Evaluation of Biofilm Production and Antibiotic Resistance/Susceptibility Profiles of Pseudomonas spp. Isolated from Milk and Dairy Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Phylogenetic Analysis of Pseudomonas spp.
2.3. Biofilm Formation by Pseudomonas spp.
2.4. Molecular Detection of the adnA Gene
2.5. Antibiotic Susceptibility/Resistance Profiles
3. Results and Discussion
3.1. Phylogenetic Analysis of Pseudomonas Strains
3.2. Biofilm-Forming Ability of Pseudomonas Strains
3.3. Distribution of the adnA Gene in Pseudomonas Strains
3.4. Antibiotic Resistance/Susceptibility Profiles in Pseudomonas Strains
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wisplinghoff, H. Pseudomonas spp., Acinetobacter spp. and miscellaneous gram-negative bacilli. In Infectious Diseases; Cohen, J., Powderly, W.G., Opal, S.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1579–1599. [Google Scholar] [CrossRef]
- Quintieri, L.; Fanelli, F.; Caputo, L. Antibiotic resistant Pseudomonas spp. spoilers in fresh dairy products: An underestimated risk and the control strategies. Foods 2019, 8, 372. [Google Scholar] [CrossRef] [PubMed]
- Martin, N.H.; Torres Frenzel, P.; Wiedmann, M. Controlling dairy product spoilage to reduce food loss and waste. J. Dairy Sci. 2021, 104, 1251–1261. [Google Scholar] [CrossRef] [PubMed]
- Quintieri, L.; Caputo, L.; Brasca, M.; Fanelli, F. Recent advances in the mechanisms and regulation of QS in dairy spoilage by Pseudomonas spp. Foods 2021, 10, 3088. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Majumder, R.; Rout, P.; Hossain, S. Unveiling the significance of psychrotrophic bacteria in milk and milk product spoilage—A review. Microbe 2024, 2, 100034. [Google Scholar] [CrossRef]
- Stellato, G.; De Filippis, F.; La Storia, A.; Ercolini, D. Coexistence of lactic acid bacteria and potential spoilage microbiota in a dairy processing environment. Appl. Environ. Microbiol. 2015, 81, 7893–7904. [Google Scholar] [CrossRef]
- Fusco, V.; Chieffi, D.; Fanelli, F.; Logrieco, A.F.; Cho, G.S.; Kabisch, J.; Böhnlein, C.; Franz, C.M.A.P. Microbial quality and safety of milk and milk products in the 21st century. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2013–2049. [Google Scholar] [CrossRef]
- Kumar, H.; Franzetti, L.; Kaushal, A.; Kumar, D. Pseudomonas fluorescens: A potential food spoiler and challenges and advances in its detection. Ann. Microbiol. 2019, 69, 873–883. [Google Scholar] [CrossRef]
- Martin, N.H.; Boor, K.J.; Wiedmann, M. Symposium review: Effect of post-pasteurization contamination on fluid milk quality. J. Dairy Sci. 2018, 101, 861–870. [Google Scholar] [CrossRef]
- Carrascosa, C.; Raheem, D.; Ramos, F.; Saraiva, A.; Raposo, A. Microbial biofilms in the food industry—A comprehensive review. Int. J. Environ. Res. Public Health 2021, 18, 2014. [Google Scholar] [CrossRef]
- González-Rivas, F.; Ripolles-Avila, C.; Fontecha-Umaña, F.; Ríos-Castillo, A.G.; Rodríguez-Jerez, J.J. Biofilms in the spotlight: Detection, quantification, and removal methods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1261–1276. [Google Scholar] [CrossRef]
- Liu, X.; Yao, H.; Zhao, X.; Ge, C. Biofilm formation and control of foodborne pathogenic bacteria. Molecules 2023, 28, 2432. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Nakatsu, C.H.; Bhunia, A.K. Bacterial biofilms and their implications in pathogenesis and food safety. Foods 2021, 10, 2117. [Google Scholar] [CrossRef]
- Yuan, L.; Sadiq, F.A.; Burmølle, M.; Liu, T.; He, G. Insights into bacterial milk spoilage with particular emphasis on the roles of heat-stable enzymes, biofilms, and quorum sensing. J. Food Prot. 2018, 81, 1651–1660. [Google Scholar] [CrossRef]
- LaPointe, G.; Wilson, T.; Tarrah, A.; Gagnon, M.; Roy, D. Biofilm dairy foods review: Microbial community tracking from dairy farm to factory—Insights on biofilm management for enhanced food safety and quality. J. Dairy Sci. 2025; in press. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Antimicrobial Resistance. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 5 March 2025).
