberries (kg) | 0.90 | |
[Out] Wastewater (kg) | 2.60 | |
Edible coating | [In] Berries (kg) | 0.90 |
[In] Protein (kg) | 0.01 | |
[In] Tween 20 (kg) | 3.58 × 10−4 | |
[In] Glycerol (kg) | 2.69 × 10−3 | |
[In] Water (kg) | 0.08 | |
[Out] Raspberries (kg) | 0.99 | |
Packaging | [In] Raspberries (kg) | 0.99 |
[In] HDPE (kg) | 0.01 | |
[Out] Raspberries (kg) | 1.00 |
Process | Flow | Quantity |
---|---|---|
Osmotic dehydration | [In] Strawberries (kg) | 1.03 |
[In] Apple juice (kg) | 0.75 | |
[In] Water (kg) | 1.15 | |
[In] Electricity (MJ) | 0.25 | |
[Out] Strawberries (kg) | 0.90 | |
[Out] Wastewater (kg) | 3.94 | |
Edible coating | [In] Berries (kg) | 0.90 |
[In] Protein (kg) | 0.01 | |
[In] Tween 20 (kg) | 3.58 × 10−4 | |
[In] Glycerol (kg) | 2.69 × 10−3 | |
[In] Water (kg) | 0.08 | |
[Out] Strawberries (kg) | 0.99 | |
Packaging | [In] Strawberries (kg) | 0.99 |
[In] HDPE (kg) | 0.01 | |
[Out] Strawberries (kg) | 1.00 |
Midpoint Impact Categories | Units | Osmotic Dehydration | Edible Coating | Packaging | Total |
---|---|---|---|---|---|
Climate change, default, excl biogenic carbon | kg CO2 eq. | 6.35E−01 | 1.27E−02 | 2.26E−02 | 6.70E−01 |
Climate change, incl biogenic carbon | kg CO2 eq. | 4.02E−01 | 4.21E−03 | 2.27E−02 | 4.29E−01 |
Fine Particulate Matter Formation | kg PM2.5 eq. | 6.42E−04 | 1.01E−05 | 7.88E−06 | 6.60E−04 |
Fossil depletion | kg oil eq. | 1.20E−01 | 5.01E−03 | 2.28E−02 | 1.48E−01 |
Freshwater Consumption | m3 | 6.92E−02 | 1.13E−04 | 9.86E−05 | 6.94E−02 |
Freshwater ecotoxicity | kg 1.4 DB eq. | 1.03E−03 | 6.94E−06 | 8.24E−06 | 1.05E−03 |
Freshwater Eutrophication | kg P eq. | 1.09E−05 | 1.08E−06 | 3.46E−08 | 1.20E−05 |
Human toxicity, cancer | kg 1.4-DB eq. | 2.80E−04 | 3.79E−06 | 1.35E−05 | 2.97E−04 |
Human toxicity, non-cancer | kg 1.4-DB eq. | 2.66E−02 | 1.27E−02 | 2.83E−03 | 4.21E−02 |
Ionizing Radiation | Bq C-60 eq. to air | 1.29E−03 | 6.14E−04 | 7.77E−05 | 1.98E−03 |
Land use | Annual crop eq.·y | 3.56E−01 | 1.31E−02 | 2.94E−04 | 3.69E−01 |
Marine ecotoxicity | kg 1.4-DB eq. | 8.64E−04 | 1.11E−05 | 2.44E−05 | 9.00E−04 |
Marine Eutrophication | kg N eq. | 4.29E−04 | 8.28E−06 | 2.86E−07 | 4.38E−04 |
Metal depletion | kg Cu eq. | 5.35E−04 | 3.17E−04 | 1.63E−05 | 8.68E−04 |
Photochemical Ozone Formation, Ecosystems | kg NOx eq. | 2.99E−01 | 2.82E−02 | 1.62E−02 | 3.43E−01 |
Photochemical Ozone Formation, Human Health | kg NOx eq. | 1.87E−01 | 1.75E−02 | 1.00E−02 | 2.15E−01 |
