Comprehensive Characterization of Aroma Profile of “Glutinous Rice” Flavor in Pandanus amaryllifolius Roxb. Using HS–SPME–GC–O–MS and HS-GC-IMS Technology Coupled with OAV
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Raw Materials
2.1.2. Chemicals
2.2. HS-GC-IMS Preparations
2.3. HS–GC–IMS Analysis
2.4. HS–SPME
2.5. GC–O–MS Analysis
2.6. Aroma Extraction Dilution Analysis
2.7. Qualitative and Relative Quantitative Analysis of Aroma Components
2.7.1. Qualitative Analysis
2.7.2. Relative Quantitative Analysis
2.8. Odor Activity Value Calculation
2.9. Data Processing and Statistical Analysis
3. Results
3.1. HS-GC-IMS Analysis
3.2. HS-SPME-GC-O-MS Analysis of Volatile Compound Profiles
3.3. Key AEDA-Identified Aroma-Active Compounds
3.4. OAVs of Volatile Compounds in Three Pandanus amaryllifolius Roxb. Samples
3.5. Comparative Analysis of HS-SPME-GC-O-MS and HS-GC-IMS Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ningrum, A.; Minh, N.N.; Schreiner, M. Carotenoids and norisoprenoids as carotenoid degradation products in Pandan Leaves (Pandanus amaryllifolius Roxb.). Int. J. Food Prop. 2015, 18, 1905–1914. [Google Scholar] [CrossRef]
- Loh, S.K.; Che Man, Y.B.; Tan, C.P.; Osman, A.; Hamid, N.S.A. Process optimisation of encapsulated pandan (Pandanus amaryllifolius) powder using spray-drying method. J. Sci. Food Agric. 2005, 85, 1999–2004. [Google Scholar] [CrossRef]
- Routray, W.; Rayaguru, K. Chemical constituents and post-harvest prospects of Pandanus amaryllifolius leaves: A Review. Food Rev. Int. 2010, 26, 230–245. [Google Scholar] [CrossRef]
- Yahya, F.; Lu, T.; Santos, R.C.D.; Fryer, P.J.; Bakalis, S. Supercritical carbon dioxide and solvent extraction of 2-acetyl-1-pyrroline from Pandan leaf: The effect of pre-treatment. J. Supercrit. Fluids 2010, 55, 200–207. [Google Scholar] [CrossRef]
- Omer, N.; Yen-Mun, C.; Ahmad, N.; Yusof, N.S.M. Ultrasound-assisted encapsulation of Pandan (Pandanus amaryllifolius) extract. Ultrason. Sonochem. 2021, 79, 105793. [Google Scholar] [CrossRef]
- Starkenmann, C.; Niclass, Y.; Vuichoud, B.; Schweizer, S.; He, X.F. Occurrence of 2-acetyl-1-pyrroline and its nonvolatile precursors in celtuce (Lactuca sativa L. var. augustana). J. Agric. Food Chem. 2019, 67, 11710–11717. [Google Scholar] [CrossRef]
- Wakte, K.V.; Thengane, R.J.; Jawali, N.; Nadaf, A.B. Optimization of HS-SPME conditions for quantification of 2-acetyl-1-pyrroline and study of other volatiles in Pandanus amaryllifolius Roxb. Food Chem. 2010, 121, 595–600. [Google Scholar] [CrossRef]
- Teng, L.C.; Shen, T.C.; Goh, S.H. The flavoring compound of the leaves of Pandanus amaryllifolius. Econ. Bot. 1979, 33, 72–74. [Google Scholar] [CrossRef]
- Buttery, R.G.; Ling, L.C.; Juliano, B.O.; Turnbaugh, J.G. Cooked rice aroma and 2-acetyl-1-pyrroline. J. Agric. Food Chem. 1983, 31, 823–826. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Kshirsagar, A.; Singhal, R.S. Supercritical carbon dioxide extraction of 2-acetyl-1-pyrroline from Pandanus amaryllifolius Roxb. Food Chem. 2005, 91, 255–259. [Google Scholar] [CrossRef]
- Laohakunjit, N.; Noomhorm, A. Supercritical carbon dioxide extraction of 2-acetyl-1-pyrroline and volatile components from pandan leaves. Flavour Fragr. J. 2004, 19, 251–259. [Google Scholar] [CrossRef]
- Ngadi, N.; Yahya, N.Y. Extraction of 2-acetyl-1-pyrroline (2AP) in pandan leaves (Pandanus amaryllifolius Roxb.) via solvent extraction method: Effect of solvent. J. Teknol. 2014, 67, 2. [Google Scholar] [CrossRef]
- Tanchotikul, U.; Hsieh, T.C. An improved method for quantification of 2-acetyl-1-pyrroline, a “popcorn”-like aroma, in aromatic rice by high-resolution gas chromatography/mass spectrometry/selected ion monitoring. J. Agric. Food Chem. 1991, 39, 944–947. [Google Scholar] [CrossRef]
- Jiang, J. Volatile Composition of Pandan Leaves (Pandanus amaryllifolius). In Flavor Chemistry of Ethnic Foods; Shahidi, F., Ho, C.T., Eds.; Springer: Boston, MA, USA, 1999. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.; Sun, B. Recent progress in food flavor analysis using gas chromatography–ion mobility spectrometry (GC–IMS). Food Chem. 2020, 315, 126158. [Google Scholar] [CrossRef]
- Schanzmann, H.; Augustini, A.L.R.M.; Sanders, D.; Dahlheimer, M.; Wigger, M.; Zech, P.-M.; Sielemann, S. Differentiation of monofloral honey using volatile organic compounds by HS-GCxIMS. Molecules 2022, 27, 7554. [Google Scholar] [CrossRef]
- Piotr Konieczka, P.; Aliaño-González, M.J.; Ferreiro-González, M.; Barbero, G.F.; Palma, M. Characterization of Arabica and Robusta coffees by ion mobility sum spectrum. Sensors 2020, 20, 3123. [Google Scholar] [CrossRef]
- Chi, X.; Guo, H.; Zhang, Y.; Zheng, N.; Liu, H.; Wang, J. E-nose, E-tongue combined with GC-IMS to analyze the influence of key additives during processing on the flavor of infant formula. Foods 2022, 11, 3708. [Google Scholar] [CrossRef]
- Shen, D.-Y.; Song, H.-L.; Zou, T.-T.; Wan, S.-Y.; Li, M.-K. Characterization of odor-active compounds in moso bamboo (Phyllostachys pubescens Mazel) leaf via gas chromatography-ion mobility spectrometry, one-and two-dimensional gas chromatography-olfactory-mass spectrometry, and electronic nose. Food Res. Int. 2022, 152, 110916. [Google Scholar] [CrossRef]
- Augustini, A.L.R.M.; Sielemann, S.; Telgheder, U. Strategy for the identification of flavor compounds in e-liquids by correlating the analysis of GCxIMS and GC-MS. Talanta 2021, 230, 122318. [Google Scholar] [CrossRef]
- MacNeil, A.; Li, X.; Amiri, R.; Muir, D.C.G.; Simpson, A.; Simpson, M.J.; Dorman, F.L.; Jobst, K.J. Gas chromatography-(Cyclic) ion mobility mass spectrometry: A novel platform for the discovery of unknown per-/polyfluoroalkyl substances. Anal. Chem. 2022, 94, 11096–11103. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Chen, H.; Wu, Z.; Hu, M.; Yao, M. Haze air pollution health impacts of breath-borne VOCs. Environ. Sci. Technol. 2022, 56, 8541–8551. [Google Scholar] [CrossRef] [PubMed]
- Degenhardt, A.; Krammer, G.; Koch, J.; Tai, M. Novel Pandan Extract Articles in Powder Form and Process for the Production Thereof. U.S. Patent No. 20120213904, 22 February 2012. Available online: https://www.freepatentsonline.com/y2012/0213904.html (accessed on 23 August 2012).