- Zinno, P.; Perozzi, G.; Devirgiliis, C. Foodborne microbial communities as potential reservoirs of antimicrobial resistance genes for pathogens: A critical review of the recent literature. Microorganisms 2023, 11, 1696. [Google Scholar] [CrossRef] [PubMed]
- de Brito, F.A.E.; de Freitas, A.P.P.; Nascimento, M.S. Multidrug-resistant biofilms (MDR): Main mechanisms of tolerance and resistance in the food supply chain. Pathogens 2022, 11, 1416. [Google Scholar] [CrossRef] [PubMed]
- Santamarina-García, G.; Amores, G.; Llamazares, D.; Hernández, I.; Barron, L.J.R.; Virto, M. Phenotypic and genotypic characterization of antimicrobial resistances reveals the effect of the production chain in reducing resistant lactic acid bacteria in an artisanal raw ewe milk PDO cheese. Food Res. Int. 2024, 187, 114308. [Google Scholar] [CrossRef]
- Elbehiry, A.; Marzouk, E.; Aldubaib, M.; Moussa, I.; Abalkhail, A.; Ibrahem, M.; Hamada, M.; Sindi, W.; Alzaben, F.; Almuzaini, A.M.; et al. Pseudomonas species prevalence, protein analysis and antibiotic resistance: An evolving public health challenge. AMB Express 2022, 12, 53. [Google Scholar] [CrossRef]
- Silverio, M.P.; Kraychete, G.B.; Rosado, A.S.; Bonelli, R.R. Pseudomonas fluorescens complex and its intrinsic, adaptive, and acquired antimicrobial resistance mechanisms in pristine and human-impacted sites. Antibiotics 2022, 11, 985. [Google Scholar] [CrossRef]
- Gu, H.; Aslam, S.; Horn, C.; Greene, J. Clinical characteristics, outcomes and antimicrobial resistance of non-aeruginosa Pseudomonas infection in adult cancer patients. Open Forum Infect. Dis. 2023, 10 (Suppl. S2), ofad500.2440. [Google Scholar] [CrossRef]
- Ioannou, P.; Alexakis, K.; Maraki, S.; Kofteridis, D.P. Pseudomonas bacteremia in a tertiary hospital and factors associated with mortality. Antibiotics 2023, 12, 670. [Google Scholar] [CrossRef]
- Moore, J.E.; McCaughan, J.; Rendall, J.C.; Millar, B.C. The Microbiology of Non-aeruginosa Pseudomonas isolated from adults with cystic fibrosis: Criteria to help determine the clinical significance of non-aeruginosa Pseudomonas in CF lung pathology. Br. J. Biomed. Sci. 2022, 79, 10468. [Google Scholar]
- Treviño, M.; Moldes, L.; Hernández, M.; Martínez-Lamas, L.; García-Riestra, C.; Regueiro, B.J.; Regueiro, B. Nosocomial infection by VIM-2 metallo-β-lactamase-producing Pseudomonas putida. J. Med. Microbiol. 2010, 59, 853–855. [Google Scholar] [CrossRef] [PubMed]
- Bogaerts, P.; Huang, T.D.; Rodriguez-Villalobos, H.; Bauraing, C.; Deplano, A.; Struelens, M.J.; Glupczynski, Y. Nosocomial infections caused by multidrug-resistant Pseudomonas putida isolates producing VIM-2 and VIM-4 metallo-beta-lactamases. J. Antimicrob. Chemother. 2008, 61, 749–751. [Google Scholar] [CrossRef]
- Peter, S.; Oberhettinger, P.; Schuele, L.; Dinkelacker, A.; Vogel, W.; Dörfel, D.; Bezdan, D.; Ossowski, S.; Marschal, M.; Liese, J.; et al. Genomic characterisation of clinical and environmental Pseudomonas putida group strains and determination of their role in the transfer of antimicrobial resistance genes to Pseudomonas aeruginosa. BMC Genom. 2017, 18, 859. [Google Scholar] [CrossRef]
- Quintieri, L.; Fanelli, F.; Zühlke, D.; Caputo, L.; Logrieco, A.F.; Albrecht, D.; Riedel, K. Biofilm- and pathogenesis-related proteins in the foodborne P. fluorescens ITEM 17298 with distinctive phenotypes during cold storage. Front. Microbiol. 2020, 11, 991. [Google Scholar] [CrossRef]
