Percolation Threshold of Bacterial Nanocrystals in Biopolymeric Matrices to Build Up Strengthened Biobased Food Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction of Bacterial Cellulose Nanocrystals (BCNCs)
2.2. Topographic Characterization of Cellulose Nanocrystals
2.3. Formulation, Preparation, and Characterization of Nanocomposite Films
2.4. Scanning Electron Microscopy (SEM)
2.5. X-Ray Diffractometry (XRD)
2.6. Mechanical Properties: Tensile Strength, Young’s Modulus, Deformation, and Toughness
2.7. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Nanostructures
3.2. Film Characterization
3.2.1. External Visual Appearance
3.2.2. Scanning Electron Microscopy (SEM)
3.2.3. X-Ray Diffractometry (XRD)
3.3. Thickness and Mechanical Behavior
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Acronyms | Thickness (mm) |
---|---|
G0 | 0.031a ± 0.004 |
G5% | 0.033a ± 0.0074 |
G10% | 0.032a ± 0.0056 |
G15% | 0.041a ± 0.0037 |
P0 | 0.018a ± 0.0074 |
P4% | 0.023a ± 0.0048 |
P9% | 0.015a ± 0.0032 |
P14% | 0.019a ± 0.0044 |
H0 | 0.037a ± 0.0054 |
H3.5% | 0.027a ± 0.0016 |
H8.5% | 0.039a ± 0.0037 |
H13.5% | 0.027a ± 0.0023 |
Source | SD | R2 | Adjusted R2 | Remark | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TS | YM | S | T | TS | YM | S | T | TS | YM | S | T | ||
Linear | 1.3245 | 4.8451 | 4.6254 | 3.7201 | 0.3396 | 0.7621 | 0.7295 | 0.6023 | 0.1612 | 0.6272 | 0.6800 | 0.5883 | |
Quadradi | 0.4355 | 1.9285 | 1.8541 | 1.7761 | 0.9572 | 0.9747 | 0.9724 | 0.9733 | 0.9256 | 0.9469 | 0.9482 | 0.9468 | Suggested |
References
- European Commission. Protecting Environment, and Health: Commission Adopts Measures to Restrict Intentionally Added Microplastics; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- Nações Unidas Brasil. Available online: https://brasil.un.org/pt-br/sdgs (accessed on 9 April 2024).
- Agarwal, S. Major factors affecting the characteristics of starch based biopolymer films. Eur. Polym. J. 2021, 160, 110788. [Google Scholar]
- Oyekanmi, A.A.; Abdul Khalil, H.P.S.; Rahman, A.A.; Mistar, E.M.; Olaiya, N.G.; Alfatah, T.; Yahya, E.B.; Mariana, M.; Hazwan, C.M.; Abdullah, C.K. Extracted supercritical CO2 cinnamon oil functional properties enhancement in cellulose nanofibre reinforced Euchema cottoni biopolymer films. J. Mater. Res. Technol. 2021, 15, 4293–4308. [Google Scholar] [CrossRef]
- Oyeoka, H.C.; Ewulonu, C.M.; Nwuzor, I.C.; Obele, C.M.; Nwabanne, J.T. Packaging and degradability properties of polyvinyl alcohol/gelatin nanocomposite films filled water hyacinth cellulose nanocrystals. J. Bioresour. Bioprod. 2021, 6, 168–185. [Google Scholar] [CrossRef]
- Amin, U.; Khan, M.K.I.; Maan, A.A.; Nazir, A.; Riaz, S.; Khan, M.U.; Sultan, M.; Munekata, P.E.S.; Lorenzo, J.M. Biodegradable active, intelligent, and smart packaging materials for food applications—Review. Food Packag. Shelf Life 2022, 33, 100903. [Google Scholar] [CrossRef]
- Dharini, V.; Selvam, S.P.; Jayaramudu, J.; Emmanuel, R.S. Functional properties of clay nanofillers used in the biopolymer-based composite films for active food packaging applications—Review. Appl. Clay Sci. 2022, 226, 106555. [Google Scholar] [CrossRef]
