Peanuts (Arachis hypogaea L.) and Mycotoxins: Analytical Approaches, Prevalence, and Innovative Detoxification †
Abstract
:1. Introduction
2. Mycotoxins
2.1. Aflatoxins
2.2. Ochratoxin A
2.3. Fumonisins (FB1 and FB2)
2.4. Zearalenone (ZEA)
2.5. Trichothecenes
2.6. Emerging Mycotoxins
2.7. Co-Occurrence of Mycotoxins
3. Toxicity Mechanisms of Mycotoxins
4. Mycotoxins Contamination
4.1. Preharvest Contamination Sources
4.2. Climate Changes and Mycotoxins
4.3. Mycotoxins Legal Status at EU Level
5. Determination of Mycotoxins
5.1. Sampling and Pre-Treatment
5.2. Extraction and Purification
5.2.1. Liquid–Liquid Extraction (LLE)
5.2.2. Solid-Phase Extraction (SPE)
5.2.3. Immunoaffinity Chromatography Columns (IACs)
5.2.4. Supercritical Fluid Extraction (SFE)
5.2.5. QuEChERS Extraction
5.3. Separation, Detection, and Quantification of Mycotoxins
5.3.1. Chromatographic Methods
Liquid Chromatography–Tandem Mass Spectrometry
5.3.2. Capillary Electrophoresis (CE)
5.3.3. Immunoassays
Time-Resolved Fluorescence Immunochromatography Assay (TRFICA)
5.3.4. Aptamer-Based Biosensor
5.3.5. Surface Plasmon Resonance (SPR)
6. Multi-Mycotoxins Analytical Methodologies Applied to Groundnuts
6.1. Mycotoxins in Groundnuts (Peanuts): RASFF Notifications
6.2. Mycotoxins Detoxification
7. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arya, S.S.; Salve, A.R.; Chauhan, S. Peanuts as Functional Food: A Review. J. Food Sci. Technol. 2016, 53, 31–41. [Google Scholar] [CrossRef]
- Nautiyal, P.C. GROUNDNUT: Post-Harvest Operations; National Research Centre for Groundnut: Gujarat, India, 2002. [Google Scholar]
- Li, H.; Wang, D.; Tang, X.; Zhang, W.; Zhang, Q.; Li, P. Time-Resolved Fluorescence Immunochromatography Assay (TRFICA) for Aflatoxin: Aiming at Increasing Strip Method Sensitivity. Front. Microbiol. 2020, 11, 676. [Google Scholar] [CrossRef] [PubMed]
- Tolosa, J.; Font, G.; Mañes, J.; Ferrer, E. Nuts and Dried Fruits: Natural Occurrence of Emerging Fusarium Mycotoxins. Food Control 2013, 33, 215–220. [Google Scholar] [CrossRef]
- Faostat. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 16 June 2022).
- Seleiman, M.F.; Selim, S.; Alhammad, B.A.; Alharbi, B.M.; Cezar Juliatti, F. Will Novel Coronavirus (COVID-19) Pandemic Impact Agriculture, Food Security and Animal Sectors? Biosci. J. 2020, 36, 1315–1326. [Google Scholar] [CrossRef]
- Alshannaq, A.; Yu, J.H. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef] [PubMed]
- EU. Comission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Levels for Certain Contaminants in Foodstuffs; European Union: Brussel, Belgium, 2006. [Google Scholar]
- Wang, Y.J.; Nie, J.Y.; Yan, Z.; Li, Z.X.; Cheng, Y.; Farooq, S. Multi-Mycotoxin Exposure and Risk Assessments for Chinese Consumption of Nuts and Dried Fruits. J. Integr. Agric. 2018, 17, 1676–1690. [Google Scholar] [CrossRef]
- Xue, Z.; Zhang, Y.; Yu, W.; Zhang, J.; Wang, J.; Wan, F.; Kim, Y.; Liu, Y.; Kou, X. Recent Advances in Aflatoxin B1 Detection Based on Nanotechnology and Nanomaterials-A Review. Anal. Chim. Acta 2019, 1069, 1–27. [Google Scholar] [CrossRef]
- Popescu, R.G.; Bulgaru, C.; Untea, A.; Vlassa, M.; Filip, M.; Hermenean, A.; Marin, D.; Țăranu, I.; Georgescu, S.E.; Dinischiotu, A. The Effectiveness of Dietary Byproduct Antioxidants on Induced CYP Genes Expression and Histological Alteration in Piglets Liver and Kidney Fed with Aflatoxin B1 and Ochratoxin A. Toxins 2021, 13, 148. [Google Scholar] [CrossRef]
- Ostry, V.; Malir, F.; Toman, J.; Grosse, Y. Mycotoxins as Human Carcinogens—The IARC Monographs Classification. Mycotoxin Res. 2017, 33, 65–73. [Google Scholar] [CrossRef]
- Wu, Q.; Xie, L.; Xu, H. Determination of Toxigenic Fungi and Aflatoxins in Nuts and Dried Fruits Using Imaging and Spectroscopic Techniques. Food Chem. 2018, 252, 228–242. [Google Scholar] [CrossRef]
- Barsouk, A.; Thandra, K.C.; Saginala, K.; Rawla, P.; Barsouk, A. Chemical Risk Factors of Primary Liver Cancer: An Update. Hepatic Med. Evid. Res. 2021, 12, 179–188. [Google Scholar] [CrossRef]
- Nazhand, A.; Durazzo, A.; Lucarini, M.; Souto, E.B.; Santini, A. Characteristics, Occurrence, Detection and Detoxification of Aflatoxins in Foods and Feeds. Foods 2020, 9, 644. [Google Scholar] [CrossRef] [PubMed]
- Kensler, T.W.; Roebuck, B.D.; Wogan, G.N.; Groopman, J.D. Aflatoxin: A 50-Year Odyssey of Mechanistic and Translational Toxicology. Toxicol. Sci. 2011, 120, S28–S48. [Google Scholar] [CrossRef] [PubMed]
- Zinedine, A.; Mañes, J. Occurrence and Legislation of Mycotoxins in Food and Feed from Morocco. Food Control 2009, 20, 334–344. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, F. Global Burden of Aflatoxin-Induced Hepatocellular Carcinoma: A Risk Assessment. Environ. Health Perspect. 2010, 118, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Marchese, S.; Polo, A.; Ariano, A.; Velotto, S.; Costantini, S.; Severino, L. Aflatoxin B1 and M1: Biological Properties and Their Involvement in Cancer Development. Toxins 2018, 10, 214. [Google Scholar] [CrossRef]
- Wild, C.P.; Turner, P.C. The Toxicology of Aflatoxins as a Basis for Public Health Decisions. Mutagenesis 2002, 17, 471–481. [Google Scholar] [CrossRef]
- Gallagher, E.P.; Wienkers, L.C.; Stapleton, P.L.; Kunze, K.L.; Eaton, D.L. Role of Human Microsomal and Human Complementary DNA-Expressed Cytochromes P4501A2 and P4503A4 in the Bioactivation of Aflatoxin 1. Cancer Res. 1994, 54, 101–108. [Google Scholar]
- Jatfa, J.W. Aflatoxicosis Associated with Swine Stillbirth in the Piggery Farm University of Agriculture Makurdi. Curr. Trends Biomed. Eng. Biosci. 2018, 13, 555873. [Google Scholar] [CrossRef]