- Ávila, M.; Sánchez, C.; Calzada, C.; Briega, I.; Bailo, P.; Berruga, M.I.; Tomillo, J.; Rodríguez-Mínguez, E.; Picon, A.; Garde, S. Diversity and spoilage potential of Pseudomonas spp. from Spanish milk and dairy products: Impact on fresh cheese and milk quality. Food Res. Int. 2025, 202, 115700. [Google Scholar] [CrossRef]
- Walter, L.; Knight, G.; Ng, S.Y.; Buckow, R. Kinetic models for pulsed electric field and thermal inactivation of Escherichia coli and Pseudomonas fluorescens in whole milk. Int. Dairy J. 2016, 57, 7–14. [Google Scholar] [CrossRef]
- Haramati, R.; Dor, S.; Gurevich, D.; Levy, D.; Freund, D.; Rytwo, G.; Sharon, I.; Afriat-Jurnou, L. Mining marine metagenomes revealed a quorum-quenching lactonase with improved biochemical properties that inhibits the food spoilage bacterium Pseudomonas fluorescens. Appl. Environ. Microbiol. 2022, 88, e01680-21. [Google Scholar] [CrossRef]
- Reichler, S.J.; Murphy, S.I.; Martin, N.H.; Wiedmann, M. Identification, subtyping, and tracking of dairy spoilage associated Pseudomonas by sequencing the ileS gene. J. Dairy Sci. 2021, 104, 2668–2683. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucl. Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Nei, M.; Kumar, S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 2004, 101, 11030–11035. [Google Scholar] [CrossRef]
- Girard, L.; Lood, C.; Höfte, M.; Vandamme, P.; Rokni-Zadeh, H.; van Noort, V.; Lavigne, R.; De Mot, R. The ever-expanding Pseudomonas genus: Description of 43 new species and partition of the Pseudomonas putida group. Microorganisms 2021, 9, 1766. [Google Scholar] [CrossRef]
- Rossi, C.; Serio, A.; Chaves-López, C.; Anniballi, F.; Auricchio, B.; Goffredo, E.; Cenci-Goga, B.T.; Lista, F.; Fillo, S.; Paparella, A. Biofilm formation, pigment production and motility in Pseudomonas spp. isolated from the dairy industry. Food Control 2018, 86, 241–248. [Google Scholar] [CrossRef]
- Stepanović, S.; Vuković, D.; Dakić, I.; Savić, B.; Švabić-Vlahović, M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods 2000, 40, 175–179. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, W.; You, C.; Liu, Z. Development of a multiplex PCR assay for detection of Pseudomonas fluorescens with biofilm formation ability. J. Food Sci. 2017, 82, 2337–2342. [Google Scholar] [CrossRef]
- EUCAST. European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters Version 14.0. 2024. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 8 November 2024).
- Meng, L.; Liu, H.; Lan, T.; Dong, L.; Hu, H.; Zhao, S.; Zhang, Y.; Zheng, N.; Wang, J. Antibiotic resistance patterns of Pseudomonas spp. isolated from raw milk revealed by Whole Genome Sequencing. Front. Microbiol. 2020, 11, 1005. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Yuan, X.; Liu, S.; Fan, L.; Zheng, X.; Wang, S.; Yuan, L.; Jiao, X. Microbial biodiversity of raw milk collected from Yangzhou and the heterogeneous biofilm-forming ability of Pseudomonas. Int. J. Dairy Tech. 2023, 76, 51–62. [Google Scholar] [CrossRef]
- Wickramasinghe, N.N.; Hlaing, M.M.; Ravensdale, J.T.; Coorey, R.; Chandry, P.S.; Dykes, G.A. Characterization of the biofilm matrix composition of psychrotrophic, meat spoilage pseudomonads. Sci. Rep. 2020, 10, 16457. [Google Scholar] [CrossRef]
- Garrett, T.R.; Bhakoo, M.; Zhang, Z. Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci. 2008, 18, 1049–1056. [Google Scholar] [CrossRef]