- Sani, I.K.; Masoudpour-Behabadi, M.; Sani, M.A.; Motalebinejad, H.; Juma, A.S.M.; Asdagh, A.; Eghbaljoo, H.; Khodaei, S.M.; Rhim, J.-W.; Mohammadi, F. Value-added utilization of fruit and vegetable processing by-products for the manufacture of biodegradable food packaging films—Review. Food Chem. 2023, 405, 134964. [Google Scholar] [CrossRef]
- Jamróz, E.; Tkaczewska, J.; Juszczak, L.; Zimowska, M.; Kawecka, A.; Krzysciak, P.; Skóra, M. The influence of lingonberry extract on the properties of novel, double-layered biopolymer films based on furcellaran, CMC and a gelatin hydrolysate. Food Hydrocoll. 2022, 124, 107334. [Google Scholar] [CrossRef]
- Regina, S.; Poerio, T.; Mazzei, R.; Sabia, C.; Iseppi, R.; Giorno, L. Pectin as a non-toxic crosslinker for durable and water-resistant biopolymer-based membranes with improved mechanical and functional properties. Eur. Polym. J. 2022, 72, 111193. [Google Scholar]
- FDA. Part 184—Direct Food Substances Affirmed as Generally Recognized as Safe; Food and Drug Administration: Washington, DC, USA, 2012.
- Franco, G.T.; Otoni, C.G.; Lodi, B.D.; Lorevice, M.V.; de Moura, M.R.; Mattoso, L.H.C. Escalating the technical bounds for the production of cellulose-aided peach leathers: From the benchtop to the pilot plant. Carbohydr. Polym. 2020, 245, 116437. [Google Scholar]
- Wang, L.; Auty, M.A.E.; Rau, A.; Kerry, J.F.; Kerry, J.P. Effect of pH and addition of corn oil on the properties of gelatin-based biopolymer films. J. Food Eng. 2009, 90, 11–19. [Google Scholar]
- Luo, Q.; Hossen, M.A.; Zeng, Y.; Dai, J.; Li, S.; Qin, W.; Liu, Y. Gelatin-based composite films and their application in food packaging: A review. J. Food Eng. 2022, 313, 110762. [Google Scholar]
- Lorevice, M.V.; Baccarin, G.S.; Souza, J.R.; Claro, P.I.C.; de Moura, M.R.; Otoni, C.G.; Mattoso, L.H.C. Strengthening eco-friendly packaging from pectin by filling with poly(e-caprolactone) nanoparticles and tailoring the degree of methyl-esterification. Mater. Adv. 2024, 5, 6196–6204. [Google Scholar]
- Akhila, K.; Ramakanth, D.; Rao, L.L.; Gaikwad, K.K. UV-blocking biodegradable film based on flaxseed mucilage/pectin impregnated with titanium dioxide and calcium chloride for food packaging applications. Int. J. Biol. Macromol. 2023, 239, 124335. [Google Scholar]
- Malik, G.K.; Mitra, J.; Kaushal, M. Rheology of nano ZnO—Hydroxypropyl Methylcellulose (HPMC) based suspensions and structural properties of resulting films. J. Food Eng. 2023, 337, 111187. [Google Scholar]
- Otoni, C.G.; Lorevice, M.V.; de Moura, M.R.; Mattoso, L.H.C. On the effects of hydroxyl substitution degree and molecular weight on mechanical and water barrier properties of hydroxypropyl methylcellulose films. Carbohydr. Polym. 2018, 185, 105–111. [Google Scholar] [PubMed]
- Owusu-Ware, S.K.; Boateng, J.S.; Chowdhry, B.Z.; Antonijevic, M.D. Glassy state molecular mobility and its relationship to the physicomechanical properties of plasticized hydroxypropyl methylcellulose (HPMC) films. Int. J. Pharm. X 2019, 1, 100033. [Google Scholar]
- Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem. Rev. 2010, 110, 3479–3500. [Google Scholar]
- Dufresne, A. Nanocellulose: A new ageless bionanomaterial. Mater. Today 2013, 16, 220–227. [Google Scholar]