Stratospheric Ozone Depletion | kg CFC-11 eq. | 1.67E−06 | 2.18E−08 | 4.88E−09 | 1.70E−06 |
Terrestrial Acidification | kg SO2 eq. | 1.88E−03 | 4.35E−05 | 2.37E−05 | 1.95E−03 |
Terrestrial ecotoxicity | kg 1.4-DB eq. | 7.14E−02 | 5.25E−03 | 3.12E−03 | 7.98E−02 |
Midpoint Impact Categories | Units | Osmotic Dehydration | Edible Coating | Packaging | Total |
---|---|---|---|---|---|
Climate change, default, excl biogenic carbon | kg CO2 eq. | 1.36E+00 | 6.36E−02 | 2.26E−02 | 1.45E+00 |
Climate change, incl biogenic carbon | kg CO2 eq. | 8.35E−01 | 2.14E−02 | 2.26E−02 | 8.79E−01 |
Fine Particulate Matter Formation | kg PM2.5 eq. | 1.39E−03 | 5.05E−05 | 7.86E−06 | 1.45E−03 |
Fossil depletion | kg oil eq. | 2.56E−01 | 2.51E−02 | 2.27E−02 | 3.04E−01 |
Freshwater Consumption | m3 | 1.55E−01 | 5.67E−04 | 9.83E−05 | 1.56E−01 |
Freshwater ecotoxicity | kg 1.4 DB eq. | 2.27E−03 | 3.45E−05 | 8.22E−06 | 2.31E−03 |
Freshwater Eutrophication | kg P eq. | 2.24E−05 | 5.39E−06 | 3.45E−08 | 2.78E−05 |
Human toxicity, cancer | kg 1.4-DB eq. | 5.53E−04 | 1.90E−05 | 1.35E−05 | 5.86E−04 |
Human toxicity, non-cancer | kg 1.4-DB eq. | 5.67E−02 | 6.27E−02 | 2.82E−03 | 1.22E−01 |
Ionizing Radiation | Bq C-60 eq. to air | 2.86E−03 | 3.07E−03 | 7.74E−05 | 6.01E−03 |
Land use | Annual crop eq.·y | 7.92E−01 | 6.52E−02 | 2.93E−04 | 8.57E−01 |
Marine ecotoxicity | kg 1.4-DB eq. | 1.89E−03 | 5.53E−05 | 2.44E−05 | 1.97E−03 |
Marine Eutrophication | kg N eq. | 9.53E−04 | 4.12E−05 | 2.85E−07 | 9.94E−04 |
Metal depletion | kg Cu eq. | 1.12E−03 | 1.58E−03 | 1.63E−05 | 2.72E−03 |
Photochemical Ozone Formation, Ecosystems | kg NOx eq. | 5.78E−01 | 1.41E−01 | 1.61E−02 | 7.35E−01 |
Photochemical Ozone Formation, Human Health | kg NOx eq. | 3.61E−01 | 8.77E−02 | 1.00E−02 | 4.59E−01 |
Stratospheric Ozone Depletion | kg CFC-11 eq. | 3.71E−06 | 1.08E−07 | 4.86E−09 | 3.82E−06 |
Terrestrial Acidification | kg SO2 eq. | 4.09E−03 | 2.16E−04 | 2.36E−05 | 4.33E−03 |
Terrestrial ecotoxicity | kg 1.4-DB eq. | 1.29E−01 | 2.61E−02 | 3.11E−03 | 1.58E−01 |
Midpoint Impact Categories | Units | Osmotic Dehydration | Edible Coating | Packaging | Total |
---|---|---|---|---|---|
Climate change, default, excl biogenic carbon | kg CO2 eq. | 6.65E−01 | 2.55E−02 | 2.27E−02 | 7.13E−01 |
Climate change, incl biogenic carbon | kg CO2 eq. | 4.15E−01 | 8.51E−03 | 2.27E−02 | 4.46E−01 |
