Beef- and Pork-Based Dishes from Catering Services: Composition and In Vitro Digestion Effects on Digestibility and Lipid Oxidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Composition
2.2. Fatty Acid Profile
2.3. In Vitro Digestion
2.4. Digestibility Parameters
2.5. Lipid Oxidation
2.6. Statistical Analysis
3. Results and Discussion
3.1. General Composition of Meat Dishes
3.2. In Vitro Digestion Process Effects
3.3. Lipid Oxidation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alfaifi, B.M.; Al-Ghamdi, S.; Othman, M.B.; Hobani, A.I.; Suliman, G.M. Advanced Red Meat Cooking Technologies and Their Effect on Engineering and Quality Properties: A Review. Foods 2023, 12, 2564. [Google Scholar] [CrossRef]
- Pintado, T.; Delgado-Pando, G. Towards More Sustainable Meat Products: Extenders as a Way of Reducing Meat Content. Foods 2020, 9, 1044. [Google Scholar] [CrossRef]
- Wu, G.; Li, P. The “Ideal Protein” Concept Is Not Ideal in Animal Nutrition. Exp. Biol. Med. 2022, 247, 1191–1201. [Google Scholar] [CrossRef]
- Xie, Y.; Ma, Y.; Cai, L.; Jiang, S.; Li, C. Reconsidering Meat Intake and Human Health: A Review of Current Research. Mol. Nutr. Food Res. 2022, 66, 2101066. [Google Scholar] [CrossRef]
- Hodgkinson, S.M.; Montoya, C.A.; Scholten, P.T.; Rutherfurd, S.M.; Moughan, P.J. Cooking Conditions Affect the True Ileal Digestible Amino Acid Content and Digestible Indispensable Amino Acid Score (DIAAS) of Bovine Meat as Determined in Pigs. J. Nutr. 2018, 148, 1564–1569. [Google Scholar] [CrossRef] [PubMed]
- Gatellier, P.; Santé-Lhoutellier, V. Digestion Study of Proteins from Cooked Meat Using an Enzymatic Microreactor. Meat Sci. 2009, 81, 405–409. [Google Scholar] [CrossRef]
- Sobral, M.M.C.; Cunha, S.C.; Faria, M.A.; Ferreira, I.M. Domestic Cooking of Muscle Foods: Impact on Composition of Nutrients and Contaminants. Compr. Rev. Food Sci. Food Saf. 2018, 17, 309–333. [Google Scholar] [CrossRef]
- Grootveld, M.; Percival, B.C.; Grootveld, K.L. Chronic Non-Communicable Disease Risks Presented by Lipid Oxidation Products in Fried Foods. Hepatobiliary Surg. Nutr. 2018, 7, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Chen, X.D. ScienceDirect Validation of in Vitro Bioaccessibility Assays—A Key Aspect in the Rational Design of Functional Foods towards Tailored Bioavailability. Curr. Opin. Food Sci. 2021, 39, 160–170. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST Static in Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Ansorena, D.; Astiasaran, I. Natural Antioxidants (Rosemary and Parsley) in Microwaved Ground Meat Patties: Effects of in Vitro Digestion. J. Sci. Food Agric. 2024, 104, 4465–4472. [Google Scholar] [CrossRef] [PubMed]
- Nieva-Echevarría, B.; Goicoechea, E.; Guillén, M.D. Food Lipid Oxidation under Gastrointestinal Digestion Conditions: A Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 461–478. [Google Scholar] [CrossRef] [PubMed]
- Van Hecke, T.; Vossen, E.; Vanden Bussche, J.; Raes, K.; Vanhaecke, L.; De Smet, S. Fat Content and Nitrite-Curing Influence the Formation of Oxidation Products and NOC-Specific DNA Adducts during in Vitro Digestion of Meat. PLoS ONE 2014, 9, e101122. [Google Scholar] [CrossRef] [PubMed]
- Van Hecke, T.; Van Camp, J.; De Smet, S. Oxidation During Digestion of Meat: Interactions with the Diet and Helicobacter Pylori Gastritis, and Implications on Human Health. Compr. Rev. Food Sci. Food Saf. 2017, 16, 214–233. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Ash of Meat. 920.153. In Official Methods of Analysis; Horwith, W., Ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2002; p. 4. [Google Scholar]
- AOAC. Moisture in Meat. 950.46. In Official Methods of Analysis; Horwith, W., Ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2002; pp. 12–13. [Google Scholar]
- AOAC. Nitrogen in Meat. Kjeldahl Method. 928.08. In Official Methods of Analysis; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2002; pp. 5–6. [Google Scholar]
- ISO 1443; Meat and Meat Products—Determination of Fat Content. International Organization for Standardization: Geneva, Switzerland, 1973.