- Guo, X.; Wen, F.; Zheng, N.; Saive, M.; Fauconnier, M.L.; Wang, J. Aptamer-Based Biosensor for Detection of Mycotoxins. Front. Chem. 2020, 8, 195. [Google Scholar] [CrossRef]
- Alsharif, A.M.A.; Choo, Y.M.; Tan, G.H. Detection of Five Mycotoxins in Different Food Matrices in the Malaysian Market by Using Validated Liquid Chromatography Electrospray Ionization Triple Quadrupole Mass Spectrometry. Toxins 2019, 11, 196. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodi, M.; Alizadeh, A.M.; Sohanaki, H.; Rezaei, N.; Amini-Najafi, F.; Khosravi, A.R.; Hosseini, S.-K.; Safari, Z.; Hydarnasab, D.; Khori, V.; et al. Impact of Fumonisin B1 on the Production of Inflammatory Cytokines by Gastric and Colon Cell Lines. Iran. J. Allergy Asthma Immunol. 2012, 11, 165–173. [Google Scholar]
- Ratajczak, M.; Kaminska, D.; Światły-Błaszkiewicz, A.; Matysiak, J. Quality of Dietary Supplements Containing Plant-Derived Ingredients Reconsidered by Microbiological Approach. Int. J. Environ. Res. Public Health 2020, 17, 6837. [Google Scholar] [CrossRef]
- Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; et al. Risks for Animal Health Related to the Presence of Fumonisins, Their Modified Forms and Hidden Forms in Feed. EFSA J. 2018, 16, e05242. [Google Scholar] [CrossRef]
- Abrunhosa, L.; Morales, H.; Soares, C.; Calado, T.; Vila-Chã, A.S.; Pereira, M.; Venâncio, A. A Review of Mycotoxins in Food and Feed Products in Portugal and Estimation of Probable Daily Intakes. Crit. Rev. Food Sci. Nutr. 2016, 56, 249–265. [Google Scholar] [CrossRef] [PubMed]
- Jestoi, M. Emerging Fusarium-Mycotoxins Fusaproliferin, Beauvericin, Enniatins, and Moniliformin—A Review. Crit. Rev. Food Sci. Nutr. 2008, 48, 21–49. [Google Scholar] [CrossRef] [PubMed]
- Köppen, R.; Koch, M.; Siegel, D.; Merkel, S.; Maul, R.; Nehls, I. Determination of Mycotoxins in Foods: Current State of Analytical Methods and Limitations. Appl. Microbiol. Biotechnol. 2010, 86, 1595–1612. [Google Scholar] [CrossRef]
- Mahdjoubi, C.K.; Arroyo-Manzanares, N.; Hamini-Kadar, N.; García-Campaña, A.M.; Mebrouk, K.; Gámiz-Gracia, L. Multi-Mycotoxin Occurrence and Exposure Assessment Approach in Foodstuffs from Algeria. Toxins 2020, 12, 194. [Google Scholar] [CrossRef]
- Wan, L.Y.M.; Turner, P.C.; El-Nezami, H. Individual and Combined Cytotoxic Effects of Fusarium Toxins (Deoxynivalenol, Nivalenol, Zearalenone and Fumonisins B1) on Swine Jejunal Epithelial Cells. Food Chem. Toxicol. 2013, 57, 276–283. [Google Scholar] [CrossRef]
- Manizan, A.L.; Oplatowska-Stachowiak, M.; Piro-Metayer, I.; Campbell, K.; Koffi-Nevry, R.; Elliott, C.; Akaki, D.; Montet, D.; Brabet, C. Multi-Mycotoxin Determination in Rice, Maize and Peanut Products Most Consumed in Côte d’Ivoire by UHPLC-MS/MS. Food Control 2018, 87, 22–30. [Google Scholar] [CrossRef]
- Antonissen, G.; Devreese, M.; de Baere, S.; Martel, A.; van Immerseel, F.; Croubels, S. Impact of Fusarium Mycotoxins on Hepatic and Intestinal MRNA Expression of Cytochrome P450 Enzymes and Drug Transporters, and on the Pharmacokinetics of Oral Enrofloxacin in Broiler Chickens. Food Chem. Toxicol. 2017, 101, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Brar, P.K.; Danyluk, M.D. Nuts and Grains: Microbiology and Preharvest Contamination Risks. Microbiol. Spectr. 2018, 6, 1–12. [Google Scholar] [CrossRef]
- Daines, R. Targeted Grazing: Targeted Grazing: Rangeland Ecology and Management; University of Idaho: Moscow, ID, USA, 2006. [Google Scholar]
- Marcus, K.A.; Amling, H.J. Escherichia coli Field Contamination of Pecan Nuts. Appl. Microbiol. 1973, 26, 279–281. [Google Scholar] [CrossRef]
- Srichamnong, W.; Wootton, M.; Srzednicki, G. Effect of Nut-in-Shell Storage Conditions on Volatile Profile in Macadamia Nuts. Jul. Kühn-Arch. 2010, 425, 270–274. [Google Scholar]
- Leggieri, M.C.; Toscano, P.; Battilani, P. Predicted Aflatoxin B1 Increase in Europe Due to Climate Change: Actions and Reactions at Global Level. Toxins 2021, 13, 292. [Google Scholar] [CrossRef]
- Medina, Á.; González-Jartín, J.M.; Sainz, M.J. Impact of Global Warming on Mycotoxins. Curr. Opin. Food Sci. 2017, 18, 76–81. [Google Scholar] [CrossRef]
- Ojiambo, P.S.; Battilani, P.; Cary, J.W.; Blum, B.H.; Carbone, I. Cultural and Genetic Approaches to Manage Aflatoxin Contamination: Recent Insights Provide Opportunities for Improved Control. Phytopathology 2018, 108, 1024–1037. [Google Scholar] [CrossRef] [PubMed]
- Gregory, P.J.; Johnson, S.N.; Newton, A.C.; Ingram, J.S.I. Integrating Pests and Pathogens into the Climate Change/Food Security Debate. J. Exp. Bot. 2009, 60, 2827–2838. [Google Scholar] [CrossRef]
- Bebber, D.P.; Gurr, S.J. Crop-Destroying Fungal and Oomycete Pathogens Challenge Food Security. Fungal Genet. Biol. 2015, 74, 62–64. [Google Scholar] [CrossRef]
- Bebber, D.P.; Holmes, T.; Gurr, S.J. The Global Spread of Crop Pests and Pathogens. Glob. Ecol. Biogeogr. 2014, 23, 1398–1407. [Google Scholar] [CrossRef]
- Battilani, P.; Rossi, V.; Giorni, P.; Pietri, A.; Gualla, A.; van der Fels-Klerx, H.J.; Booij, C.J.H.; Moretti, A.; Logrieco, A.; Miglietta, F.; et al. Modelling, Predicting and Mapping the Emergence of Aflatoxins in Cereals in the EU Due to Climate Change. EFSA Support. Publ. 2017, 9, 223E. [Google Scholar] [CrossRef]
- Battilani, P.; Toscano, P.; van der Fels-Klerx, H.J.; Moretti, A.; Camardo Leggieri, M.; Brera, C.; Rortais, A.; Goumperis, T.; Robinson, T. Aflatoxin B 1 Contamination in Maize in Europe Increases Due to Climate Change. Sci. Rep. 2016, 6, 24328. [Google Scholar] [CrossRef] [PubMed]
- Fouché, T.; Claassens, S.; Maboeta, M. Aflatoxins in the Soil Ecosystem: An Overview of Its Occurrence, Fate, Effects and Future Perspectives. Mycotoxin Res. 2020, 36, 303–309. [Google Scholar] [CrossRef]