- Li, X.; Zeng, X.; Song, H.; Xi, Y.; Li, Y.; Hui, B.; Li, H.; Li, J. Characterization of the aroma profiles of cold and hot break tomato pastes by GC-O-MS, GC×GC-O-TOF-MS, and GC-IMS. Food Chem. 2023, 405, 134823. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Niu, Y.; Xiao, Z. Characterization of the key aroma compounds in Laoshan green teas by application of odour activity value (OAV), gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-qMS). Food Chem. 2021, 339, 128136. [Google Scholar] [CrossRef] [PubMed]
- Ceva-Antunes, P.M.N.; Bizzo, H.R.; Silva, A.S.; Carvalho, C.P.S.; Antunes, O.A.C. Analysis of volatile composition of siriguela (Spondias purpurea L.) by solid phase microextraction (SPME). LWT–Food Sci. Technol. 2006, 39, 437–443. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhan, P.; Tian, H.-L.; Wang, P.; Lu, C.; Tian, P.; Zhang, Y.-Y. Insights into the aroma profile in three kiwifruit varieties by HS-SPME-GC-MS and GC-IMS coupled with DSA. Food Anal. Methods 2021, 14, 1033–1042. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, J.; Chen, X.; Chen, D.; Deng, S. Use of relative odor activity value (ROAV) to link aroma profiles to volatile compounds: Application to fresh and dried eel (Muraenesox cinereus). Int. J. Food Prop. 2020, 23, 2257–2270. [Google Scholar] [CrossRef]
- Van Gemert, L.J. Compilations of Odour Threshold Values in Air, Water and Other Media; Boelens Aroma Chemical Information Service: Huizen, The Netherlands, 2003. [Google Scholar]
- Liu, G.; Huang, L.; Lian, J. Alcohol acyltransferases for the biosynthesis of esters. Biotechnol. Biofuels Bioprod. 2023, 16, 93. [Google Scholar] [CrossRef]
- Rowland, O.; Domergue, F. Plant fatty acyl reductases: Enzymes generating fatty alcohols for protective layers with potential for industrial applications. Plant Sci. 2012, 193, 28–38. [Google Scholar] [CrossRef]
- Jelen, H.; Wasowicz, E. Lipid-derived flavor compounds. In Food Flavors: Chemical, Sensory, and Technological Properties; Jelen, H., Ed.; CRC Press: Boca Raton, FL, USA, 2011; pp. 65–89. [Google Scholar]
- Lewicki, P.P. Effect of pre-drying treatment, drying and rehydration on plant tissue properties: A review. Int. J. Food Prop. 1998, 1, 1–22. [Google Scholar] [CrossRef]
- Suharta, S.; Hunaefi, D.; Wijaya, C.H. Changes in volatiles and aroma profile of andaliman (Zanthoxylum acanthopodium DC.) upon various drying techniques. Food Chem. 2021, 365, 130483. [Google Scholar] [CrossRef]
- Marco, P.; Campo, E.; Oria, R.; Blanco, D.; Venturini, M.E. Effect of lyophilisation in the black truffle (Tuber melanosporum) aroma: A comparison with other long-term preservation treatments (freezing and sterilization). Acta Hortic. 2018, 1194, 831–838. [Google Scholar] [CrossRef]
- Yun, J.; Cui, C.; Zhang, S.; Zhu, J.; Peng, C.; Cai, H.; Yang, X.; Hou, R. Use of headspace GC/MS combined with chemometric analysis to identify the geographic origins of black tea. Food Chem. 2021, 360, 130033. [Google Scholar] [CrossRef] [PubMed]
- Guth, H. Quantitation and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Kerler, J.; van der Ven, J.G.M.; Weenen, H. α-Acetyl-N-heterocycles in the Maillard reaction. Food Rev. Int. 1997, 13, 553–575. [Google Scholar] [CrossRef]
- Garrido-Delgado, R.; del Mar Dobao-Prieto, M.; Arce, L.; Valcárcel, M. Determination of volatile compounds by GC–IMS to assign the quality of virgin olive oil. Food Chem. 2015, 187, 572–579. [Google Scholar] [CrossRef]
- Yao, W.; Ma, S.; Wu, H.; Liu, D.; Liu, J.; Zhang, M. Flavor profile analysis of grilled lamb seasoned with classic salt, chili pepper, and cumin (Cuminum cyminum) through HS-SPME-GC-MS, HS-GC-IMS, E-nose techniques, and sensory evaluation on Sonit sheep. Food Chem. 2024, 454, 139514. [Google Scholar] [CrossRef]
- Bleicher, J.; Ebner, E.E.; Bak, K.H. Formation and analysis of volatile and odor compounds in meat—A review. Molecules 2022, 27, 6703. [Google Scholar] [CrossRef]