- Folch, J.; Lees, M.; Stanley, G. A Simple Method for the Isolation and Purification of Total Sipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Methyl Esters of Fatty Acids in Oils and Fats. 969.33. In Official Methods of Analysis; Horwith, W., Ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2002; pp. 19–20. [Google Scholar]
- Khemiri, S.; Nunes, M.C.; Bessa, R.J.B.; Alves, S.P.; Smaali, I.; Raymundo, A. Technological Feasibility of Couscous-Algae-Supplemented Formulae: Process Description, Nutritional Properties and in Vitro Digestibility. Foods 2021, 10, 3159. [Google Scholar] [CrossRef]
- Zhou, H.; Hu, Y.; Tan, Y.; Zhang, Z.; McClements, D.J. Digestibility and Gastrointestinal Fate of Meat versus Plant-Based Meat Analogs: An in Vitro Comparison. Food Chem. 2021, 364, 130439. [Google Scholar] [CrossRef]
- Sobral, M.M.C.; Casal, S.; Faria, M.A.; Cunha, S.C.; Ferreira, I.M. Influence of Culinary Practices on Protein and Lipid Oxidation of Chicken Meat Burgers during Cooking and in Vitro Gastrointestinal Digestion. Food Chem. Toxicol. 2020, 141, 111401. [Google Scholar] [CrossRef]
- BEDCA Spanish Food Composition Database. Available online: https://www.bedca.net/bdpub/ (accessed on 22 February 2025).
- USDA FoodData Central. USDA’s Comprehensive Source of Food Composition Data with Multiple Distinct Data Types. Available online: https://fdc.nal.usda.gov/ (accessed on 22 February 2025).
- Kim, J.H.; Seong, P.N.; Cho, S.H.; Park, B.Y.; Hah, K.H.; Yu, L.H.; Lim, D.G.; Hwang, I.H.; Kim, D.H.; Lee, J.M.; et al. Characterization of Nutritional Value for Twenty-One Pork Muscles. Asian-Aust. J. Anim. Sci. 2007, 21, 138–143. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, Y.; Jiang, L.; Ran, J.; Luo, W.; Xu, H.; Lei, L.; Ai, R.; Tan, J.; Yu, B. Characterization of Biodiversity and Meat Quality in Guizhou Yellow Cattle: Correlations among Intrinsic Factors. J. Food Compos. Anal. 2024, 132, 106297. [Google Scholar] [CrossRef]
- Bohrer, B.M. Review: Nutrient Density and Nutritional Value of Meat Products and Non-Meat Foods High in Protein. Trends Food Sci. Technol. 2017, 65, 103–112. [Google Scholar] [CrossRef]
- Kaliniak-Dziura, A.; Domaradzki, P.; Kowalczyk, M.; Florek, M.; Skałecki, P.; Kędzierska-Matysek, M.; Stanek, P.; Dmoch, M.; Grenda, T.; Kowalczuk-Vasilev, E. Effect of Heat Treatments on the Physicochemical and Sensory Properties of the Longissimus Thoracis Muscle in Unweaned Limousin Calves. Meat Sci. 2022, 192, 108881. [Google Scholar] [CrossRef] [PubMed]