- Cervini, C.; Verheecke-Vaessen, C.; Ferrara, M.; García-Cela, E.; Magistà, D.; Medina, A.; Gallo, A.; Magan, N.; Perrone, G. Interacting Climate Change Factors (CO2 and Temperature Cycles) Effects on Growth, Secondary Metabolite Gene Expression and Phenotypic Ochratoxin A Production by Aspergillus Carbonarius Strains on a Grape-Based Matrix. Fungal Biol. 2021, 125, 115–122. [Google Scholar] [CrossRef]
- Cervini, C.; Gallo, A.; Piemontese, L.; Magistà, D.; Logrieco, A.F.; Ferrara, M.; Solfrizzo, M.; Perrone, G. Effects of Temperature and Water Activity Change on Ecophysiology of Ochratoxigenic Aspergillus Carbonarius in Field-Simulating Conditions. Int. J. Food Microbiol. 2020, 315, 108420. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Chen, M.; Ying, Y. Development of Methods for Determination of Aflatoxins. Crit. Rev. Food Sci. Nutr. 2016, 56, 2642–2664. [Google Scholar] [CrossRef]
- EU. Commission Regulation (EC) No 401/2006 of 23 February 2006: Laying Down the Methods of Sampling and Analysis for the Official Control of the Levels of Mycotoxins in Foodstuffs; European Union: Brussel, Belgium, 2006. [Google Scholar]
- Zhang, K.; Banerjee, K. A Review: Sample Preparation and Chromatographic Technologies for Detection of Aflatoxins in Foods. Toxins 2020, 12, 539. [Google Scholar] [CrossRef]
- Fishbein, L.; Falk, H.L. Chromatography of Mold Metabolites I. Aflatoxins, Ochratoxins and Related Compounds. Chromatogr. Rev. 1970, 12, 42–87. [Google Scholar] [CrossRef]
- Zgoła-Grześkowiak, A.; Grześkowiak, T. Dispersive Liquid-Liquid Microextraction. TrAC Trends Anal. Chem. 2011, 30, 1382–1399. [Google Scholar] [CrossRef]
- Sobolev, V.S.; Dorner, J.W. Cleanup Procedure for Determination of Aflatoxins in Major Agricultural Commodities by Liquid Chromatography. J. AOC Int. 2002, 85, 642–645. [Google Scholar] [CrossRef]
- Barker, S.A.; Long, A.R.; Short, C.R. Isolation of Drug Residues from Tissues by Solid Phase Dispersion. J. Chromatogr. A 1989, 475, 353–361. [Google Scholar] [CrossRef]
- Blesa, J.; Soriano, J.M.; Moltó, J.C.; Marín, R.; Mañes, J. Determination of Aflatoxins in Peanuts by Matrix Solid-Phase Dispersion and Liquid Chromatography. J. Chromatogr. A 2003, 1011, 49–54. [Google Scholar] [CrossRef]
- Lord, H.L. Strategies for Interfacing Solid-Phase Microextraction with Liquid Chromatography. J. Chromatogr. A 2007, 1152, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.; Sheng, X.; Yu, X.; Hu, Y. Determination of Aflatoxins in Hot Chilli Products by Matrix Solid-Phase Dispersion and Liquid Chromatography. Se Pu 2006, 24, 62–64. [Google Scholar] [PubMed]
- Trucksess, M.; Weaver, C.; Oles, C.; Ovidio, K.D.; Rader, J. Determination of Aflatoxins and Ochratoxin A in Ginseng and Other Botanical Roots by Immunoaffinity Column Cleanup and Liquid Chromatography with Fluorescence Detection NIH Public Access. J. AOAC Int. 2006, 89, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Li, W.J.; Peng, K.Y. Determination of Aflatoxin M1 in Milk and Milk Powder Using High-Flow Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry. J. Agric. Food Chem. 2005, 53, 8474–8480. [Google Scholar] [CrossRef]
- Anklam, E.; Berg, H.; Mathiasson, L.; Sharman, M.; Ulberth, F. Supercritical Fluid Extraction (SFE) in Food Analysis: A Review. Food Addit. Contam. 1998, 15, 729–750. [Google Scholar] [CrossRef]
- Span, R.; Wagner, W. A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa. J. Phys. Chem. Ref. Data 1996, 25, 1509–1596. [Google Scholar] [CrossRef]
- Perestrelo, R.; Silva, P.; Porto-Figueira, P.; Pereira, J.A.M.; Silva, C.; Medina, S.; Câmara, J.S. QuEChERS—Fundamentals, Relevant Improvements, Applications and Future Trends. Anal. Chim. Acta 2019, 1070, 1–28. [Google Scholar] [CrossRef]
- Rahman, M.M.; Abd El-Aty, A.M.; Kim, S.W.; Shin, S.C.; Shin, H.C.; Shim, J.H. Quick, Easy, Cheap, Effective, Rugged, and Safe Sample Preparation Approach for Pesticide Residue Analysis Using Traditional Detectors in Chromatography: A Review. J. Sep. Sci. 2017, 40, 203–212. [Google Scholar] [CrossRef]
- Islas, G.; Ibarra, I.S.; Hernandez, P.; Miranda, J.M.; Cepeda, A. Dispersive Solid Phase Extraction for the Analysis of Veterinary Drugs Applied to Food Samples: A Review. Int. J. Anal. Chem. 2017, 2017, 8215271. [Google Scholar] [CrossRef] [PubMed]
- Rejczak, T.; Tuzimski, T. QuEChERS-Based Extraction with Dispersive Solid Phase Extraction Clean-up Using PSA and ZrO2-Based Sorbents for Determination of Pesticides in Bovine Milk Samples by HPLC-DAD. Food Chem. 2017, 217, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Renaud, J.B.; Miller, J.D.; Sumarah, M.W. Mycotoxin Testing Paradigm: Challenges and Opportunities for the Future. J. AOAC Int. 2019, 102, 1681–1688. [Google Scholar] [CrossRef]
- Malachová, A.; Stránská, M.; Václavíková, M.; Elliott, C.T.; Black, C.; Meneely, J.; Hajšlová, J.; Ezekiel, C.N.; Schuhmacher, R.; Krska, R. Advanced LC–MS-Based Methods to Study the Co-Occurrence and Metabolization of Multiple Mycotoxins in Cereals and Cereal-Based Food. Anal. Bioanal. Chem. 2018, 410, 801–825. [Google Scholar] [CrossRef]
- Friedli, F. Fused Silica Capillary GC/MS Coupling: A New, Innovative Approach. J. High Resolut. Chromatogr. 1981, 4, 495–499. [Google Scholar] [CrossRef]
- Sargent, M.; Wolff, C.; Mussell, C.; Neville, D.; Lord, G.; Saeed, M.; Lad, R.; Godfrey, R.; Hird, S.; Barwick, V. Guide to Achieving Reliable Quantitative LC-MS Measurements, 1st ed.; RSC Analytical Methods Committee, Ed.; ACS Publications: Washington, DC, USA, 2013; ISBN 9780948926273. [Google Scholar]
- Tahboub, Y.R. Chromatographic Behavior of Co-Eluted Plasma Compounds and Effect on Screening of Drugs by APCI-LC-MS(/MS): Applications to Selected Cardiovascular Drugs. J. Pharm. Anal. 2014, 4, 384–391. [Google Scholar] [CrossRef]