- Engel, K.H. The Importance of Sulfur-Containing Compounds to Fruit Flavors. In Flavor Chemistry; Teranishi, R., Wick, E.L., Hornstein, I., Eds.; Springer: Boston, MA, USA, 1999. [Google Scholar] [CrossRef]
- Iranshahi, M. A review of volatile sulfur-containing compounds from terrestrial plants: Biosynthesis, distribution and analytical methods. J. Essent. Oil Res. 2012, 24, 393–434. [Google Scholar] [CrossRef]
- Kelebek, H.; Kesen, S.; Sonmezdag, A.S.; Cetiner, B.; Kola, O.; Selli, S. Characterization of the key aroma compounds in tomato pastes as affected by hot and cold break process. J. Food Meas. Charact. 2018, 12, 2461–2474. [Google Scholar] [CrossRef]
- Goulet, C.; Kamiyoshihara, Y.; Lam, N.B.; Richard, T.; Taylor, M.G.; Tieman, D.M.; Klee, H.J. Divergence in the enzymatic activities of a tomato and Solanum pennellii alcohol acyltransferase impacts fruit volatile ester composition. Mol. Plant 2015, 8, 153–162. [Google Scholar] [CrossRef]
- Smit, B.A.; Engels, W.J.; Smit, G. Branched chain aldehydes: Production and breakdown pathways and relevance for flavour in foods. Appl. Microbiol. Biotechnol. 2009, 81, 987–999. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Handoko, D.D.; Pather, L.; Methven, L.; Elmore, J.S. Evaluation of 2-acetyl-1-pyrroline in foods, with an emphasis on rice flavor. Food Chem. 2017, 232, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Reineccius, G. Choosing the correct analytical technique in aroma analysis, University of Minnesota, USA. Flavor Food 2006, 2006, 81–97. [Google Scholar] [CrossRef]
- Matich, A.; Rowan, D. Pathway analysis of branched-chain ester biosynthesis in apple using deuterium labeling and enantioselective gas chromatography−mass spectrometry. J. Agric. Food Chem. 2007, 55, 2727–2735. [Google Scholar] [CrossRef]
- Cheetangdee, V.; Chaiseri, S. Free amino acid and reducing sugar composition of pandan (Pandanus amaryllifolius) leaves. Agric. Nat. Resour. 2006, 40 (Suppl.), 67–74. [Google Scholar]
- Wong, K.H.; Aziz, A.; Mohamed, S. Sensory aroma from Maillard reaction of individual and combinations of amino acids with glucose in acidic conditions. Int. J. Food Sci. Technol. 2006, 43, 1512–1519. [Google Scholar] [CrossRef]
- Adams, A.; De Kimpe, N. Formation of pyrazines and 2-acetyl-1-pyrroline by Bacillus cereus. Food Chem. 2007, 101, 1230–1238. [Google Scholar] [CrossRef]
- Romanczyk, L.J.; McClelland, C.A.; Post, L.S.; Aitken, W.M. Formation of 2-acetyl-1-pyrroline by several Bacillus cereus strains isolated from cocoa fermentation boxes. J. Agric. Food Chem. 1995, 43, 469–475. [Google Scholar] [CrossRef]
- Rungsardthong, V.; Noomhoom, A. Production of 2-acetyl-1-pyrroline by microbial cultures. Flavour Fragr. J. 2005, 20, 710–714. [Google Scholar] [CrossRef]
- Song, H.; Liu, J. GC-O-MS technique and its applications in food flavor analysis. Food Res. Int. 2018, 114, 187–198. [Google Scholar] [CrossRef]
No. | Compound | RI 1 | RT [s] | RI’ 1 | Dt [a.u.] | Perception Threshold (mg/kg) 2 | Relative Concentration (µg/kg) 3 | ||
---|---|---|---|---|---|---|---|---|---|
T1-1 | T1-2 | T1-3 | |||||||
1 | 2-acetyl-1-pyrroline M 4 | 932 | 688.80 | 923 | 1.12 | 0.00003 | 11.19 ± 0.21 b | 13.32 ± 0.18 a | 12.84 ± 0.09 a |
2 | 2-acetyl-1-pyrroline D 4 | 923 | 675.90 | 923 | 1.47 | 0.00003 | 10.35 ± 0.61 b | 18.64 ± 0.36 a | 19.56 ± 0.30 a |
3 | Geraniol M | 1220 | 1230.48 | 1221 | 1.23 | 0.049 | 1.05 ± 0.06 a | 0.77 ± 0.02 b | 0.80 ± 0.04 a |
4 | Geraniol D | 1220 | 1228.56 | 1221 | 1.65 | 0.049 | 1.12 ± 0.05 a | 1.10 ± 0.04 a | 1.05 ± 0.03 a |
5 | Estragole | 1180 | 1136.37 | 1181 | 1.23 | na | 2.15 ± 0.06 a | 0.81 ± 0.06 b | 0.74 ± 0.01 c |
6 | Borneol M | 1151 | 1074.91 | 1150 | 1.22 | 0.052 | 0.87 ± 0.04 a | 0.62 ± 0.05 b | 0.53 ± 0.03 b |
7 | Borneol D | 1148 | 1067.23 | 1150 | 1.88 | 0.052 | 0.38 ± 0.02 a | 0.21 ± 0.01 b | 0.22 ± 0.01 b |
8 | Benzaldehyde D | 967 | 743.68 | 964 | 1.46 | 0.085 | 2.52 ± 0.84 a | 0.87 ± 0.02 b | 1.04 ± 0.01 b |