Fine Particulate Matter Formation | kg PM2.5 eq. | 6.75E−04 | 2.02E−05 | 7.90E−06 | 7.03E−04 |
Fossil depletion | kg oil eq. | 1.23E−01 | 1.01E−02 | 2.29E−02 | 1.56E−01 |
Freshwater Consumption | m3 | 7.41E−02 | 2.27E−04 | 9.88E−05 | 7.44E−02 |
Freshwater ecotoxicity | kg 1.4 DB eq. | 1.15E−03 | 1.39E−05 | 8.26E−06 | 1.17E−03 |
Freshwater Eutrophication | kg P eq. | 1.51E−05 | 2.16E−06 | 3.47E−08 | 1.73E−05 |
Human toxicity, cancer | kg 1.4-DB eq. | 4.03E−04 | 7.60E−06 | 1.36E−05 | 4.24E−04 |
Human toxicity, non-cancer | kg 1.4-DB eq. | 2.81E−02 | 2.53E−02 | 2.84E−03 | 5.62E−02 |
Ionizing Radiation | Bq C-60 eq. to air | 1.44E−03 | 1.23E−03 | 7.78E−05 | 2.75E−03 |
Land use | Annual crop eq.·y | 3.92E−01 | 2.61E−02 | 2.94E−04 | 4.18E−01 |
Marine ecotoxicity | kg 1.4-DB eq. | 9.60E−04 | 2.22E−05 | 2.45E−05 | 1.01E−03 |
Marine Eutrophication | kg N eq. | 4.78E−04 | 1.65E−05 | 2.87E−07 | 4.95E−04 |
Metal depletion | kg Cu eq. | 6.25E−04 | 6.33E−04 | 1.64E−05 | 1.27E−03 |
Photochemical Ozone Formation, Ecosystems | kg NOx eq. | 2.52E−01 | 5.65E−02 | 1.62E−02 | 3.25E−01 |
Photochemical Ozone Formation, Human Health | kg NOx eq. | 1.58E−01 | 3.51E−02 | 1.01E−02 | 2.03E−01 |
Stratospheric Ozone Depletion | kg CFC-11 eq. | 1.83E−06 | 4.35E−08 | 4.89E−09 | 1.88E−06 |
Terrestrial Acidification | kg SO2 eq. | 1.98E−03 | 8.69E−05 | 2.37E−05 | 2.09E−03 |
Terrestrial ecotoxicity | kg 1.4-DB eq. | 4.81E−02 | 1.05E−02 | 3.13E−03 | 6.17E−02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mari, A.; Kekes, T.; Boukouvalas, C.; Krokida, M. Integrating Life Cycle Assessment in Innovative Berry Processing with Edible Coating and Osmotic Dehydration. Foods 2025, 14, 1167. https://doi.org/10.3390/foods14071167
Mari A, Kekes T, Boukouvalas C, Krokida M. Integrating Life Cycle Assessment in Innovative Berry Processing with Edible Coating and Osmotic Dehydration. Foods. 2025; 14(7):1167. https://doi.org/10.3390/foods14071167
Chicago/Turabian StyleMari, Alexandra, Tryfon Kekes, Christos Boukouvalas, and Magdalini Krokida. 2025. "Integrating Life Cycle Assessment in Innovative Berry Processing with Edible Coating and Osmotic Dehydration" Foods 14, no. 7: 1167. https://doi.org/10.3390/foods14071167
APA StyleMari, A., Kekes, T., Boukouvalas, C., & Krokida, M. (2025). Integrating Life Cycle Assessment in Innovative Berry Processing with Edible Coating and Osmotic Dehydration. Foods, 14(7), 1167. https://doi.org/10.3390/foods14071167