- Low, K.H.; Zain, S.M.; Abas, M.R. Evaluation of Microwave-Assisted Digestion Condition for the Determination of Metals in Fish Samples by Inductively Coupled Plasma Mass Spectrometry Using Experimental Designs. Int. J. Environ. Anal. Chem. 2012, 92, 1161–1175. [Google Scholar] [CrossRef]
- Anderson, M.J.; Whitcomb, P.J. Response Surface Methods (RSM) for Peak Process Performance at the Most Robust Operating Conditions. Solid State Technol. 2008, 51, 1–13. [Google Scholar]
- Depoi, F.D.S.; Bentlin, F.R.S.; Ferrão, M.F.; Pozebon, D. Multivariate Optimization for Cloud Point Extraction and Determination of Lanthanides. Anal. Methods 2012, 4, 2809–2814. [Google Scholar] [CrossRef]
- Cole, R. Factors Influencing Performance in the Rapid Separation of Aflatoxins by Micellar Electrokinetic Capillary Chromatography. Talanta 1992, 39, 1139–1147. [Google Scholar] [CrossRef]
- Kaushal, K.S. Testing Methods for Aflatoxins in Foods. Food Nutr. Bull. 1999, 20, 458–464. [Google Scholar]
- Sun, C.F. Immunoassays for Analysis of Mycotoxins. J. Food Prot. 1984, 47, 562–569. [Google Scholar]
- Itoh, Y.; Hifumi, E.; Sudoh, K.; Uda, T.; Ohtani, K.; Kawamura, O.; Nagayama, S.; Satoh, S.; Ueno, Y. Detection of Aflatoxin B1 by Direct ELISA. JSM Mycotoxins 1987, 1987, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Reza, S.S.M.; Masoud, A.; Ali, T.; Faranak, G.; Mahboob, N. Determination of Aflatoxins in Nuts of Tabriz Confectionaries by ELISA and HPLC Methods. Adv. Pharm. Bull. 2012, 2, 123–126. [Google Scholar] [CrossRef]
- Nonaka, Y.; Saito, K.; Hanioka, N.; Narimatsu, S.; Kataoka, H. Determination of Aflatoxins in Food Samples by Automated On-Line in-Tube Solid-Phase Microextraction Coupled with Liquid Chromatography—Mass Spectrometry. J. Chromatogr. A 2009, 1216, 4416–4422. [Google Scholar] [CrossRef]
- Li, Q.; Lu, Z.; Tan, X.; Xiao, X.; Wang, P.; Wu, L.; Shao, K.; Yin, W.; Han, H. Ultrasensitive Detection of Aflatoxin B1 by SERS Aptasensor Based on Exonuclease-Assisted Recycling Amplification. Biosens. Bioelectron. 2017, 97, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xia, Y.-K.; Chen, M.; Wu, D.-Z.; Cai, S.-X.; Liu, M.-M.; He, W.-H.; Chen, J.-H. A Fluorescent Aptasensor Based on DNA-Scaffolded Silver Nanoclusters Coupling with Zn(Ⅱ)-Ion Signal-Enhancement for Simultaneous Detection of OTA and AFB1. Sens. Actuators B Chem. 2016, 235, 79–85. [Google Scholar] [CrossRef]
- Patel, K.; Halevi, S.; Melman, P.; Schwartz, J.; Cai, S.; Singh, B.R. A Novel Surface Plasmon Resonance Biosensor for the Rapid Detection of Botulinum Neurotoxins. Biosensors 2017, 7, 32. [Google Scholar] [CrossRef]
- Wei, T.; Ren, P.; Huang, L.; Ouyang, Z.; Wang, Z.; Kong, X.; Li, T.; Yin, Y.; Wu, Y.; He, Q. Simultaneous Detection of Aflatoxin B1, Ochratoxin A, Zearalenone and Deoxynivalenol in Corn and Wheat Using Surface Plasmon Resonance. Food Chem. 2019, 300, 125176. [Google Scholar] [CrossRef]
- Spanjer, M.C.; Rensen, P.M.; Scholten, J.M. LC—MS/MS Multi-Method for Mycotoxins after Single Extraction, with Validation Data for Peanut, Pistachio, Wheat, Maize, Cornflakes, Raisins and Figs. Food Addit. Contam. Part A 2008, 49, 472–489. [Google Scholar] [CrossRef]
- Alcántara-Durána, J.; Moreno-Gonzáleza, D.; Juan, F.; García-Reyesa, A.M.-D. Use of a Modi Fi Ed QuEChERS Method for the Determination of Mycotoxin Residues in Edible Nuts by Nano Fl Ow Liquid Chromatography High Resolution Mass Spectrometry. Food Chem. 2019, 279, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Ruiz, J.L.; Romero-González, R.; Vidal, J.L.M.; Frenich, A.G. Determination of Mycotoxins in Nuts by Ultra High-Performance Liquid Chromatography-Tandem Mass Spectrometry: Looking for a Representative Matrix. J. Food Compos. Anal. 2019, 82, 103228. [Google Scholar] [CrossRef]
- Jinap, S.; de Rijk, T.C.; Arzandeh, S.; Kleijnen, H.C.H.; Zomer, P.; van der Weg, G.; Mol, J.G.J. Aflatoxin Determination Using In-Line Immunoaffinity Chromatography in Foods. Food Control 2012, 26, 42–48. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, X.; Zhang, Q.; Li, P. Determination for Multiple Mycotoxins in Agricultural Products Using HPLC-MS/MS via a Multiple Antibody Immunoaffinity Column. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1021, 145–152. [Google Scholar] [CrossRef]
- Loh, S.H.; Yusof, N.I.M.; Ling, H.M. Determination of Aflatoxins B1 and B2 in Peanuts and Corn Based Products. Sains Malays. 2010, 39, 731–735. [Google Scholar]
- Tang, Y.Y.; Lin, H.Y.; Chen, Y.C.; Su, W.T.; Wang, S.C.; Chiueh, L.C.; Shin, Y.C. Development of a Quantitative Multi-Mycotoxin Method in Rice, Maize, Wheat and Peanut Using UPLC-MS/MS. Food Anal. Methods 2013, 6, 727–736. [Google Scholar] [CrossRef]
- Chen, F.; Luan, C.; Wang, L.; Wang, S.; Shao, L. Simultaneous Determination of Six Mycotoxins in Peanut by High-Performance Liquid Chromatography with a Fluorescence Detector. J. Sci. Food Agric. 2017, 97, 1805–1810. [Google Scholar] [CrossRef]
- Zheng, S.; Wu, T.; Li, J.; Jin, Q.; Xiao, R.; Wang, S.; Wang, C. Difunctional Immunochromatographic Assay Based on Magnetic Quantum Dot for Ultrasensitive and Simultaneous Detection of Multiple Mycotoxins in Foods. Sens. Actuators B Chem. 2022, 359, 131528. [Google Scholar] [CrossRef]
- Wang, Y.; Ning, B.; Peng, Y.; Bai, J.; Liu, M.; Fan, X.; Sun, Z.; Lv, Z.; Zhou, C.; Gao, Z. Application of Suspension Array for Simultaneous Detection of Four Different Mycotoxins in Corn and Peanut. Biosens. Bioelectron. 2013, 41, 391–396. [Google Scholar] [CrossRef]
- RASFF. Available online: https://webgate.ec.europa.eu/rasff-window/screen/list (accessed on 23 December 2021).