9 | Benzaldehyde M | 968 | 747.07 | 964 | 1.15 | 0.085 | 3.95 ± 0.59 a | 3.59 ± 0.06 a | 4.48 ± 0.04 a |
10 | 1-Octen-3-ol M | 986 | 775.80 | 985 | 1.15 | 0.005 | 2.27 ± 0.08 a | 1.77 ± 0.02 b | 2.20 ± 0.03 a |
11 | 1-Octen-3-ol D | 986 | 775.80 | 985 | 1.59 | 0.005 | 0.39 ± 0.01 a | 0.28 ± 0.01 b | 0.28 ± 0.01 b |
12 | 2-Hexenal M | 854 | 557.36 | 857 | 1.18 | 0.03 | 5.94 ± 0.09 a | 1.95 ± 0.10 b | 1.37 ± 0.03 c |
13 | 2-Hexenal D | 858 | 564.71 | 857 | 1.51 | 0.03 | 10.98 ± 0.10 a | 0.97 ± 0.027 b | 0.69 ± 0.0056 c |
14 | Hexanal M | 802 | 471.19 | 802 | 1.28 | 0.0014 | 7.70 ± 0.03 b | 7.91 ± 0.02 a | 7.13 ± 0.04 c |
15 | Hexanal D | 802 | 470.42 | 802 | 1.56 | 0.0014 | 15.84 ± 0.36 a | 7.35 ± 0.16 b | 4.86 ± 0.15 c |
16 | 3-Methylbutanol D | 747 | 378.79 | 744 | 1.50 | 0.125 | 8.67 ± 1.57 a | 0.64 ± 0.04 b | 0.71 ± 0.03 b |
17 | 3-Methylbutanol M | 744 | 374.89 | 744 | 1.24 | 0.125 | 9.61 ± 0.25 a | 1.33 ± 0.01 b | 0.79 ± 0.01 c |
18 | Pentanol D | 773 | 423.63 | 771 | 1.52 | 0.153 | 3.18 ± 0.07 a | 0.47 ± 0.01 b | 0.37 ± 0.01 b |
19 | Pentanol M | 768 | 413.88 | 771 | 1.25 | 0.153 | 4.77 ± 0.19 a | 2.07 ± 0.04 b | 1.32 ± 0.01 c |
20 | 3-Hydroxy-2-Butanone M | 726 | 347.59 | 720 | 1.08 | 0.014 | 5.66 ± 0.16 a | 2.50 ± 0.07 c | 2.93 ± 0.02 b |
21 | 3-Hydroxy-2-Butanone D | 723 | 342.72 | 720 | 1.32 | 0.014 | 28.41 ± 1.03 a | 3.59 ± 0.07 b | 3.00 ± 0.08 b |
22 | 1-Penten-3-ol D | 710 | 323.97 | 686 | 1.35 | 0.05 | 14.67 ± 0.88 a | 5.05 ± 0.06 b | 3.53 ± 0.07 c |
23 | 1-Penten-3-ol M | 690 | 297.27 | 686 | 0.93 | 0.05 | 5.61 ± 0.26 a | 2.57 ± 0.04 c | 2.71 ± 0.03 c |
24 | (Z)-2-Pentenol | 779 | 434.12 | 783 | 0.94 | 0.72 | 5.10 ± 0.15 a | 1.99 ± 0.04 b | 1.45 ± 0.06 c |
25 | 2-Methylpropanol D | 635 | 249.57 | 647 | 1.37 | 0.033 | 3.18 ± 0.71 b | 5.56 ± 0.13 a | 4.64 ± 0.09 a |
26 | 2-Methylpropanol M | 647 | 259.18 | 647 | 1.17 | 0.033 | 7.20 ± 0.62 a | 2.10 ± 0.05 b | 2.06 ± 0.07 b |
27 | Ethyl Acetate D | 628 | 244.44 | 628 | 1.33 | 3.42 | 5.80 ± 0.32 b | 13.69 ± 0.22 a | 12.94 ± 0.43 a |
28 | Ethyl Acetate M | 635 | 250.21 | 628 | 1.09 | 3.42 | 1.75 ± 0.52 b | 2.82 ± 0.01 a | 2.89 ± 0.03 a |
29 | 2-Methyl-2-propanol | 541 | 185.48 | 530 | 1.14 | 14 | 12.71 ± 0.79 c | 27.31 ± 0.47 b | 30.47 ± 0.23 a |
30 | 2-Acetylpyrrole D | 1040 | 865.30 | 1037 | 1.49 | 2 | 0.26 ± 0.01 a | 0.27 ± 0.02 a | 0.27 ± 0.02 a |
31 | 2-Acetylpyrrole M | 1041 | 866.94 | 1037 | 1.11 | 2 | 0.72 ± 0.01 a | 0.65 ± 0.03 ab | 0.60 ± 0.01 b |
32 | Hexanol D | 872 | 591.07 | 872 | 1.64 | 0.034 | 4.78 ± 0.18 a | 0.48 ± 0.02 b | 0.42 ± 0.01 b |
33 | Hexanol M | 872 | 591.07 | 872 | 1.32 | 0.034 | 7.11 ± 0.09 a | 1.37 ± 0.05 b | 0.43 ± 0.01 c |
34 | 2-Methyl-3-furanthiol | 898 | 638.68 | 890 | 1.14 | 0.007 | 3.16 ± 0.16 a | 0.90 ± 0.03 b | 0.76 ± 0.01 b |
35 | 2-Ethylfuran | 689 | 296.26 | 689 | 1.30 | 8 | 7.93 ± 0.22 b | 8.36 ± 0.17 b | 10.22 ± 0.37 a |
36 | Butanal | 602 | 224.76 | 601 | 1.28 | 0.0013 | 3.64 ± 0.06 c | 10.20 ± 0.19 a | 8.71 ± 0.17 b |
37 | Propanol | 554 | 193.12 | 554 | 1.11 | 0.24 | 19.58 ± 0.81 c | 26.37 ± 0.50 b | 28.33 ± 0.21 a |
38 | Ethanol | 513 | 169.76 | 489 | 1.04 | 0.62 | 30.45 ± 1.45 a | 31.23 ± 0.22 a | 27.05 ± 0.11 b |
39 | (E)-2-Pentenal M | 757 | 395.21 | 757 | 1.10 | 1.4 | 2.74 ± 0.34 a | 1.15 ± 0.053 b | 1.57 ± 0.03 b |
40 | (E)-2-Pentenal D | 765 | 409.22 | 757 | 1.36 | 1.4 | 1.62 ± 0.35 a | 0.26 ± 0.01 b | 0.35 ± 0.01 b |
41 | Heptanal M | 902 | 645.18 | 901 | 1.35 | 0.26 | 1.95 ± 0.07 a | 1.20 ± 0.02 b | 1.10 ± 0.03 b |
42 | Heptanal D | 902 | 644.16 | 901 | 1.68 | 0.26 | 0.68 ± 0.04 a | 0.29 ± 0.01 b | 0.25 ± 0.01 b |
43 | Nonanal | 1075 | 926.58 | 1085 | 1.46 | 0.0031 | 10.74 ± 0.03 a | 10.4 ± 0.01 a | 10.44 ± 0.01 a |
44 | 1-Phenylethanone M | 1057 | 894.48 | 1058 | 1.16 | 0.0012 | 1.02 ± 0.05 a | 0.70 ± 0.03 b | 0.66 ± 0.01 b |
45 | 1-Phenylethanone D | 1056 | 891.23 | 1058 | 1.56 | 0.0012 | 0.18 ± 0.01 a | 0.18 ± 0.01 b | 0.19 ± 0.01 b |
46 | α-Ionone M | 1350 | 1583.50 | 1418 | 1.53 | 0.0016 | 2.19 ± 0.13 b | 1.32 ± 0.02 b | 1.23 ± 0.04 a |