- Nuora, A.; Chiang, V.S.C.; Milan, A.M.; Tarvainen, M.; Pundir, S.; Quek, S.Y.; Smith, G.C.; Markworth, J.F.; Ahotupa, M.; Cameron-Smith, D.; et al. The Impact of Beef Steak Thermal Processing on Lipid Oxidation and Postprandial Inflammation Related Responses. Food Chem. 2015, 184, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.I.; Lee, S.Y.; Hwang, I.G.; Yoo, S.M.; Min, S.G.; Choi, M.J. Quality Characteristics of Beef by Different Cooking Methods for Frozen Home Meal Replacements. Korean J. Food Sci. Anim. Resour. 2015, 35, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Pinchen, H.; Church, S.; Strong, M.; Dimmack, L.; Powell, N.; Swan, G.; Finglas, P. Nutrient Content of Key Cuts of Pork in the UK. Nutr. Bull. 2020, 45, 165–174. [Google Scholar] [CrossRef]
- Macharáčková, B.; Saláková, A.; Bogdanovičová, K.; Haruštiaková, D.; Kameník, J. Changes in the Concentrations of Selected Mineral Elements in Pork Meat after Sous-Vide Cooking. J. Food Compos. Anal. 2021, 96, 103752. [Google Scholar] [CrossRef]
- Schumacher, M.; Delcurto-Wyffels, H.; Thomson, J.; Boles, J. Fat Deposition and Fat Effects on Meat Quality—A Review. Animals 2022, 12, 1550. [Google Scholar] [CrossRef] [PubMed]
- Dinh, T.T.N.; To, K.V.; Schilling, M.W. Fatty Acid Composition of Meat Animals as Flavor Precursors. Meat Muscle Biol. 2021, 5, 34. [Google Scholar] [CrossRef]
- Simopoulos, A.P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef]
- Harris, W.S. The Omega-6:Omega-3 Ratio: A Critical Appraisal and Possible Successor. Prostaglandins Leukot. Essent. Fat. Acids 2018, 132, 34–40. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Evolutionary Aspects of Diet: The Omega-6/Omega-3 Ratio and the Brain. Mol. Neurobiol. 2011, 44, 203–215. [Google Scholar] [CrossRef]
- Molendi-Coste, O.; Legry, V.; Leclercq, I.A. Are N-3 PUFA Dietary Recommendations Met in in-Hospital and School Catering? Acta Gastroenterol. Belg. 2011, 74, 281–288. [Google Scholar] [PubMed]
- Sharma, K.; Tayade, A.; Singh, J.; Walia, S. Bioavailability of Nutrients and Safety Measurements. In Functional Foods and Nutraceuticals; Springer International Publishing: Cham, Switzerland, 2020; pp. 543–593. [Google Scholar]
- DiLorenzo, N. Planning and Analyzing Digestibility Experiments. In Rumenology; Springer International Publishing: Cham, Switzerland, 2016; pp. 281–308. [Google Scholar]
- Bax, M.-L.; Buffière, C.; Hafnaoui, N.; Gaudichon, C.; Savary-Auzeloux, I.; Dardevet, D.; Santé-Lhoutellier, V.; Rémond, D. Effects of Meat Cooking, and of Ingested Amount, on Protein Digestion Speed and Entry of Residual Proteins into the Colon: A Study in Minipigs. PLoS ONE 2013, 8, e61252. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.; Li, L.; Rezaei, A.; Eslamfam, S.; Che, D.; Ma, X. Metabolites of Dietary Protein and Peptides by Intestinal Microbes and Their Impacts on Gut. Curr. Protein Pept. Sci. 2015, 16, 646–654. [Google Scholar] [CrossRef]