- Zhu, Y.; Hassan, Y.I.; Watts, C.; Zhou, T. Innovative Technologies for the Mitigation of Mycotoxins in Animal Feed and Ingredients—A Review of Recent Patents. Anim. Feed Sci. Technol. 2016, 216, 19–29. [Google Scholar] [CrossRef]
- Udomkun, P.; Wiredu, A.N.; Nagle, M.; Müller, J.; Vanlauwe, B.; Bandyopadhyay, R. Innovative Technologies to Manage Aflatoxins in Foods and Feeds and the Profitability of Application—A Review. Food Control 2017, 76, 127–138. [Google Scholar] [CrossRef] [PubMed]
- MacIel, E.V.S.; Mejiá-Carmona, K.; Lancas, F.M. Evaluation of Two Fully Automated Setups for Mycotoxin Analysis Based on Online Extraction-Liquid Chromatography-TandemMass Spectrometry. Molecules 2020, 25, 2756. [Google Scholar] [CrossRef] [PubMed]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in Occurrence, Importance, and Mycotoxin Control Strategies: Prevention and Detoxification in Foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef]
- Azam, M.S.; Ahmed, S.; Islam, M.N.; Maitra, P.; Islam, M.M.; Yu, D. Critical Assessment of Mycotoxins in Beverages and Their Control Measures. Toxins 2021, 13, 323. [Google Scholar] [CrossRef]
- Mir, S.A.; Dar, B.N.; Shah, M.A.; Sofi, S.A.; Hamdani, A.M.; Oliveira, C.A.F.; Hashemi Moosavi, M.; Mousavi Khaneghah, A.; Sant’Ana, A.S. Application of New Technologies in Decontamination of Mycotoxins in Cereal Grains: Challenges, and Perspectives. Food Chem. Toxicol. 2021, 148, 111976. [Google Scholar] [CrossRef]
- Harkai, P.; Szabó, I.; Cserháti, M.; Krifaton, C.; Risa, A.; Radó, J.; Balázs, A.; Berta, K.; Kriszt, B. Biodegradation of Aflatoxin-B1 and Zearalenone by Streptomyces Sp. Collection. Int. Biodeterior. Biodegrad. 2016, 108, 48–56. [Google Scholar] [CrossRef]
- Ji, C.; Fan, Y.; Zhao, L. Review on Biological Degradation of Mycotoxins. Anim. Nutr. 2016, 2, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Verheecke, C.; Liboz, T.; Mathieu, F. Microbial Degradation of Aflatoxin B1: Current Status and Future Advances. Int. J. Food Microbiol. 2016, 237, 1–9. [Google Scholar] [CrossRef]
- Adebo, O.A.; Njobeh, P.B.; Gbashi, S.; Nwinyi, O.C.; Mavumengwana, V. Review on Microbial Degradation of Aflatoxins. Crit. Rev. Food Sci. Nutr. 2017, 57, 3208–3217. [Google Scholar] [CrossRef]
- Gonçalves, B.L.; Gonçalves, C.; Rosim, R.E.; Oliveira, C.A.F.; Corassin, C.H. Evaluations of Different Sources of Saccharomyces Cerevisiae to Binding Capacity of Aflatoxin B1 Utilizing Their Adsorption Isotherms. J. Food Chem. Nanotechnol. 2017, 3, 126–132. [Google Scholar] [CrossRef]
- De Alencar, E.R.; Faroni, L.R.D.; Soares, N.; de Fátima Ferreira, N.; da Silva, W.A.; da Silva Carvalho, M.C. Efficacy of Ozone as a Fungicidal and Detoxifying Agent of Aflatoxins in Peanuts. J. Sci. Food Agric. 2012, 92, 899–905. [Google Scholar] [CrossRef]
- Ismail, A.; Gonçalves, B.L.; de Neeff, D.V.; Ponzilacqua, B.; Coppa, C.F.S.C.; Hintzsche, H.; Sajid, M.; Cruz, A.G.; Corassin, C.H.; Oliveira, C.A.F. Aflatoxin in Foodstuffs: Occurrence and Recent Advances in Decontamination. Food Res. Int. 2018, 113, 74–85. [Google Scholar] [CrossRef]
- Chang, M.; Jin, Q.; Liu, Y.; Liu, R.; Wang, X. Efficiency and Safety Evaluation of Photodegradation of Aflatoxin B1 on Peanut Surface. Int. J. Food Sci. Technol. 2013, 48, 2474–2479. [Google Scholar] [CrossRef]
- Iqbal, S.Z.; Bhatti, I.A.; Asi, M.R.; Zuber, M.; Shahid, M.; Parveen, I. Effect of γ Irradiation on Fungal Load and Aflatoxins Reduction in Red Chillies. Radiat. Phys. Chem. 2013, 82, 80–84. [Google Scholar] [CrossRef]
- Patil, H.; Shah, N.G.; Hajare, S.N.; Gautam, S.; Kumar, G. Combination of Microwave and Gamma Irradiation for Reduction of Aflatoxin B1 and Microbiological Contamination in Peanuts (Arachis hypogaea L.). World Mycotoxin J. 2019, 12, 269–280. [Google Scholar] [CrossRef]
- Zheng, H.; Wei, S.; Xu, Y.; Fan, M. Reduction of Aflatoxin B1 in Peanut Meal by Extrusion Cooking. LWT Food Sci. Technol. 2015, 64, 515–519. [Google Scholar] [CrossRef]
- Assunção, E.; Reis, T.A.; Baquião, A.C.; Corrêa, B. Effects of Gamma and Electron Beam Radiation on Brazil Nuts Artificially Inoculated with Aspergillus Flavus. J. Food Prot. 2015, 78, 1397–1401. [Google Scholar] [CrossRef] [PubMed]
- Rastegar, H.; Shoeibi, S.; Yazdanpanah, H.; Amirahmadi, M.; Khaneghah, A.M.; Campagnollo, F.B.; Sant’Ana, A.S. Removal of Aflatoxin B1 by Roasting with Lemon Juice and/or Citric Acid in Contaminated Pistachio Nuts. Food Control 2017, 71, 279–284. [Google Scholar] [CrossRef]
- Vaclavikova, M.; Macmahon, S.; Zhang, K.; Begley, T.H. Application of single immunoaffinity clean-up for simultaneous determination of regulated mycotoxins in cereals and nuts. Talanta 2013, 117, 345–351. [Google Scholar] [CrossRef]
- Varga, E.; Glauner, T.; Berthiller, F.; Krska, R.; Schuhmacher, R.; Sulyok, M. Development and validation of a (semi-)quantitative UHPLC-MS/MS method for the determination of 191 mycotoxins and other fungal metabolites in almonds, hazelnuts, peanuts and pistachios. Anal. Bioanal. Chem. 2013, 405, 5087–5104. [Google Scholar] [CrossRef]
- Arroyo-Manzanares, N.; Huertas-Pérez, J.F.; Gámiz-Gracia, L.; García-Campaña, A.M. A new approach in sample treatment combined with UHPLC-MS/MS for the determination of multiclass mycotoxins in edible nuts and seeds. Talanta 2013, 115, 61–67. [Google Scholar] [CrossRef]