- Zarei, M.; Yousefvand, A.; Maktabi, S.; Pourmahdi Borujeni, M.; Mohammadpour, H. Identification, phylogenetic characterisation and proteolytic activity quantification of high biofilm-forming Pseudomonas fluorescens group bacterial strains isolated from cold raw milk. Int. Dairy J. 2020, 109, 104787. [Google Scholar] [CrossRef]
- Sillankorva, S.; Neubauer, P.; Azeredo, J. Pseudomonas fluorescens Biofilms Subjected to Phage phiIBB-PF7A. BMC Biotechnol. 2008, 8, 7–9. [Google Scholar] [CrossRef]
- Pang, X.; Zhang, H.; Seck, H.L.; Zhou, W. Inactivation Effect of low-energy x-ray irradiation against planktonic and biofilm Pseudomonas fluorescens and its antibacterial mechanism. Int. J. Food Microbiol. 2022, 374, 109716. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, H.-H.; Duc, H.M.; Masuda, Y.; Honjoh, K.-i.; Miyamoto, T. Application of endolysin LysSTG2 as a potential biocontrol agent against planktonic and biofilm cells of Pseudomonas on various food and food contact surfaces. Food Control 2022, 131, 108460. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, Y.; Xu, Z.; Stoteyome, T.; Yuan, L. Ultrasound promoted the inactivation efficacy of lactic acid against calcium-mediated biofilm formation by Pseudomonas fluorescens. Int. J. Dairy Technol. 2024, 77, 773–783. [Google Scholar] [CrossRef]
- Goetz, C.; Sanschagrin, L.; Jubinville, E.; Jacques, M.; Jean, J. Recent Progress in antibiofilm strategies in the dairy industry. J. Dairy Sci. 2025; in press. [Google Scholar] [CrossRef]
- Mika, F.; Hengge, R. Small RNAs in the control of RpoS, CsgD, and biofilm architecture of Escherichia coli. RNA Biol. 2014, 11, 494–507. [Google Scholar] [CrossRef]
- Molina-Henares, M.A.; Ramos-González, M.I.; Daddaoua, A.; Fernández-Escamilla, A.M.; Espinosa-Urgel, M. FleQ of Pseudomonas putida KT2440 is a multimeric cyclic diguanylate binding protein that differentially regulates expression of biofilm matrix components. Res. Microbiol. 2017, 168, 36–45. [Google Scholar] [CrossRef]
- Robleto, E.A.; López-Hernández, I.; Silby, M.W.; Levy, S.B. Genetic analysis of the AdnA regulon in Pseudomonas fluorescens: Nonessential role flagella in adhesion to sand and biofilm formation. J. Bacteriol. 2003, 185, 453–460. [Google Scholar] [CrossRef]
- Spiers, A.J.; Bohannon, J.; Gehrig, S.M.; Rainey, P.B. Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol. Microbiol. 2003, 50, 15–27. [Google Scholar] [CrossRef]
- Fazli, M.; Almblad, H.; Rybtke, M.L.; Givskov, M.; Eberl, L.; Tolker-Nielsen, T. Regulation of biofilm formation in Pseudomonas and Burkholderia species. Environ. Microbiol. 2014, 16, 1961–1981. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.J.; Smith, T.J.; Sondermann, H.; O’Toole, G.A. From input to output: The Lap/c-di-GMP biofilm regulatory circuit. Annu. Rev. Microbiol. 2020, 74, 607–631. [Google Scholar] [CrossRef] [PubMed]
- Dueholm, M.S.; Søndergaard, M.T.; Nilsson, M.; Christiansen, G.; Stensballe, A.; Overgaard, M.T.; Givskov, M.; Tolker-Nielsen, T.; Otzen, D.E.; Nielsen, P.H. Expression of Fap amyloids in Pseudomonas aeruginosa, P. fluorescens, and P. putida results in aggregation and increased biofilm formation. Microbiologyopen 2013, 2, 365–382. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ye, Y.; Zhu, Y.; Wang, L.; Yuan, L.; Zhu, J.; Sun, A. Involvement of RpoN in regulating motility, biofilm, resistance, and spoilage potential of Pseudomonas fluorescens. Front. Microbiol. 2021, 12, 641844. [Google Scholar] [CrossRef]