47 | α-Ionone D | 1348 | 1579.10 | 1418 | 2.20 | 0.0016 | 0.57 ± 0.03 a | 0.63 ± 0.01 b | 0.54 ± 0.05 b |
48 | 2(5H)-Furanone, 3-hydroxy-4,5-dimethyl-M | 1098 | 968.68 | 1099 | 1.22 | 0.0009 | 1.28 ± 0.01 b | 1.41 ± 0.04 a | 1.40 ± 0.01 b |
49 | 2(5H)-Furanone, 3-hydroxy-4,5-dimethyl D | 1100 | 973.21 | 1099 | 1.60 | 0.0009 | 0.80 ± 0.01 b | 0.89 ± 0.04 a | 0.85 ± 0.01 a |
50 | Phenylacetaldehyde M | 1052 | 884.86 | 1050 | 1.26 | 0.00072 | 0.28 ± 0.06 c | 0.80 ± 0.04 a | 0.53 ± 0.01 b |
51 | Phenylacetaldehyde D | 1051 | 882.63 | 1050 | 1.54 | 0.00072 | 0.05 ± 0.01 c | 0.16 ± 0.01 a | 0.09 ± 0.01 b |
52 | α-Phellandrene M | 1007 | 810.57 | 1004 | 1.22 | 3.5 | 0.87 ± 0.04 a | 0.25 ± 0.01 b | 0.23 ± 0.01 b |
53 | α-Phellandrene D | 1004 | 805.29 | 1004 | 1.68 | 3.5 | 0.20 ± 0.01 a | 0.22 ± 0.01 a | 0.20 ± 0.02 a |
54 | Hexanoic acid | 992 | 785.77 | 997 | 1.31 | 0.0031 | 0.42 ± 0.11 a | 0.22 ± 0.01 b | 0.17 ± 0.01 b |
55 | 2-Phenylethanol M | 1121 | 1013.94 | 1119 | 1.29 | 0.0017 | 1.39 ± 0.59 a | 0.16 ± 0.01 b | 0.14 ± 0.01 b |
56 | 2-Phenylethanol D | 1121 | 1012.92 | 1119 | 1.51 | 0.0017 | 0.27 ± 0.12 a | 0.10 ± 0.01 a | 0.09 ± 0.01 a |
57 | Benzene acetic acid methyl ester D | 1145 | 1060.53 | 1176 | 1.65 | 50 | 0.27 ± 0.01 a | 0.31 ± 0.01 a | 0.31 ± 0.01 a |
58 | Benzene acetic acid methyl ester M | 1147 | 1065.59 | 1176 | 1.26 | 50 | 0.54 ± 0.01 a | 0.25 ± 0.01 a | 0.30 ± 0.01 a |
No. | Compound 1 | CAS | Formula | MW | RI 2 | RT [min] | RI’ 2 | Relative Concentration (mg/kg) 3 | FEMA 4 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
T1-1 | T1-2 | T1-3 | |||||||||
1 | Isovaleraldehyde | 590-86-3 | C5H10O | 96.13 | 688 | 2.05 | 649 | - a | 0.012 ± 0.0071 b | - a | 2692 |
2 | 2-Methylbutyraldehyde | 96-17-3 | C5H10O | 86.13 | 691 | 2.13 | 659 | - a | 0.074 ± 0.012 b | - a | 2691 |
3 | 3-Methyl-3-buten-2-one | 814-78-8 | C5H8O | 84.12 | 693 | 2.19 | 653 | - a | - a | 0.14 ± 0.013 b | na |
4 | 1-Penten-3-ol | 616-25-1 | C5H10O | 86.13 | 697 | 2.32 | 673 | 0.12 ± 0.031 b | - a | - a | 3584 |
5 | 2-Ethylfuran | 3208-16-0 | C6H8O | 96.13 | 703 | 2.48 | 702 | 0.077 ± 0.021 b | - a | 0.049 ± 0.0056 b | 3673 |
6 | Trans-2-Pentenal | 1576-87-0 | C5H8O | 84.12 | 738 | 3.49 | 754 | 0.043 ± 0.0087 c | - a | 0.12 ± 0.021 b | 3218 |
7 | Cis-2-Pentenol | 1576-95-0 | C5H10O | 86.13 | 750 | 3.86 | 769 | 0.18 ± 0.035 b | - a | - a | 4305 |
8 | Hexanal | 66-25-1 | C6H12O | 100.16 | 779 | 4.69 | 799 | 0.10 ± 0.0051 a | 0.047 ± 0.012 b | 0.059 ± 0.011 b | 2557 |
9 | Hex-2-enal | 505-57-7 | C6H10O | 98.14 | 835 | 6.34 | 848 | 0.19 ± 0.045 b | - a | - a | 2560 |
10 | Trans-2-Hexenal | 6728-26-3 | C6H10O | 98.14 | 835 | 6.34 | 854 | 0.19 ± 0.045 b | - a | 0.036 ± 0.0024 c | 2560 |
11 | M-Xylene | 108-38-3 | C8H10 | 106.17 | 851 | 6.77 | 861 | - a | 0.076 ± 0.019 b | 0.045 ± 0.012 b | na |
12 | 1-Hexanol | 111-27-3 | C6H14O | 102.17 | 854 | 6.90 | 867 | 0.11 ± 0.0088 b | - a | - a | 2567 |
13 | Styrene | 100-42-5 | C8H8 | 104.15 | 874 | 7.47 | 890 | 0.048 ± 0.012 c | 0.13 ± 0.024 b | - a | na |
14 | Butyl acrylate | 141-32-2 | C7H12O2 | 128.17 | 883 | 7.73 | 902 | 0.031 ± 0.0062 b | - a | - a | na |
15 | (Z)-4-Heptenal | 6728-31-0 | C7H12O | 112.17 | 886 | 7.81 | 897 | 0.069 ± 0.007 b | - a | - a | 3289 |
16 | Ethyl valerate | 539-82-2 | C7H14O2 | 130.18 | 888 | 7.86 | 898 | - a | 0.059 ± 0.011 b | - a | 2462 |
17 | 3-(Methylthio)propionaldehyde | 3268-49-3 | C4H8OS | 104.17 | 894 | 8.05 | 911 | - a | 0.064 ± 0.012 b | 0.072 ± 0.009 b | 2747 |
18 | Benzaldehyde | 100-52-7 | C7H6O | 106.12 | 952 | 9.75 | 961 | 0.65 ± 0.056 b | - a | 0.55 ± 0.080 b | 2127 |
19 | 3-Methyl-2(5H)-furanone | 22122-36-7 | C5H6O2 | 98.1 | 967 | 10.16 | 982 | 0.11 ± 0.0072 b | - a | - a | na |
20 | 6-Methyl-5-hepten-2-one | 110-93-0 | C8H14O | 126.2 | 979 | 10.51 | 988 | - a | 0.12 ± 0.019 b | - a | 2707 |
21 | Myrcene | 123-35-3 | C10H16 | 136.23 | 983 | 10.63 | 992 | - a | 0.084 ± 0.0054 b | - a | 2762 |