- Liu, H.Y.; Lin, S.L.; Chan, S.A.; Lin, T.Y.; Fuh, M.R. Microfluidic chip-based nano-liquid chromatography tandem mass spectrometry for quantification of aflatoxins in peanut products. Talanta 2013, 113, 76–81. [Google Scholar] [CrossRef]
- Deng, G.; Xu, K.; Sun, Y.; Chen, Y.; Zheng, T.; Li, J. High Sensitive Immunoassay for multiplex mycotoxin detection with photonic crystal microsphere suspension array. Anal. Chem. 2013, 85, 2833–2840. [Google Scholar] [CrossRef]
- Sirhan, A.Y.; Tan, G.H.; Wong, R.C.S. Determination of aflatoxins in food using liquid chromatography coupled with electrospray ionization quadrupole time of flight mass spectrometry (LC-ESI-QTOF-MS/MS). Food Control 2013, 31, 35–44. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, Z.; Nölke, G.; Zhang, J.; Niu, L.; Shen, J. Simultaneous Determination of Aflatoxin B1 and Aflatoxin M1 in Food Matrices by Enzyme-Linked Immunosorbent Assay. Food Anal. Methods 2013, 6, 767–774. [Google Scholar] [CrossRef]
- Sartori, A.V.; Swensson De Mattos, J.; Souza, Y.P.; Pereira, R.; Santos, D.; Heloísa, M.; de Moraes, P.; Wanderley Da Nóbrega, A. Determination of aflatoxins M1, M2, B1, B2, G1 and G2 in peanut by modified QuEChERS method and ultra-high performance liquid chromatography-tandem mass spectrometry. Vigilância Sanitária Debate Soc. Ciência Tecnol. 2015, 3, 115–121. [Google Scholar] [CrossRef]
- Fan, S.; Li, Q.; Zhang, X.; Cui, X.; Zhang, D.; Zhang, Y. Simultaneous determination of aflatoxin B1, B2, G1, and G2 in corn powder, edible oil, peanut butter, and soy sauce by liquid chromatography with tandem mass spectrometry utilizing turbulent flow chromatography. J. Sep. Sci. 2015, 38, 1310–1317. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.D.; Wong, J.W.; Zhang, K.; Yang, P.; Wittenberg, J.B.; Trucksess, M.W.; Hayward, D.G.; Lee, N.S.; Chang, J.S. Multi-mycotoxin Analysis of Finished Grain and Nut Products Using Ultrahigh-Performance Liquid Chromatography and Positive Electrospray Ionization-Quadrupole Orbital Ion Trap High-Resolution Mass Spectrometry. J. Agric. Food Chem. 2015, 63, 8314–8332. [Google Scholar] [CrossRef]
- Ouyang, S.; Zhang, Z.; He, T.; Li, P.; Zhang, Q.; Chen, X.; Wang, D.; Li, H.; Tang, X.; Zhang, W. An On-Site, Ultra-Sensitive, Quantitative Sensing Method for the Determination of Total Aflatoxin in Peanut and Rice Based on Quantum Dot Nanobeads Strip. Toxins 2017, 9, 137. [Google Scholar] [CrossRef]
- Campbell, K.; Ferreira Cavalcante, A.L.; Galvin-King, P.; Oplatowska-Stachowiak, M.; Brabet, C.; Metayer, I.; Montet, D.; Haughey, S.A.; Elliott, C.T. Evaluation of an alternative spectroscopic approach for aflatoxin analysis: Comparative analysis of food and feed samples with UPLC–MS/MS. Sens. Actuators B Chem. 2017, 239, 1087–1097. [Google Scholar] [CrossRef]
- Cunha, S.C.; Sá, S.V.M.; Fernandes, J.O. Multiple mycotoxin analysis in nut products: Occurrence and risk characterization. Food Chem. Toxicol. 2018, 114, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Xu, D. Application of Stable Isotope Dilution and Liquid Chromatography Tandem Mass Spectrometry for Multi-Mycotoxin Analysis in Edible Oils. J. AOAC Int. 2019, 102, 1651–1656. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, Y.; Wang, Y.; Peng, Y.; Nie, J.; Gao, G.; Zhi, J. Development of an Escherichia coli-based electrochemical biosensor for mycotoxin toxicity detection. Bioelectrochemistry 2020, 133, 107453. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Wang, H.; Yan, Y.; Ge, M.; Guan, J. Quantification and confirmation of four aflatoxins using a LC–MS/MS QTRAP system in multiple reaction monitoring, enhanced product ion scan, and MS3 modes. Eur. J. Mass Spectrom. 2020, 26, 63–77. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, H.; Zhai, W.; Feng, X.; Fan, X.; Chen, A.; Wang, M. A Lateral Flow Strip Based on a Truncated Aptamer-Complementary Strand for Detection of Type-B Aflatoxins in Nuts and Dried Figs. Toxins 2020, 12, 136. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Q.; Ma, F.; Li, P. Simultaneous determination of aflatoxins, fumonisin B1, T-2 and cyclopiazonic acid in agri-products by immunomagnetic solid-phase extraction coupled with UHPLC-MS/MS. Food Chem. 2022, 378, 132020. [Google Scholar] [CrossRef]
- Salisu, B.; Anua, S.M.; Wan Rosli, W.I.; Mazlan, N.; Haron, R. Ultra-fast RP-HPLC-FD-DAD for quantification of total aflatoxins in maize, rice, wheat, peanut and poultry feed without sample clean up, and population exposure risk assessment in Katsina, Nigeria: An optimization study. J. Environ. Sci. Health Part B 2022, 57, 541–553. [Google Scholar] [CrossRef]
Type of Sample | Mycotoxins Analyzed | Clean-Up Methods | Extraction Methods | Detector | Conditions | Analytical Column | Internal Standard | LOD (μg/kg) | LOQ (μg/kg) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Peanut Pistachio Wheat Maize Cornflakes Raisin Fig | AFB1, AFB2, AFG1, AFG2, OTA, DON, FB1, FB2, ZEA, H-2 Toxin, HT-2 Toxin, | - | Sample quantity: 25 g Extraction: 100 mL acetonitrile/water (80:20 v/v) on horizontal shaker for 2 h; 1 mL of the extract is diluted and mixed with 3 mL of water and filtered | LC-MS/MS | Mobile phase: solvent A H2O with 0.1% formic acid; solvent B acetonitrile with 0.1% formic acid Gradient program: 90% A at 0 min Flow rate: 0.3 mL/min Capillary voltage: 2.5 kv Desolvation temperature: 450 °C Desolvation gas flow: 600 L/h Collision gas pressure: 0.8 bar Ionization: ESI source in positive mode | Alltima C18 (150 × 3.2 mm, 5 μm) | - | 0.5–75 | 1.0–150 | [86] |