- Guo, M.; Tan, S.; Zhu, J.; Sun, A.; Du, P.; Liu, X. Genes involved in biofilm matrix formation of the food spoiler Pseudomonas fluorescens PF07. Front. Microbiol. 2022, 13, 881043. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, F.; Pang, X.; Chen, Y.; Niu, A.; Tan, S.; Chen, X.; Qiu, W.; Wang, G. Involvement of AprD in regulating biofilm structure, matrix secretion, and cell metabolism of meat-borne Pseudomonas fragi during chilled storage. Food Res. Int. 2022, 157, 111400. [Google Scholar] [CrossRef]
- Blanco-Romero, E.; Garrido-Sanz, D.; Rivilla, R.; Redondo-Nieto, M.; Martín, M. In silico characterization and phylogenetic distribution of extracellular matrix components in the model rhizobacteria Pseudomonas fluorescens F113 and other Pseudomonads. Microorganisms 2020, 8, 1740. [Google Scholar] [CrossRef]
- Arslan, S.; Eyi, A.; Ozdemir, F. Spoilage potentials and antimicrobial resistance of Pseudomonas spp. isolated from cheeses. J. Dairy Sci. 2011, 94, 5851–5856. [Google Scholar] [CrossRef]
- Decimo, M.; Silvetti, T.; Brasca, M. Antibiotic resistance patterns of gram-negative psychrotrophic bacteria from bulk tank milk. J. Food Sci. 2016, 81, M944–M951. [Google Scholar] [CrossRef]
- King, D.T.; Sobhanifar, S.; Strynadka, N.C.J. The mechanisms of resistance to β-Lactam antibiotics. In Handbook of Antimicrobial Resistance; Berghuis, A., Matlashewski, G., Wainberg, M., Sheppard, D., Eds.; Springer: New York, NY, USA, 2017; Volume 67, pp. 177–201. [Google Scholar] [CrossRef]
- Gajic, I.; Kabic, J.; Kekic, D.; Jovicevic, M.; Milenkovic, M.; Mitic Culafic, D.; Trudic, A.; Ranin, L.; Opavski, N. Antimicrobial susceptibility testing: A comprehensive review of currently used methods. Antibiotics 2022, 11, 427. [Google Scholar] [CrossRef]
- Heir, E.; Moen, B.; Åsli, A.W.; Sunde, M.; Langsrud, S. Antibiotic resistance and phylogeny of Pseudomonas spp. isolated over three decades from chicken meat in the norwegian food chain. Microorganisms 2021, 9, 207. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.H.-Y.; Chan, E.W.C.; Chen, S. Isolation of carbapenem-resistant Pseudomonas spp. from food. J. Glob. Antimicrob. Resist. 2015, 3, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Palmieri, M.; Brilhante, M.; Masseron, A.; Perreten, V.; Nordmann, P. PFM-like enzymes are a novel family of subclass B2 metallo-β-lactamases from Pseudomonas synxantha belonging to the Pseudomonas fluorescens complex. Antimicrob. Agents Chemother. 2019, 64, 10–128. [Google Scholar] [CrossRef]
- Girlich, D.; Poirel, L.; Nordmann, P. Novel Ambler Class A carbapenem-hydrolyzing β-Lactamase from a Pseudomonas fluorescens isolate from the Seine River, Paris, France. Antimicrob. Agents Chemother. 2010, 54, 328–332. [Google Scholar] [CrossRef]
- Maravić, A.; Skočibušić, M.; Šamanić, I.; Puizina, J. Antibiotic susceptibility profiles and first report of TEM extended-spectrum β-lactamase in Pseudomonas fluorescens from coastal waters of the Kaštela Bay, Croatia. World J. Microbiol. Biotechnol. 2012, 28, 2039–2045. [Google Scholar] [CrossRef]
- Du, B.; Lu, M.; Liu, H.; Wu, H.; Zheng, N.; Zhang, Y.; Zhao, S.; Zhao, Y.; Gao, T.; Wang, J. Pseudomonas isolates from raw milk with high level proteolytic activity display reduced carbon substrate utilization and higher levels of antibiotic resistance. LWT 2023, 181, 114766. [Google Scholar] [CrossRef]
- FDA United States Food and Drug Administration. Antibacterial Susceptibility Test Interpretive Criteria. 2024. Available online: https://www.fda.gov/drugs/development-resources/antibacterial-susceptibility-test-interpretive-criteria (accessed on 8 November 2024).