22 | 2-Octanone | 111-13-7 | C8H16O | 128.21 | 985 | 10.72 | 992 | 0.65 ± 0.033 b | 0.13 ± 0.017 c | - a | 2802 |
23 | Ethyl Hexanoate | 123-66-0 | C8H16O2 | 144.21 | 994 | 10.95 | 996 | - a | 0.13 ± 0.020 b | - a | 2439 |
24 | (+)-Dipentene | 5989-27-5 | C10H16 | 136.23 | 1024 | 11.82 | 1002 | 0.18 ± 0.049 c | 0.70 ± 0.093 b | - a | 2633 |
25 | Benzyl alcohol | 100-51-6 | C7H8O | 108.14 | 1032 | 12.07 | 1033 | - a | 0.096 ± 0.013 b | 0.060 ± 0.016 b | 2137 |
26 | Phenylacetaldehyde | 122-78-1 | C8H8O | 120.15 | 1040 | 12.32 | 1043 | 0.080 ± 0.0043 c | 0.10 ± 0.0078 b | 0.10 ± 0.0052 b | 2874 |
27 | Ocimene | 13877-91-3 | C10H16 | 136.23 | 1041 | 12.33 | 1044 | - a | 0.14 ± 0.012 b | - a | 3539 |
28 | Isophorone | 78-59-1 | C9H14O | 138.21 | 1055 | 12.73 | 1124 | - a | - a | 0.094 ± 0.0032 b | 3553 |
29 | (E)-2-Octenal | 2548-87-0 | C8H14O | 126.20 | 1056 | 12.74 | 1057 | 0.24 ± 0.041 b | - a | - a | 3215 |
30 | 2-Acetyl pyrrole | 1072-83-9 | C6H7NO | 109.13 | 1060 | 12.87 | 1063 | - a | - a | 0.11 ± 0.0009 b | 3202 |
31 | Acetophenone | 98-86-2 | C8H8O | 120.15 | 1061 | 12.88 | 1065 | 0.052 ± 0.007 c | 0.27 ± 0.052 b | 0.086 ± 0.006 c | 2009 |
32 | (3E,5E)-octa-3,5-dien-2-one | 38284-27-4 | C8H12O | 124.18 | 1065 | 13.02 | 1081 | - a | 0.088 ± 0.014 c | 0.14 ± 0.021 b | na |
33 | 1-Octanol | 111-87-5 | C8H18O | 130.23 | 1069 | 13.13 | 1068 | 0.31 ± 0.084 b | - a | - a | 2800 |
34 | Terpinolene | 586-62-9 | C10H16 | 136.23 | 1078 | 13.39 | 1083 | - a | 0.068 ± 0.015 b | - a | 3046 |
35 | α-Naginatene | 15186-51-3 | C10H14O | 150.22 | 1085 | 13.60 | 1093 | - a | 0.031 ± 0.0064 b | - a | 4174 |
36 | Methyl benzoate | 93-58-3 | C8H8O2 | 136.15 | 1088 | 13.68 | 1093 | - a | 0.092 ± 0.023 b | - a | 2683 |
37 | Ethyl heptanoate | 106-30-9 | C9H18O2 | 158.24 | 1091 | 13.79 | 1095 | - a | 0.067 ± 0.010 b | - a | 2437 |
38 | Nonanal | 124-19-6 | C9H18O | 142.24 | 1099 | 14.01 | 1104 | 0.40 ± 0.10 b | 0.23 ± 0.049 b | 0.41 ± 0.13 b | 2782 |
39 | Phenethyl alcohol | 60-12-8 | C8H10O | 122.16 | 1115 | 14.22 | 1121 | 0.27 ± 0.03 b | - a | - a | 2858 |
40 | 1,2,4,5-Tetramethylbenzene | 95-93-2 | C10H14 | 134.22 | 1130 | 14.33 | 1131 | 0.082 ± 0.014 c | 0.15 ± 0.0094 b | - a | na |
41 | (2E,6E)-nona-2,6-dienal | 17587-33-6 | C9H14O | 138.21 | 1145 | 15.34 | 1153 | 0.23 ± 0.027 b | - a | - a | 3766 |
42 | Ethyl benzoate | 93-89-0 | C9H10O2 | 150.17 | 1165 | 15.79 | 1170 | - a | 0.043 ± 0.0061 b | - a | 2422 |
43 | DL-Menthol | 1490-04-6 | C10H20O | 156.27 | 1170 | 16.07 | 1173 | 0.49 ± 0.19 b | - a | - a | 2665 |
44 | Naphthalene | 91-20-3 | C10H8 | 128.17 | 1173 | 16.18 | 1178 | - a | 0.20 ± 0.063 b | - a | na |
45 | 4′-Methylacetophenone | 122-00-9 | C9H10O | 134.18 | 1175 | 16.22 | 1183 | - a | 0.050 ± 0.013 b | - a | 2677 |
46 | Ethyl (Z)-oct-4-enoate | 34495-71-1 | C10H18O2 | 170.25 | 1178 | 16.30 | 1187 | - a | 0.073 ± 0.0086 b | - a | 3344 |
47 | Ethyl caprylate | 106-32-1 | C10H20O2 | 172.26 | 1187 | 16.57 | 1193 | 0.067 ± 0.011 c | 0.68 ± 0.15 b | 0.83 ± 0.15 b | 2449 |
48 | Decyl aldehyde | 112-31-2 | C10H20O | 156.27 | 1197 | 16.87 | 1200 | 0.14 ± 0.051 b | 0.050 ± 0.015 b | - a | 2362 |
49 | β-Cyclocitral | 432-25-7 | C10H16O | 152.23 | 1210 | 17.23 | 1214 | 0.24 ± 0.019 b | 0.082 ± 0.007 c | 0.099 ± 0.014 c | 3639 |
50 | 2,6,6-Trimethyl-1-Cyclohexene-1-acetaldehyde | 472-66-2 | C11H18O | 166.26 | 1246 | 18.28 | 1251 | 0.037 ± 0.0099 b | - a | - a | 3474 |
51 | Citral | 5392-40-5 | C10H16O | 152.23 | 1258 | 18.65 | 1260 | - a | 0.071 ± 0.0089 b | - a | 2303 |
52 | Ethyl 2-hydroxybenzoate | 118-61-6 | C9H10O3 | 166.17 | 1259 | 18.66 | 1270 | 0.074 ± 0.007 b | - a | - a | 2458 |
53 | 1-Phenylethyl propionate | 120-45-6 | C11H14O2 | 178.23 | 1269 | 18.95 | 1275 | - a | 0.041 ± 0.0068 b | - a | 2689 |
54 | Nonanoic acid | 112-05-0 | C9H18O2 | 158.24 | 1272 | 19.05 | 1280 | 0.43 ± 0.024 b | - a | - a | 2784 |
55 | Ethyl nonanoate | 123-29-5 | C11H22O2 | 186.29 | 1287 | 19.50 | 1294 | 0.061 ± 0.0076 c | 0.20 ± 0.045 b | 0.073 ± 0.017 c | 2447 |