- Wu, G. Dietary Protein Intake and Human Health. Food Funct. 2016, 7, 1251–1265. [Google Scholar] [CrossRef]
- Wen, S.; Zhou, G.; Song, S.; Xu, X.; Voglmeir, J.; Liu, L.; Zhao, F.; Li, M.; Li, L.; Yu, X.; et al. Discrimination of in Vitro and in Vivo Digestion Products of Meat Proteins from Pork, Beef, Chicken, and Fish. Proteomics 2015, 15, 3688–3698. [Google Scholar] [CrossRef] [PubMed]
- Lian, F.; Cheng, J.H.; Sun, D.W. Effects of Combined Roasting with Steam Cooking on Fat Content, Physicochemical Properties and in Vitro Protein Digestion of Chicken Wings as Compared with Other Conventional Cooking Methods. LWT 2023, 183, 114941. [Google Scholar] [CrossRef]
- Gawat, M.; Boland, M.; Chen, J.; Singh, J.; Kaur, L. Effects of Microwave Processing in Comparison to Sous Vide Cooking on Meat Quality, Protein Structural Changes, and in Vitro Digestibility. Food Chem. 2024, 434, 137442. [Google Scholar] [CrossRef] [PubMed]
- Bhat, Z.F.; Morton, J.D.; Bekhit, A.E.A.; Kumar, S.; Bhat, H.F. Thermal Processing Implications on the Digestibility of Meat, Fish and Seafood Proteins. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4511–4548. [Google Scholar] [CrossRef]
- Zhou, C.; Pan, D.; Sun, Y.; Li, C.; Xu, X.; Cao, J.; Zhou, G. The Effect of Cooking Temperature on the Aggregation and Digestion Rate of Myofibrillar Proteins in Jinhua Ham. J. Sci. Food Agric. 2018, 98, 3563–3570. [Google Scholar] [CrossRef] [PubMed]
- Bax, M.-L.; Aubry, L.; Ferreira, C.; Daudin, J.-D.; Gatellier, P.; Rémond, D.; Santé-Lhoutellier, V. Cooking Temperature Is a Key Determinant of in Vitro Meat Protein Digestion Rate: Investigation of Underlying Mechanisms. J. Agric. Food Chem. 2012, 60, 2569–2576. [Google Scholar] [CrossRef]
- Lech, G.P.; Reigh, R.C. Plant Products Affect Growth and Digestive Efficiency of Cultured Florida Pompano (Trachinotus carolinus) Fed Compounded Diets. PLoS ONE 2012, 7, e34981. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Huang, Z.; Jin, Z.; Zhou, C.; Wu, J.; Zhao, D.; Shan, K.; Ke, W.; Zhang, M.; Nian, Y.; et al. The Effect of Fat Content in Food Matrix on the Structure, Rheological Properties and Digestive Properties of Protein. Food Hydrocoll. 2022, 126, 107464. [Google Scholar] [CrossRef]
- Wakita, Y.; Takahashi, M.; Tamiya, S.; Kobayashi, I. Effect of Marination in Lemon Juice on Beef Tenderization and in Vitro Gastric Digestibility. J. Sci. Food Agric. 2024, 104, 809–817. [Google Scholar] [CrossRef] [PubMed]