- Sharma, C.; Rokana, N.; Chandra, M.; Singh, B.P.; Gulhane, R.D.; Gill, J.P.S.; Ray, P.; Puniya, A.K.; Panwar, H. Antimicrobial resistance: Its surveillance, impact, and alternative management strategies in dairy animals. Front. Vet. Sci. 2018, 4, 237. [Google Scholar] [CrossRef]
Biofilms 2 6 °C, 48 h | Biofilms 2 25 °C, 48 h | adnA 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Species 1 (n = Total no. Strains) | NP | LP | MP | HP | NP | LP | MP | HP | ||
P. fluorescens ATCC 948 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | |
P. fluorescens (n = 19) | 1 | 0 | 1 | 17 | 1 | 1 | 12 | 5 | 18 | |
P. salmasensis (n = 3) | 0 | 0 | 0 | 3 | 0 | 0 | 2 | 1 | 3 | |
P. veronii (n = 2) | 0 | 0 | 0 | 2 | 0 | 1 | 1 | 0 | 0 | |
P. canadensis (n = 2) | 0 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 2 | |
P. azotoformans (n = 1) | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | |
P. sivasensis (n = 1) | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | |
* Pseudomonas spp. (n = 10) a, P. fluorescens subgroup | 0 | 0 | 0 | 10 | 1 | 1 | 4 | 4 | 9 | |
P. gessardii (n = 1) | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | |
P. shahriarae (n = 7) | 1 | 0 | 1 | 5 | 1 | 0 | 0 | 6 | 7 | |
P. proteolytica (n = 1) | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | |
* Pseudomonas spp. (n = 1) b, P. gessardii subgroup | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | |
P. koreensis (n = 4) | 0 | 0 | 0 | 4 | 0 | 0 | 2 | 2 | 2 | |
P. atacamensis (n = 4) | 0 | 0 | 0 | 4 | 1 | 0 | 2 | 1 | 1 | |
P. fragi (n = 17) | 15 | 1 | 0 | 1 | 16 | 1 | 0 | 0 | 0 | |
P. lundensis (n = 13) | 1 | 3 | 2 | 7 | 3 | 2 | 3 | 5 | 0 | |
P. weihenstephanensis (n = 2) | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | |
P. psychrophila (n = 1) | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | |
P. saxonica (n = 1) | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | |
* Pseudomonas spp. (n = 3) c, P. fragi subgroup | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | |
P. putida (n = 2) | 2 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | |
P. fulva (n = 1) | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | |
P. mosselii ATCC 49838 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | |
P. solani (n = 1) | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | |
Pseudomonas spp. (n = 9) d, other | 2 | 2 | 2 | 3 | 3 | 1 | 3 | 2 | 5 |
Class | Antibiotic | Interpretive Categories a (Total Strains = 108) | ||
---|---|---|---|---|
S | I | R | ||
Monobactam | Aztreonam | 0 | 29 | 79 |
Carbapenems | Doripenem | 0 | 78 | 30 |
Imipenem | 0 | 78 | 30 | |
Meropenem | 71 | 23 | 14 | |
Cephalosporins | Ceftazidime | 0 | 88 | 20 |
Cefepime | 0 | 101 | 7 | |
Penicillins | Piperacillin | 0 | 106 | 2 |
Piperacillin–tazobactam | 0 | 106 | 2 | |
Fluoroquinolones | Ciprofloxacin | 0 | 107 | 1 |
Levofloxacin | 0 | 107 | 1 | |
Aminoglycosides | Amikacin | 108 | 0 | 0 |
Tobramycin | 108 | 0 | 0 | |
No breakpoint b | ||||
Aminoglycosides | Gentamicin | ≥15 mm (n = 108) | ||
Folate pathway inhibitors | Sulfamethoxazole–trimethoprim | <7 mm (n = 8); 7–20 mm (n = 69); >20 mm (n = 31) |
Species 1 (Total no. Strains) | Antibiotic Resistance 2 (n = no. Strains) | Category 3 |