- Gedarawatte, S.T.G.; Ravensdale, J.T.; Johns, M.L.; Li, M.; Al-Salami, H.; Dykes, G.A.; Ranil, C. Evaluation of the water-holding and anti-spoilage effect of a bacterial cellulose nanocrystal coating for the storage of vacuum-packaged beef. Food Packag. Shelf Life 2022, 31, 100818. [Google Scholar]
- Klemm, D.; Cranston, E.D.; Fischer, D.; Gama, M.; Kedzior, S.A.; Kralisch, D.; Kramer, F.; Kondo, T.; Lindström, T.; Nietzsche, S.; et al. Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state. Mater. Today 2018, 21, 720–748. [Google Scholar]
- Li, H.; Zhou, J.; Zhao, J.; Li, Y.; Lu, K. Synthesis of cellulose nanocrystals-armored fluorinated polyacrylate latexes via Pickering emulsion polymerization and their film properties. Colloids Surf. B. 2020, 192, 111071. [Google Scholar]
- Benito-González, I.; Ortiz-Gimeno, M.d.M.; López-Rubio, A.; Martínez-Abad, A.; Garrido-Fernández, A.; Martínez-Sanz, M. Sustainable starch biocomposite films fully-based on white rice (Oryza sativa) agroindustrial byproducts. Food Bioprod. Process. 2022, 136, 47–58. [Google Scholar]
- Gars, M.L.; Bras, J.; Salmi-Mani, H.; Ji, M.; Dragoe, D.; Faraj, H.; Domenek, S.; Belgacem, N.; Roger, P. Polymerization of glycidyl methacrylate from the surface of celulose nanocrystals for the elaboration of PLA-based nanocomposites. Carbohydr. Polym. 2020, 234, 115899. [Google Scholar]
- Rana, A.K.; Frollini, E.; Thakur, V.K. Cellulose nanocrystals: Pretreatments, preparation strategies, and surface functionalization. Int. J. Biol. Macromol. 2021, 182, 1554–1581. [Google Scholar]
- Otoni, C.G.; Avena-Bustillos, R.J.; Azeredo, H.M.C.; Lorevice, M.V.; Moura, M.R.; Mattoso, L.H.C.; McHugh, T.H. Recent Advances on Edible Films Based on Fruits and Vegetables—A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1151–1169. [Google Scholar]
- Melo, P.T.S. Nanocristais Obtidos de Resíduos Industriais de Celulose Bacteriana Aplicados como Agente de Reforço em Filmes Biopoliméricos. Ph.D. Thesis, Faculdade de Engenharia, Universidade Estadual de São Paulo, Ilha Solteira, Brazil, 2021. [Google Scholar]
- Redondo, A.; Mortensen, N.; Djeghdi, K.; Jang, D.; Ortuso, R.D.; Weder, C.; Korley, L.S.T.J.; Steiner, U.; Gunkel, I. Comparing Percolation and Alignment of Cellulose Nanocrystals for the Reinforcement of Polyurethane Nanocomposites. ACS Appl. Mater. Inter. 2022, 14, 7270–7282. [Google Scholar]
- Eichhorn, S.J.; Dufresne, A.; Aranguren, M.; Marcovich, N.E.; Capadona, J.R.; Rowan, S.J.; Weder, C.; Thielemans, W.; Roman, M.; Renneckar, S.; et al. Review: Current international research into cellulose nanofibers and nanocomposites. J. Mater. Sci. 2010, 45, 1–33. [Google Scholar]
- Sanches, A.O.; Ricco, L.H.S.; Malmonge, L.F.; Silva, M.J.d.; Sakamoto, W.K.; Malmonge, J.A. Influence of cellulose nanofibrils on soft and hard segments of polyurethane/cellulose nanocomposites and effect of humidity on their mechanical properties. Polym. Test. 2014, 40, 99–105. [Google Scholar]
- Yang, J.; Saqib, M.N.; Liu, F.; Zhong, F. Bacterial cellulose nanocrystals with a great difference in aspect ratios: A comparison study of their reinforcing effects on properties of the sodium alginate film. Food Hydrocoll. 2023, 141, 108676. [Google Scholar]
- ASTM D1708-18; Standard Test Method for Tensile Properties of Plastics by Use of Microtensile Specimens. ASTM: West Conshohocken, PA, USA, 2018.