- West, E.A.L.; Xu, A.X.; Bohrer, B.M.; Corradini, M.G.; Joye, I.J.; Wright, A.J.; Rogers, M.A. Sous Vide Cook Temperature Alters the Physical Structure and Lipid Bioaccessibility of Beef Longissimus Muscle in TIM-1. J. Agric. Food Chem. 2021, 69, 8394–8402. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Amer, H.; Sultani, A.; Nasr, P.; Wang, Y.; Corradini, M.G.; Douglas Goff, H.; LaPointe, G.; Rogers, M.A. The Digestive Fate of Beef versus Plant-Based Burgers from Bolus to Stool. Food Res. Int. 2023, 167, 112688. [Google Scholar] [CrossRef]
- Broncano, J.M.; Petrón, M.J.; Parra, V.; Timón, M.L. Effect of Different Cooking Methods on Lipid Oxidation and Formation of Free Cholesterol Oxidation Products (COPs) in Latissimus Dorsi Muscle of Iberian Pigs. Meat Sci. 2009, 83, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Gómez, M.; Fonseca, S.; Lorenzo, J.M. Influence of Thermal Treatment on Formation of Volatile Compounds, Cooking Loss and Lipid Oxidation in Foal Meat. LWT 2014, 58, 439–445. [Google Scholar] [CrossRef]
- Antonini, E.; Torri, L.; Piochi, M.; Cabrino, G.; Meli, M.A.; De Bellis, R. Nutritional, Antioxidant and Sensory Properties of Functional Beef Burgers Formulated with Chia Seeds and Goji Puree, before and after in Vitro Digestion. Meat Sci. 2020, 161, 108021. [Google Scholar] [CrossRef]
- Martini, S.; Cavalchi, M.; Conte, A.; Tagliazucchi, D. The Paradoxical Effect of Extra-Virgin Olive Oil on Oxidative Phenomena during in Vitro Co-Digestion with Meat. Food Res. Int. 2018, 109, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Van Hecke, T.; Wouters, A.; Rombouts, C.; Izzati, T.; Berardo, A.; Vossen, E.; Claeys, E.; Van Camp, J.; Raes, K.; Vanhaecke, L.; et al. Reducing Compounds Equivocally Influence Oxidation during Digestion of a High-Fat Beef Product, Which Promotes Cytotoxicity in Colorectal Carcinoma Cell Lines. J. Agric. Food Chem. 2016, 64, 1600–1609. [Google Scholar] [CrossRef] [PubMed]
- Steppeler, C.; Haugen, J.E.; Rødbotten, R.; Kirkhus, B. Formation of Malondialdehyde, 4-Hydroxynonenal, and 4-Hydroxyhexenal during in Vitro Digestion of Cooked Beef, Pork, Chicken, and Salmon. J. Agric. Food Chem. 2016, 64, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Hur, S.J. Effects of in Vitro Human Digestion on the Antioxidant Activity and Stability of Lycopene and Phenolic Compounds in Pork Patties Containing Dried Tomato Prepared at Different Temperatures. Food Sci. 2018, 83, 1816–1822. [Google Scholar] [CrossRef] [PubMed]
- Van Hecke, T.; Ho, P.L.; Goethals, S.; De Smet, S. The Potential of Herbs and Spices to Reduce Lipid Oxidation during Heating and Gastrointestinal Digestion of a Beef Product. Food Res. Int. 2017, 102, 785–792. [Google Scholar] [CrossRef]
Species | Dish | Cooking Method | Cooking Equipment | Temperature (°C) | Time (Min) | Ingredients |
---|---|---|---|---|---|---|