---|---|---|
P. fluorescens ATCC 948 | None (n = 1) | |
P. fluorescens (n = 19) | ATM (n = 4) | |
ATM, CAZ (n = 1) | ||
ATM, DOR (n = 1) | ||
ATM, IPM (n = 2) | ||
ATM, DOR, IPM (n = 4) | ||
ATM, DOR, MEM (n = 1) | ||
ATM, CAZ, IPM (n = 1) | MDR | |
ATM, DOR, IPM, MEM (n = 1) | ||
ATM, CAZ, DOR, IPM (n = 1) | MDR | |
ATM, FEP, DOR, IPM, MEM (n = 1) | MDR | |
ATM, CAZ, DOR, MEM (n = 1) | MDR | |
ATM, FEP, CAZ, CIP, DOR, IPM, MEM (n = 1) | XDR | |
P. salmasensis (n = 3) | ATM (n = 2) | |
ATM, DOR, IPM (n = 1) | ||
P. veronii (n = 2) | ATM (n = 2) | |
P. canadensis (n = 2) | ATM (n = 2) | |
P. azotoformans (n = 1) | ATM (n = 1) | |
P. sivasensis (n = 1) | ATM, CAZ (n = 1) | |
* Pseudomonas spp. (10) a, P. fluorescens subgroup | ATM (n = 3) | |
ATM, DOR, IPM (n = 4) | ||
ATM, CAZ, DOR, IPM (n = 2) | MDR | |
ATM, FEP, CAZ, DOR, IPM, LEV (n = 1) | XDR | |
P. gessardii (n = 1) | ATM (n = 1) | |
P. shahriarae (n = 7) | ATM, DOR, IPM, MEM (n = 1) | |
ATM, CAZ, DOR, IPM (n = 1) | MDR | |
ATM, CAZ, DOR, IPM, MEM (n = 4) | MDR | |
ATM, FEP, CAZ, DOR, IPM, MEM (n = 1) | MDR | |
P. proteolytica (n = 1) | ATM, FEP, CAZ, DOR, MEM (n = 1) | MDR |
* Pseudomonas spp. (n = 1) b, P. gessardii subgroup | ATM, CAZ (n = 1) | |
P. koreensis (n = 4) | ATM (n = 3) | |
ATM, CAZ (n = 1) | ||
P. atacamensis (n = 4) | ATM (n = 4) | |
P. fragi (n = 17) | None (n = 14) | |
ATM (n = 3) | ||
P. lundensis (n = 13) | None (n = 9) | |
ATM (n = 4) | ||
P. weihenstephanensis (n = 2) | None (n = 2) | |
P. psychrophila (n = 1) | ATM (n = 1) | |
P. saxonica (n = 1) | None (n = 1) | |
* Pseudomonas spp. (n = 3) c, P. fragi subgroup | None (n = 2) | |
ATM (n = 1) | ||
P. putida (n = 2) | ATM (n = 2) | |
P. fulva (n = 1) | ATM (n = 1) | |
P. mosselii ATCC 49838 | ATM, FEP, PRL, TZP (n = 1) | MDR |
P. solani (n = 1) | ATM, FEP, CAZ, DOR, IPM, MEM, PRL, TZP (n = 1) | XDR |
Pseudomonas spp. (n = 9) d, other | ATM (n = 6) | |
ATM, DOR, IPM (n = 1) | ||
ATM, CAZ, IPM (n = 1) | MDR | |
ATM, DOR, IPM, MEM (n = 1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Briega, I.; Garde, S.; Sánchez, C.; Rodríguez-Mínguez, E.; Picon, A.; Ávila, M. Evaluation of Biofilm Production and Antibiotic Resistance/Susceptibility Profiles of Pseudomonas spp. Isolated from Milk and Dairy Products. Foods 2025, 14, 1105. https://doi.org/10.3390/foods14071105
Briega I, Garde S, Sánchez C, Rodríguez-Mínguez E, Picon A, Ávila M. Evaluation of Biofilm Production and Antibiotic Resistance/Susceptibility Profiles of Pseudomonas spp. Isolated from Milk and Dairy Products. Foods. 2025; 14(7):1105. https://doi.org/10.3390/foods14071105
Chicago/Turabian StyleBriega, Iván, Sonia Garde, Carmen Sánchez, Eva Rodríguez-Mínguez, Antonia Picon, and Marta Ávila. 2025. "Evaluation of Biofilm Production and Antibiotic Resistance/Susceptibility Profiles of Pseudomonas spp. Isolated from Milk and Dairy Products" Foods 14, no. 7: 1105. https://doi.org/10.3390/foods14071105
APA StyleBriega, I., Garde, S., Sánchez, C., Rodríguez-Mínguez, E., Picon, A., & Ávila, M. (2025). Evaluation of Biofilm Production and Antibiotic Resistance/Susceptibility Profiles of Pseudomonas spp. Isolated from Milk and Dairy Products. Foods, 14(7), 1105. https://doi.org/10.3390/foods14071105