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM: West Conshohocken, PA, USA, 2014.
- Vasconcelos, N.F.; Feitosa, J.P.A.; da Gama, F.M.P.; Morais, J.P.S.; Andrade, F.K.A.; Souza Filho, M.d.S.M.; Rosa, M.d.F. Bacterial cellulose nanocrystals produced under different hydrolysis conditions: Properties and morphological features. Carbohydr. Polym. 2017, 155, 425–431. [Google Scholar]
- Choi, S.M.; Shin, E.J. The Nanofication and Functionalization of Bacterial Cellulose and Its Applications. Nanomaterials 2020, 10, 406. [Google Scholar] [CrossRef] [PubMed]
- Melo, P.T.S.; Otoni, C.G.; Barud, H.S.; Aouada, F.A.; De Moura, M.R. Upcycling Microbial Cellulose Scraps into Nanowhiskers with Engineered Performance as Fillers in All-Cellulose Composites. ACS Appl. Mater. Inter. 2020, 12, 46661–46666. [Google Scholar] [CrossRef]
- Jiménez, A.; Fabra, M.J.; Talens, P.; Chiralt, A. Influence of hydroxypropylmethylcellulose addition and homogenization conditions on properties and ageing of corn starch based films. Carbohydr. Polym. 2012, 89, 676–686. [Google Scholar] [CrossRef]
- Wu, H.; Wang, X.; Li, S.; Zhang, Q.; Chen, M.; Yuan, X.; Zhou, M.; Zhang, Z.; Chen, A. Incorporation of cellulose nanocrystals to improve the physicochemical and bioactive properties of pectin-konjac glucomannan composite films containing clove essential oil. Int. J. Biol. Macromol. 2024, 260, 129469. [Google Scholar] [CrossRef]
- Arserim-Uçara, D.K.; Korel, F.; Liu, L.S.; Yam, K.T. Characterization of bacterial cellulose nanocrystals: Effect of acid treatments and neutralization. Food Chem. 2021, 336, 127597. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, E.S.; Barros, M.O.; Cerqueira, M.A.; Lima, H.L.; Borges, M.d.F.; Pastrana, L.M.; Gama, F.M.; Rosa, M.F.; Azeredo, H.M.C.; Gonçalves, C. All-cellulose nanocomposite films based on bacterial cellulose nanofibrils and nanocrystals. Food Packag. Shelf 2021, 29, 100715. [Google Scholar] [CrossRef]
- Chen, L.; Qiang, T.; Ren, W.; Tian, Q.; Zhang, X.; Zhang, H.J. Strong, water-repellent, and recyclable gelatin-based bioplastic film as sustainable express packaging film. J. Clean. Prod. 2023, 385, 135705. [Google Scholar] [CrossRef]
- Candra, A.; Tsai, H.-C.; Saragi, I.R.; Hu, C.-C.; Yu, W.-T.; Krishnamoorthi, R.; Hong, Z.-X.; Lai, J.-Y. Fabrication and characterization of hybrid eco-friendly high methoxyl pectin/gelatin/TiO2/curcumin (PGTC) nanocomposite biofilms for salmon fillet packaging. Int. J. Biol. Macromol. 2023, 232, 123423. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.; Zhu, J.; Sun, P.; Yang, F.; Wu, H.; Li, W. Permeability of biodegradable film comprising biopolymers derived from marine origin for food packaging application: A review. Trends Food Sci. Technol. 2023, 136, 295–307. [Google Scholar] [CrossRef]
- Moreno, A.G.; Guzman-Puyol, S.; Domínguez, E.; Benítez, J.J.; Segado, P.; Lauciello, S.; Ceseracciu, L.; Porras-Vázquez, J.M.; Leon-Reina, L.; Heredia, A.; et al. Pectin-cellulose nanocrystal biocomposites: Tuning of physical properties and biodegradability. Int. J. Biol. Macromol. 2021, 180, 709–717. [Google Scholar] [CrossRef]