Peanut Pistachio Almond | AFB1, AFB2, AFG1, AFG2, AFM1, OTA, FB1, FB2, ZEA, H-2 Toxin, HT-2 Toxin, | QuEChERS | Sample quantity: 5 g Extraction: 10 mL of Milli-Q water, 10 mL of ACN-formic acid (99.9/0.1 (v/v)), 4 g of anhydrous MgSO4, 1 g NaCl, 1 g of sodium citrate, 0.5 g of disodium hydrogen citrate sesquihydrate on centrifugation for 5 min; dSPE using EMR-Lipid activated with 5 mL of water shaken, 5 mL of organic extract centrifuged for 5 min; collected 5 mL of supernatant with 0.4 g NaCl, 1.6 g anhydrous MgSO4 centrifuged for 5 min; dilution 1:25 with water followed by filtration PTFE filters | HPLC- Orbitrap MS | Mobile phase: solvent A H2O with 0.1% formic acid (v/v) and solvent B MeCN with 0.1% formic acid (v/v) Gradient program: 0–5 min 4% B, 5–20 min 100% B, 20–24 min 100% B, 24–28 min 2% B for 10 min Flow rate: 200 nL/min Injection volume: 100 nL Capillary temperature: 250 °C Capillary voltage: 2.2 kV Column temperature: 25 °C Autosampler temperature: 7 °C Ionization: ESI source in positive mode | EASY-Spray PepMap C18 Nano column (75 μm × 150 mm, 3 μm) | - | - | 0.05–5 | [87] |
Peanuts, Treenuts Cereals, Dried fruits, Spices | AFB1, AFB2, AFG1, AFG2 | SPME | Sample quantity: 0.5 g Extraction: 1 mL of 80% methanol in water (80:20 v/v) centrifuged for 5 min, supernatant used directly in-tube SPME | HPLC-MS | Mobile phase: methanol/acetonitrile (69/40 v/v): 5 mM ammonium formate (45:55) Gradient program isocratic mode Flow rate: 1.0 mL/min Injection volume: 10 μL Column temperature: 40 °C Capillary voltage: 2500 V Drying gas flow: 13 L/min Drying gas temperature: 350 °C Gas pressure: 30 psi Ionization: ESI source in positive mode | Zorbax Eclipse XDB-C8 column 150 mm × 4.6 mm 5 μm | AFM1 | 0.04 | 0.05 | [81] |
Almonds, Hazelnuts, Peanuts, Pistachios, Walnuts | AFB1, AFB2, AFG1, AFG2, ZEA | QuEChERS | Sample quantity: 2 g Extraction: 10 mL of acetonitrile: water (80:20 v/v), 4 g Na2SO4 anhydrous salt, and 1 g NaCl centrifugation for 10 min; 3 mL of supernatant, 100 mg of C18, centrifugated for 10 min and filtered | UHPLC-MS/MS | Mobile phase: A: methanol; B: aqueous solution of ammonium formate 5 mM Gradient program Flow rate: 0.2 mL/min Injection volume: 5 μL Column temperature: 25 °C Capillary voltage: 3500 V Nozzle voltage: 500 V Sheath gas temperature: 400 °C Sheath gas flow: 11 L/min Gas temperature: 325 °C Gas flow: 5 L/min Gas pressure: 45 psi Ionization: ESI source in + mode for AFB1, AFB2, AFG1, and AFG2; ESI source in—mode for ZEA | Zorbax plus C18 column 100 × 2.1 mm, 1.8 μm | - | - | 0.5–1.0 | [88] |
Apple juice, Grape juice, Orange juice, Pomegranate juice, Raisin, Dried-fig, Wheat flour, Barley flour, Peanuts, Pistachios, Chili, Mixed spice | AFB1, AFB2, AFG1, AFG2, OTA | QuEChERS | Sample quantity: 2.5 g Extraction: 10 mL acetonitrile, 10 mL water with 0.2% formic acid, rotation for 30 min; 4 g of magnesium sulfate, 1 g of sodium chloride, 1 g of sodium citrate, 0.5 g of sodium hydrogen citrate sesquihydrate, centrifugation; 2 extractions with 20 mL hexane; dSPE with supernatant, 150 mg C18, 900 mg magnesium sulfate, centrifugation, 2 washes with acetonitrile | LC-MS/MS | Mobile phase: water Flow rate: 0.2 mL/min Injection volume: 4 μL Column temperature: 30 °C Gas temperature: 250 °C Gas flow: 14 L/min Gas pressure: 25 psi Ionization: ESI source in positive mode | ODS CIS 150 mm × 2.1 mm, 5 μm | - | 0.08–0.09 | 0.10–0.20 | [24] |
peanuts, dried figs, and paprika powder | AFB1, AFB2, AFG1, AFG2 | in-line IAC | Sample quantity (peanut): 5 g Extraction: 1 g of NaCl, 30 mL of methanol/water (80:20), filtration; 10 mL of filtrate diluted with 60 mL of PBS Sample quantity (dried figs): 40 g Extraction: 5 g of NaCl, 200 mL of methanol/water (80:20) + 100 mL n- hexane, filtration; 10 mL of filtrate diluted with 60 mL of PBS | HPLC-FLD | Mobile phase: methanol/acetonitrile/water (30/20/50, v/v/v), 300 mL/L of nitric acid (HNO3), and 50 mg/L of KBr Binding buffer: 0.01 M Na2HPO4, 0.15 M NaCl (in water, pH adjusted to 7.0) Flow rate: 0.25 mL/min. Elution buffer contained acetonitrile/water (20/80, v/v) at a flow rate of 0.8 mL/min | reverse phase Genesis C18 HPLC column 25 cm × 4.6 mm, 4 mm | - | 0.01–0.03 | 0.02–0.05 | [89] |
peanut, corn, wheat | AFB1, AFB2, AFG1, AFG2, OTA ZEA, T-2 toxin | mIAC. | Sample quantity: 20 g Extraction: ACN/water/acetic acid (80:19:1, v/v/v, 100 mL), supernatant filtrated and diluted with PBS at the ratio of 1:3 | HPLC-MS/MS | Elution A: water + 0.05% formic acid Elution B: acetonitrile + 0.05% formic acid Flow rate: 250 μL/min 10 μL sample solution was injected into HPLC MS: triple quadrupole coupled + electrospray interface (ESI) Spray voltage: 4.0 kV for ESI+ and −3.0 kV for ESI− Capillary temperature: 350 °C Sheath gas pressure (N2): 30 units Auxiliary gas pressure (N2): 5 units Collision gas (Ar): 1.5 mTorr Scan time: 0.1 s | Thermo Scientific C18 column (Hypersil Gold, 100 mm × 2.1 mm, 3.0 μm) at 35 °C | - | 0.04–0.4 | 0.3–0.12 | [90] |