Beef | Grilled veal fillet—a | Grilling | Griddle | 200 | 1 | Extra-virgin olive oil and salt |
Grilled veal fillet—b | Grilling | Griddle | 225 | 4 | Sunflower oil, olive oil, salt, and garlic | |
Roasted veal round—a | Roasting | Oven | 1º: 75 2º: 250 | 120 | Olive oil, salt, onion, carrot, and white wine | |
Roasted veal round—b | Roasting | Oven | 160 | 120 | Extra-virgin olive oil, salt, onion, carrot, tomato, brandy, garlic, and corn flour | |
Stewed veal—a | Stewing | Tilting pan | 1º: 220 seal 2º: 180 | 105 | Extra-virgin olive oil, salt, carrot, white wine, onion puree, peas, bay leaf, and garlic | |
Stewed veal—b | Stewing | Vario Cook | 110 | 60 | Olive oil, salt, corn flour, tomato, pepper, onion, carrot, white wine, and garlic | |
Pork | Grilled pork loin | Grilling | Tilting pan | 220-250 | 3 | Extra-virgin olive oil and salt |
Roasted pork loin—a | Roasting | Oven | 1º: 190 seal 2º: 200-220 | 35 | Extra-virgin olive oil, salt, onion, corn starch, white wine, and golden apple | |
Roasted pork loin—b | Roasting | Oven | 180 | 90 | Olive oil, salt, parsley, tomato, garlic, white wine, and onion | |
Roasted pork meatballs | Roasting | Oven | 165 | 60 | Olive oil, salt, tomato, carrot, sugar, garlic, and onion | |
Roasted pork tenderloin | Roasting | Oven | 190 | 25 | Olive oil, salt, white wine, onion, and corn starch | |
Stewed pork cheeks | Stewing | Vario Cook | 1º: 250 seal 2º: 150 | 120 | Extra-virgin olive oil, salt, pepper, red wine, onion, leek, carrot, and garlic |
Species | Cooking Method | Dish | Energy (kcal/100 g) | Moisture (%) | Protein (%) | Fat (%) | CH (%) | Ash (%) |
---|---|---|---|---|---|---|---|---|
Beef | Grilling | Grilled veal fillet—a | 167 | 66.0 ± 0.5 de | 31.4 ± 1.5 def | 4.6 ± 0.2 b | 0.0 | 1.5 ± 0.0 e |
Grilled veal fillet—b | 230 | 57.4 ± 0.6 a | 26.2 ± 2.1 bcd | 13.1 ± 0.7 e | 1.8 | 1.3 ± 0.0 de | ||
Roasting | Roasted veal round—a | 160 | 67.3 ± 0.1 efg | 34.0 ± 0.5 f | 2.6 ± 0.2 a | 0.0 | 1.1 ± 0.1 bc | |
Roasted veal round—b | 167 | 62.9 ± 0.3 bc | 31.3 ± 1.5 def | 4.5 ± 0.4 b | 0.2 | 1.1 ± 0.1 b | ||
Stewing | Stewed veal—a | 211 | 61.4 ± 0.5 b | 30.5 ± 1.5 cdef | 9.9 ± 0.6 d | 0.0 | 1.2 ± 0.1 bcd | |
Stewed veal—b | 96 | 78.2 ± 1.4 h | 18.2 ± 1.2 a | 2.5 ± 0.2 a | 0.1 | 0.9 ± 0.0 a | ||
Pork | Grilling | Grilled pork loin | 172 | 63.9 ± 1.1 cd | 25.3 ± 1.1 bc | 7.4 ± 0.3 c | 1.0 | 2.3 ± 0.1 g |
Roasting | Roasted pork loin—a | 166 | 68.2 ± 0.2 fg | 32.4 ± 1.7 ef | 3.9 ± 0.3 b | 0.0 | 1.5 ± 0.0 e | |
Roasted pork loin—b | 177 | 66.3 ± 1.6 ef | 27.6 ± 2.0 bcde | 7.4 ± 0.3 c | 0.0 | 1.2 ± 0.1 bcd | ||
Roasted pork meatballs | 233 | 59.0 ± 0.5 a | 16.6 ± 0.2 a | 15.1 ± 0.6 f | 7.7 | 1.6 ± 0.0 f | ||