- Pitpisutkul, V.; Prachayawarakorn, J. Hydroxypropyl methylcellulose/carboxymethyl starch/zinc oxide porous nanocomposite films for wound dressing application. Carbohydr. Polym. 2022, 298, 120082. [Google Scholar] [PubMed]
- Suma, S.B.; Sangappa, Y. Optical, mechanical and electrical properties of HPMC-AuNPs nanocomposite films. Mater. Today Proc. 2022, 66, 2075–2079. [Google Scholar] [CrossRef]
- Mabrouk, A.B.; Dufresne, A.; Boufi, S. Cellulose nanocrystal as ecofriendly stabilizer for emulsion polymerization and its application for waterborne adhesive. Carbohydr. Polym. 2020, 229, 115504. [Google Scholar] [PubMed]
- Razavi, M.S.; Golmohammadi, A.; Nematollahzadeh, A.; Fiori, F.; Rovera, C.; Farris, S. Preparation of cinnamon essential oil emulsion by bacterial cellulose nanocrystals and fish gelatin. Food Hydrocoll. 2020, 109, 106111. [Google Scholar]
- Francisco, A.B.F.D.P.; Lorevice, M.V.; Claro, P.I.C.; Gouveia, R.F. Comprehensive study of cellulose nanocrystals acetylation effects on poly (butylene adipate-co-terephthalate) nanocomposite films obtained by solvent casting and heat pressing. Ind. Crops Prod. 2022, 177, 114459. [Google Scholar]
- Chaudhary, B.U.; Lingayat, S.; Banerjee, A.N.; Kale, R.D. Development of multifunctional food packaging films based on waste Garlic peel extract and Chitosan. Int. J. Biol. Macromol. 2021, 192, 479–490. [Google Scholar] [CrossRef]
Biopolymers | ||||
---|---|---|---|---|
Acronyms | BCNCs (wt. % Biopolymer) | Gelatin (wt. %) | Pectin (wt. % m) | HPMC (wt. %) |
G0 | - | 2.0 | - | - |
G5% | 5.0 | 2.0 | - | - |
G10% | 10 | 2.0 | - | - |
G15% | 15 | 2.0 | - | - |
P0 | - | - | 2.0 | - |
P4% | 4.0 | - | 2.0 | - |
P9% | 9.0 | - | 2.0 | - |
P14% | 14 | - | 2.0 | - |
H0 | - | - | - | 2.0 |
H3.5% | 3.5 | - | - | 2.0 |
H8.5% | 8.5 | - | - | 2.0 |
H13.5% | 13.5 | - | - | 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Costa, F.M.; Melo, P.T.S.; Nishimoto, P.H.K.; Lorevice, M.V.; Aouada, F.A.; de Moura, M.R. Percolation Threshold of Bacterial Nanocrystals in Biopolymeric Matrices to Build Up Strengthened Biobased Food Packaging. Foods 2025, 14, 1123. https://doi.org/10.3390/foods14071123
da Costa FM, Melo PTS, Nishimoto PHK, Lorevice MV, Aouada FA, de Moura MR. Percolation Threshold of Bacterial Nanocrystals in Biopolymeric Matrices to Build Up Strengthened Biobased Food Packaging. Foods. 2025; 14(7):1123. https://doi.org/10.3390/foods14071123
Chicago/Turabian Styleda Costa, Fabíola Medeiros, Pamela Thais Sousa Melo, Pedro Henrique Kenzo Nishimoto, Marcos Vinicius Lorevice, Fauze Ahmad Aouada, and Márcia Regina de Moura. 2025. "Percolation Threshold of Bacterial Nanocrystals in Biopolymeric Matrices to Build Up Strengthened Biobased Food Packaging" Foods 14, no. 7: 1123. https://doi.org/10.3390/foods14071123
APA Styleda Costa, F. M., Melo, P. T. S., Nishimoto, P. H. K., Lorevice, M. V., Aouada, F. A., & de Moura, M. R. (2025). Percolation Threshold of Bacterial Nanocrystals in Biopolymeric Matrices to Build Up Strengthened Biobased Food Packaging. Foods, 14(7), 1123. https://doi.org/10.3390/foods14071123