spiked peanut and corn | AFB1 AFB2 | multifunctional | Sample quantity: 25 g Extraction: 100 mL acetonitrile/deionized water (84:16), filtered, 9 mL of filtrate transferred into a test tube and pressed through Mycosep® #226 AflaZon clean-up cartridge, 2 mL removed and evaporated to dryness. Reconstituted into 200 μL of methanol, vortexed and filtered through 0.45 μm nylon | HPLC-FLD | Mobile phase: deionized water/acetonitrile/methanol (60:20:20) Flow rate: 1.0 mL/min Injection volume: 20 μL Fluorescence detector: 375 nm (excitation), 440 nm (emission) | Platinum C18 column (250 × 4.6 mm id, 5 μm) at 40 °C | - | - | - | [91] |
Rice, peanut, wheat, and maize | AFB1, AFB2, AFG1, AFG2, FB1, FB2, DON, ZON, OTA, T- 2 and HT-2 | IAC | Sample quantity: 5 g Extraction: 25 mL PBS buffer, Extraction solution A: Filtered 17.5 mL of PBS-extracted supernatant Extraction solution B: 7.5 mL methanol added into the remaining PBS-extracted supernatant. 10 mL added to 90 mL PBS buffer to fix the volume at 100 mL | UHPLC-MS/MS | Injection volume: 10 μL Waters Zevo triple quadrupole tandem mass spectrometer To maximize analysis parameters, 1.0 μg/mL of each toxin standard sample at 10 μL/min was injected Capillary voltage: 2.5 kV Extractor voltage: 2.5 V Source temperature: 150 °C Desolvation temperature: 500 °C Desolvation gas (nitrogen) flow: 1000 L/h | ACQUITY BEH C18 (2.1 × 100 mm, 1.7 μm particle size)—30 °C | - | 0.05–1.0 | 0.5–20 | [92] |
Peanuts | AFB1, AFB2, AFG1, AFG2, ZEN, OTA | - | Sample quantity (Milled peanut samples): 10.0 g Extraction: 50.0 mL methanol/water (80:20, v/v), 5.00 mL extracting solution was moved into a 10 mL glass and centrifuged, followed by DLLME | HPLC-FLD | Mobile phase: A—acetic acid/water (1:99, v/v), B- Acetonitrile Flow rate: 1.00 mL/min Injection volume: 10.0 μL | HLPC column Inertsil® DS-3 (4.6 × 250 mm, 5 μm) | - | 0.03–1.0 | 0.5–2.0 | [93] |
maize, peanut, rice orange juice, grape juice | AFB1, OTA, FB1 | - | Samples quantity: 6 g of the mashed blank crops (maize, peanut, and rice) Extraction; 30 mL of methanol/water (7:3, v/v). All extract samples were pretreated by simple filter processing | MagQBD-ICA | Components: nitrocellulose (NC) membrane containing three test lines (T lines) and a control line (C line), sample pad (MagQBD immuno-complex loading), and absorbent pad AFB1-BSA (0.8 mg/mL), OTA-BSA (0.6 mg/mL), and FB1-BSA (0.06 mg/mL) dissolved in PBS buffer (10 mM, pH 7.4), sprayed onto the NC membrane Goat anti-mouse IgG antibody (0.4 mg/mL) applied to the NC membrane (C line) The NC membrane was placed in a drying oven at 37 °C for 3 h, sample pad + absorbent pad assembled together on the plastic backing card, cut (3 mm strips), and stored in a vacuum desiccator until use | -- | - | 0.05–0.5 | - | [94] |
peanuts, corn | AFB1, DON, T-2, ZEA | - | Samples quantity: 2 g Extraction; 10 mL methanol: water (20:80, v/v- corn powder, 40:60, v/v- peanut extract) The mixture was blended. Supernatant was collected. The extract was diluted 10 times (Ab dilution buffer), stored at 4 °C. | multiplex immunoassay-suspension array | All mycotoxin antigens were successfully bound to the microsphere using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride Chessboard trituration was used to determine the best antibody concentrations and biotin—rabbit anti-goat igG Using indirect competitive immunoassay, the four mycotoxins were quantitatively detected | - | - | 0.00022–0.19 | - | [95] |
Mycotoxin | Sample | Decontamination Technique | % Reduction in Mycotoxins | Reference |
---|---|---|---|---|
AFB1 | Peanut surface | UV radiation | 100 | [110] |
Corn and walnut | Gamma radiation | >80 | [111] | |
Peanuts | Microwave heating (360, 480 and 600 W) | 59–67 | [112] | |
Gamma radiation | 20–43 | |||
Ozonation | 30–25 | [108] | ||
Peanut meal | Extrusion | 77 | [113] | |
Brazil nut | Gamma radiation | 71 | [114] | |
Electron bean radiation | 84 | |||
Pistachio nuts (mixed with lemon juice and citric acid) | Heating | 93 | [115] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melo, B.; Robalo, J.; Ramos, F.; Sanches Silva, A. Peanuts (Arachis hypogaea L.) and Mycotoxins: Analytical Approaches, Prevalence, and Innovative Detoxification. Foods 2025, 14, 902. https://doi.org/10.3390/foods14050902
Melo B, Robalo J, Ramos F, Sanches Silva A. Peanuts (Arachis hypogaea L.) and Mycotoxins: Analytical Approaches, Prevalence, and Innovative Detoxification. Foods. 2025; 14(5):902. https://doi.org/10.3390/foods14050902
Chicago/Turabian StyleMelo, Beatriz, João Robalo, Fernando Ramos, and Ana Sanches Silva. 2025. "Peanuts (Arachis hypogaea L.) and Mycotoxins: Analytical Approaches, Prevalence, and Innovative Detoxification" Foods 14, no. 5: 902. https://doi.org/10.3390/foods14050902
APA StyleMelo, B., Robalo, J., Ramos, F., & Sanches Silva, A. (2025). Peanuts (Arachis hypogaea L.) and Mycotoxins: Analytical Approaches, Prevalence, and Innovative Detoxification. Foods, 14(5), 902. https://doi.org/10.3390/foods14050902