56 | Gamma-Nonanolactone | 104-61-0 | C9H16O2 | 156.22 | 1353 | 21.41 | 1360 | 0.027 ± 0.0072 b | - a | - a | 2781 |
57 | Alpha-Copaene | 3856-25-5 | C15H24 | 204.35 | 1369 | 21.88 | 1376 | 0.052 ± 0.0069 b | - a | - a | 2902 |
58 | Ethyl caprate | 110-38-3 | C12H24O2 | 200.32 | 1391 | 22.50 | 1397 | 0.10 ± 0.012 b | 0.85 ± 0.29 b | 0.68 ± 0.25 b | 2432 |
59 | α-Ionone | 127-41-3 | C13H20O | 192.30 | 1418 | 23.30 | 1427 | 0.50 ± 0.028 a | 0.090 ± 0.0093 c | 0.097 ± 0.0055 c | 2594 |
60 | 6,10-Dimethyl-5,9-undecadien-2-one | 689-67-8 | C13H22O | 194.31 | 1444 | 24.07 | 1451 | 0.16 ± 0.032 b | 0.15 ± 0.0028 b | 0.076 ± 0.0099 c | 3542 |
61 | 3-Buten-2-one | 14901-07-6 | C13H20O | 192.30 | 1475 | 24.97 | 1488 | - a | 0.11 ± 0.005 c | - a | 2594 |
62 | Ethyl Undecanoate | 627-90-7 | C13H26O2 | 214.34 | 1492 | 25.46 | 1496 | - a | 0.30 ± 0.12 b | 0.033 ± 0.0056 b | 3492 |
63 | Butylated Hydroxytoluene | 128-37-0 | C15H24O | 220.35 | 1500 | 25.67 | 1509 | - a | 0.27 ± 0.0087 b | - a | 2184 |
64 | β-bisabolene | 495-61-4 | C15H24 | 204.35 | 1505 | 25.84 | 1511 | - a | - a | 0.033 ± 0.011 b | na |
65 | Delta-Cadinene | 483-76-1 | C15H24 | 204.35 | 1515 | 26.12 | 1519 | 0.070 ± 0.0098 b | - a | - a | na |
66 | Dihydroactinidiolide | 17092-92-1 | C11H16O2 | 180.24 | 1525 | 26.40 | 1525 | 0.28 ± 0.097 a | 0.058 ± 0.0067 b | 0.042 ± 0.002 b | 4020 |
67 | Ethyl laurate | 106-33-2 | C14H28O2 | 228.37 | 1593 | 28.40 | 1597 | 0.41 ± 0.12 b | 0.41 ± 0.16 b | 0.21 ± 0.061 b | 2441 |
68 | Pentadecanal | 2765-11-9 | C15H30O | 226.40 | 1712 | 30.95 | 1716 | 0.039 ± 0.0081 b | - a | - a | na |
69 | Ethyl myristate | 124-06-1 | C16H32O2 | 256.42 | 1782 | 33.91 | 1793 | 0.019 ± 0.0035 c | 0.10 ± 0.020 b | 0.046 ± 0.0052 c | 2445 |
70 | Ethyl pentadecanoate | 41114-00-5 | C17H34O2 | 270.45 | 1871 | 36.48 | 1874 | 0.026 ± 0.0046 c | - a | 0.053 ± 0.0051 b | na |
71 | Palmitic acid ethyl ester | 628-97-7 | C18H36O2 | 284.48 | 1966 | 38.96 | 1978 | 0.16 ± 0.017 b | 0.18 ± 0.063 ab | 0.2513 ± 0.029 a | 2451 |
72 | Ethyl Linoleate | 544-35-4 | C20H36O2 | 308.50 | 2088 | 42.79 | 2144 | 0.028 ± 0.0073 b | - a | 0.054 ± 0.013 b | na |
No. | Compounds | Identification 1 | FD 2 | OAV | Odor Series 3 | ||||
---|---|---|---|---|---|---|---|---|---|
T1-1 | T1-2 | T1-3 | T1-1 | T1-2 | T1-3 | ||||
1 | Isovaleraldehyde | MS, RI, O, S | - | 256 | - | - a | 123 ± 71 b | - a | 6, 12 |
2 | 2-Methylbutyraldehyde | MS, RI, O, S | - | 32 | - | - a | 3.73 ± 0.61 b | - a | 1, 13 |
3 | Hexanal | MS, IMS, RI, O, S | 256 | 128 | 256 | 73.71 ± 3.64 a | 33.86 ± 8.29 b | 42.07 ± 8.21 b | 2, 4, 6 |
4 | Hex-2-enal | MS, IMS, RI, O, S | 8 | - | - | 6.28 ± 1.49 b | - a | - a | 1, 8 |
5 | Trans-2-Hexenal | MS, RI, O, S | 64 | - | 8 | 6.28 ± 1.49 b | - a | 1.22 ± 0.08 c | 6, 8 |
6 | (Z)-4-Heptenal | MS, RI, O, S | 64 | - | - | 20.32 ± 2.06 b | - a | - a | 2, 8 |
7 | 3-(Methylthio)propionaldehyde | MS, RI, O, S | - | 512 | 512 | - a | 1012.7 ± 192.06 b | 1136.51 ± 142.86 b | 7, 11 |
8 | Benzaldehyde | MS, IMS, RI, O, S | 8 | - | 8 | 6.49 ± 0.56 b | - a | 5.52 ± 0.8 b | 1,6, 7, 12, 14 |
9 | Phenylacetaldehyde | MS, RI, O, S | 128 | 128 | 256 | 66.25 ± 3.58 c | 86.92 ± 6.5 b | 85.25 ± 4.33 b | 5, 6, 10, 12 |
10 | (E)-2-Octenal | MS, RI, O, S | 16 | - | - | 19.67 ± 3.39 b | - a | - a | 2, 4, 6, 8, 10 |
11 | 1-Nonanal | MS, IMS, RI, O, S | 256 | 256 | 512 | 198.1 ± 50.6 b | 114.85 ± 24.5 b | 203.25 ± 67.55 b | 2, 5, 6, 8 |
12 | (2E,6E)-nona-2,6-dienal | MS, RI, O, S | 128 | - | - | 167.71 ± 19.57 b | - a | - a | 6, 8 |
13 | Decyl aldehyde | MS, RI, O, S | 64 | 8 | - | 52.12 ± 19.73 b | 19.35 ± 5.81 b | - a | 2, 5, 6 |
14 | β-Cyclocitral | MS, RI, O, S | 32 | 16 | 8 | 12.63 ± 0.96 b | 4.27 ± 0.36 c | 5.14 ± 0.72 c | 5, 9, 12 |
15 | Citral | MS, RI, O, S | - | 8 | - | - a | 1.19 ± 0.15 b | - a | 6 |
16 | Butanal | IMS, RI, O, S | 1 | 4 | 4 | 2.80 ± 0.04 c | 7.84 ± 0.15 a | 6.70 ± 0.13 b | 6, 8, 10 |
17 | Alcohols 1-Penten-3-ol | MS, IMS, RI, O, S | 16 | - | - | 12.38 ± 3.12 b | - a | - a | 2, 4 |