Roasted pork tenderloin | 136 | 68.6 ± 0.9 g | 24.1 ± 0.7 b | 3.0 ± 0.3 a | 3.0 | 1.3 ± 0.0 d | ||
Stewing | Stewed pork cheeks | 207 | 62.6 ± 0.3 bc | 33.8 ± 2.2 f | 8.0 ± 0.4 c | 0.0 | 1.1 ± 0.0 b |
Species | Cooking Method | Dish | SFA g/100 g Dish | MUFA g/100 g Dish | PUFA g/100 g Dish | ω3 g/100 g Dish | ω6 g/100 g Dish | ω6/ω3 | PUFA/SFA | UFA/SFA | TFA g/100 g Dish |
---|---|---|---|---|---|---|---|---|---|---|---|
Beef | Grilled | Grilled veal fillet—a | 1.05 ± 0.00 ab | 2.08 ± 0.00 d | 0.47 ± 0.00 cd | 0.01 ± 0.00 a | 0.46 ± 0.00 c | 71.4 ± 3.1 | 0.4 ± 0.0 | 2.4 ± 0.0 | 0.11 ± 0.00 d |
Grilled veal fillet—b | 3.12 ± 0.29 f | 5.40 ± 0.23 i | 1.45 ± 0.06 g | 0.02 ± 0.00 ef | 1.43 ± 0.06 f | 66.6 ± 9.2 | 0.5 ± 0.1 | 2.2 ± 0.3 | 0.24 ± 0.00 g | ||
Roasted | Roasted veal round—a | 0.92 ± 0.01 a | 0.82 ± 0.03 a | 0.30 ± 0.00 b | 0.01 ± 0.00 a | 0.29 ± 0.00 b | 42.0 ± 7.1 | 0.3 ± 0.0 | 1.2 ± 0.0 | 0.15 ± 0.01 e | |
Roasted veal round—b | 1.77 ± 0.01 c | 1.61 ± 0.01 c | 0.20 ± 0.00 a | 0.02 ± 0.00 f | 0.17 ± 0.00 a | 7.2 ± 0.1 | 0.1 ± 0.0 | 1.0 ± 0.0 | 0.10 ± 0.01 d | ||
Stewed | Stewed veal—a | 2.68 ± 0.00 e | 4.28 ± 0.02 g | 0.52 ± 0.00 cd | 0.02 ± 0.00 de | 0.50 ± 0.00 c | 27.6 ± 0.6 | 0.2 ± 0.0 | 1.8 ± 0.0 | 0.20 ± 0.02 f | |
Stewed veal—b | 0.98 ± 0.04 ab | 0.95 ± 0.03 ab | 0.11 ± 0.01 a | 0.01 ± 0.00 ab | 0.10 ± 0.00 a | 9.7 ± 1.0 | 0.1 ± 0.0 | 1.1 ± 0.1 | 0.05 ± 0.01 b | ||
Pork | Grilled | Grilled pork loin | 2.21 ± 0.01 d | 3.22 ± 0.03 f | 0.71 ± 0.02 ef | 0.02 ± 0.00 de | 0.69 ± 0.02 de | 36.8 ± 3.3 | 0.3 ± 0.0 | 1.8 ± 0.0 | 0.09 ± 0.01 cd |
Roasted | Roasted pork loin—a | 1.31 ± 0.00 b | 1.2 ± 0.00 b | 0.60 ± 0.00 de | 0.02 ± 0.00 de | 0.58 ± 0.00 cd | 31.6 ± 0.6 | 0.5 ± 0.0 | 1.4 ± 0.0 | 0.05 ± 0.00 ab | |
Roasted pork loin—b | 2.58 ± 0.08 e | 2.68 ± 0.04 e | 0.64 ± 0.09 ef | 0.01 ± 0.00 bc | 0.62 ± 0.09 de | 46.6 ± 11.2 | 0.2 ± 0.0 | 1.3 ± 0.1 | 0.07 ± 0.00 bc | ||
Roasted pork meatballs | 5.13 ± 0.24 g | 4.76 ± 0.19 h | 1.77 ± 0.06 h | 0.03 ± 0.00 g | 1.74 ± 0.06 g | 56.7 ± 1.3 | 0.3 ± 0.0 | 1.3 ± 0.1 | 0.17 ± 0.01 e | ||
Roasted pork tenderloin | 0.96 ± 0.00 ab | 1.00 ± 0.00 ab | 0.48 ± 0.00 c | 0.01 ± 0.00 a | 0.47 ± 0.00 c | 65.4 ± 1.9 | 0.5 ± 0.0 | 1.5 ± 0.0 | 0.03 ± 0.00 a | ||
Stewed | Stewed pork cheeks | 2.20 ± 0.02 d | 3.35 ± 0.04 f | 0.72 ± 0.02 f | 0.02 ± 0.00 cd | 0.70 ± 0.02 e | 44.3 ± 3.5 | 0.3 ± 0.0 | 1.8 ± 0.0 | 0.07 ± 0.00 bc |
Species | Cooking Method | Dish | IVDMD (%) | IVPD (%) | IVLD (%) |
---|---|---|---|---|---|
Beef | Grilling | Grilled veal fillet—a | 69.7 ± 1.5 a | 86.0 ± 0.7 bcd | 40.5 ± 2.1 d |
Grilled veal fillet—b | 73.5 ± 4.1 abc | 80.4 ± 2.3 ab | 20.1 ± 1.5 bc | ||
Roasting | Roasted veal round—a | 74.1 ± 2.2 abc | 87.0 ± 2.1 cde | 32.0 ± 1.4 cd | |