18 | 1-Hexanol | MS, IMS, RI, O, S | 32 | - | - | 3.26 ± 0.26 b | - a | - a | 5, 9, 12 |
19 | 1-Octanol | MS, RI, O, S | 8 | - | - | 14.28 ± 3.82 b | - a | - a | 2, 3, 5, 7, 15 |
20 | Phenethyl alcohol | MS, IMS, RI, O, S | 64 | - | - | 22.34 ± 2.50 b | - a | - a | 5, 6, 12 |
- | |||||||||
21 | Esters Butyl acrylate | MS, RI, O, S | 128 | - | - | 56.55 ± 11.27 b | - a | - a | 6 |
22 | Ethyl valerate | MS, RI, O, S | - | 256 | - | - a | 101.72 ± 19.83 b | - a | 6, 9 |
23 | Ethyl Hexanoate | MS, RI, O, S | - | 64 | - | - a | 42.13 ± 6.77 b | - a | 6, 12 |
24 | Methyl benzoate | MS, RI, O, S | - | 128 | - | - a | 61.53 ± 15.53 b | - a | 5, 6, 8, 9 |
25 | Ethyl caprylate | MS, RI, O, S | 4 | 8 | 64 | 3.06 ± 0.48 c | 30.72 ± 6.67 b | 37.83 ± 6.74 b | 5, 6 |
26 | Ethyl 2-hydroxybenzoate | MS, RI, O, S | 32 | - | - | 14.84 ± 1.4 b | - a | - a | 8, 12 |
27 | Ethyl nonanoate | MS, RI, O, S | 32 | 64 | 8 | 6.78 ± 0.84 c | 21.92 ± 4.99 b | 8.11 ± 1.84 c | 5, 6 |
28 | Gamma-Nonanolactone | MS, RI, O, S | 4 | - | - | 5.91 ± 1.6 b | - a | - a | 6, 12 |
29 | Ethyl caprate | MS, RI, O, S | 128 | 256 | 256 | 87.25 ± 10.25 b | 712 ± 245.75 b | 565.25 ± 205.83 b | 1, 6 |
30 | Ethyl Undecanoate | MS, RI, O, S | - | 512 | 128 | - a | 988.33 ± 397.33 b | 111.67 ± 18.67 b | 1, 2, 6, 16 |
31 | Ethyl laurate | MS, RI, O, S | 128 | 128 | 64 | 205.15 ± 60.7 b | 205.55 ± 78.35 b | 106.85 ± 30.45 b | 5, 6, 8, 12, 15 |
32 | Ketones 2-Octanone | MS, RI, O, S | 8 | 4 | - | 2.81 ± 0.14 b | 0.58 ± 0.08 c | - a | 2, 5, 11 |
33 | Isophorone | MS, RI, O, S | - | - | 32 | - a | - a | 55.18 ± 1.88 b | 8, 9 |
34 | Acetophenone | MS, RI, O, S | 8 | 32 | 8 | 5.18 ± 0.7 c | 27.44 ± 5.2 b | 8.64 ± 0.6 c | 1, 5 |
35 | 4′-Methylacetophenone | MS, RI, O, S | - | 64 | - | - a | 24.85 ± 6.55 b | - a | 1, 5, 12 |
36 | α-Ionone | MS, IMS, RI, O, S | 64 | 32 | 32 | 124.53 ± 6.98 a | 22.6 ± 2.33 c | 24.2 ± 1.38 c | 3, 5 |
37 | 3-Buten-2-one | MS, RI, O, S | - | 512 | - | - a | 962.5 ± 41.67 c | - a | 3, 5 |
38 | 3-Hydroxy-2-Butanone | IMS, RI, O, S | 4 | 1 | 1 | 2.43 ± 0.08 a | 0.44 ± 0.01 b | 0.42 ± 0.01 b | 2, 8 |
39 | Alkenes (+)-Dipentene | MS, RI, O, S | 16 | 32 | - | 4.11 ± 1.09 c | 15.61 ± 2.08 b | - a | 6, 8 |
40 | Terpinolene | MS, RI, O, S | 4 | - | - a | 1.65 ± 0.37 b | - a | 3, 6 | |
41 | Aromatic compounds 1,2,4,5-Tetramethylbenzene | MS, RI, O, S | 4 | 4 | - | 0.94 ± 0.16 c | 1.72 ± 0.11 b | - a | 12, 16 |
42 | Acids Nonanoic acid | MS, RI, O, S | 512 | - | - | 269.31 ± 14.75 b | - a | - a | 2, 8, 16 |
43 | Nitrogenous compounds 2-Acetyl-1-pyrroline | IMS, RI, O, S | 256 | 512 | 512 | 718.01 ± 27.28 b | 1065.24 ± 17.93 a | 1080.06 ± 13.22 a | 7, 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, K.; Chen, C.; Liu, Y.; Li, S.; Luo, Y.; Chen, X.; Wu, Z. Comprehensive Characterization of Aroma Profile of “Glutinous Rice” Flavor in Pandanus amaryllifolius Roxb. Using HS–SPME–GC–O–MS and HS-GC-IMS Technology Coupled with OAV. Foods 2025, 14, 935. https://doi.org/10.3390/foods14060935
Tang K, Chen C, Liu Y, Li S, Luo Y, Chen X, Wu Z. Comprehensive Characterization of Aroma Profile of “Glutinous Rice” Flavor in Pandanus amaryllifolius Roxb. Using HS–SPME–GC–O–MS and HS-GC-IMS Technology Coupled with OAV. Foods. 2025; 14(6):935. https://doi.org/10.3390/foods14060935
Chicago/Turabian StyleTang, Kun, Cong Chen, Yutong Liu, Suxuan Li, Yiye Luo, Xiaoyu Chen, and Zhiyong Wu. 2025. "Comprehensive Characterization of Aroma Profile of “Glutinous Rice” Flavor in Pandanus amaryllifolius Roxb. Using HS–SPME–GC–O–MS and HS-GC-IMS Technology Coupled with OAV" Foods 14, no. 6: 935. https://doi.org/10.3390/foods14060935
APA StyleTang, K., Chen, C., Liu, Y., Li, S., Luo, Y., Chen, X., & Wu, Z. (2025). Comprehensive Characterization of Aroma Profile of “Glutinous Rice” Flavor in Pandanus amaryllifolius Roxb. Using HS–SPME–GC–O–MS and HS-GC-IMS Technology Coupled with OAV. Foods, 14(6), 935. https://doi.org/10.3390/foods14060935