Roasted veal round—b | 73.6 ± 5.2 abc | 81.8 ± 8.4 abc | 7.3 ± 1.0 a | ||
Stewing | Stewed veal—a | 73.0 ± 3.3 abc | 87.4 ± 1.4 cde | 37.6 ± 0.8 d | |
Stewed veal—b | 68.9 ± 6.0 a | 85.3 ± 3.7 bcd | 32.2 ± 14.2 cd | ||
Pork | Grilling | Grilled pork loin | 81.3 ± 1.6 bcd | 90.3 ± 1.6 de | 11.6 ± 2.5 ab |
Roasting | Roasted pork loin—a | 71.1 ± 1.9 ab | 85.7 ± 1.0 bcd | 26.0 ± 2.0 c | |
Roasted pork loin—b | 86.2 ± 3.2 d | 93.0 ± 1.5 e | 45.9 ± 1.9 d | ||
Roasted pork meatballs | 82.8 ± 6.0 cd | 85.7 ± 2.8 bcd | 14.2 ± 1.0 ab | ||
Roasted pork tenderloin | 77.2 ± 2.6 abcd | 87.9 ± 0.4 cde | 20.7 ± 4.2 bc | ||
Stewing | Stewed pork cheeks | 68.5 ± 3.7 a | 77.1 ± 2.8 a | 8.1 ± 1.9 a |
Species | Cooking Method | Dish | Cooked (mg MDA/kg Sample) | Digested (mg MDA/kg Sample) | p-Value | Oxidation Increase (%) |
---|---|---|---|---|---|---|
Beef | Grilling | Grilled veal fillet—a | 0.40 ± 0.02 a | 1.53 ± 0.06 a | *** | 282 |
Grilled veal fillet—b | 0.83 ± 0.04 a | 4.54 ± 0.31 bc | *** | 447 | ||
Roasting | Roasted veal round—a | 2.09 ± 0.04 c | 5.75 ± 0.26 c | *** | 175 | |
Roasted veal round—b | 4.23 ± 0.14 f | 7.51 ± 0.50 d | *** | 77 | ||
Stewing | Stewed veal—a | 3.04 ± 0.25 de | 1.89 ± 0.08 a | ** | −38 | |
Stewed veal—b | 1.33 ± 0.11 b | 2.10 ± 0.11 a | * | 58 | ||
Pork | Grilling | Grilled pork loin | 0.75 ± 0.02 a | 1.27 ± 0.12 a | ** | 69 |
Roasting | Roasted pork loin—a | 4.61 ± 0.23 f | 15.42 ± 0.46 f | *** | 234 | |
Roasted pork loin—b | 2.61 ± 0.03 d | 9.95 ± 0.27 e | *** | 281 | ||
Roasted pork meatballs | 4.65 ± 0.21 f | 33.01 ± 1.56 g | *** | 610 | ||
Roasted pork tenderloin | 2.94 ± 0.18 de | 10.71 ± 0.42 e | *** | 264 | ||
Stewing | Stewed pork cheeks | 3.11 ± 0.13 e | 4.08 ± 0.35 b | * | 31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ariz-Hernandez, I.; Schulz, P.; Garayoa, R.; Ansorena, D.; Astiasaran, I. Beef- and Pork-Based Dishes from Catering Services: Composition and In Vitro Digestion Effects on Digestibility and Lipid Oxidation. Foods 2025, 14, 789. https://doi.org/10.3390/foods14050789
Ariz-Hernandez I, Schulz P, Garayoa R, Ansorena D, Astiasaran I. Beef- and Pork-Based Dishes from Catering Services: Composition and In Vitro Digestion Effects on Digestibility and Lipid Oxidation. Foods. 2025; 14(5):789. https://doi.org/10.3390/foods14050789
Chicago/Turabian StyleAriz-Hernandez, Itziar, Patrick Schulz, Roncesvalles Garayoa, Diana Ansorena, and Iciar Astiasaran. 2025. "Beef- and Pork-Based Dishes from Catering Services: Composition and In Vitro Digestion Effects on Digestibility and Lipid Oxidation" Foods 14, no. 5: 789. https://doi.org/10.3390/foods14050789
APA StyleAriz-Hernandez, I., Schulz, P., Garayoa, R., Ansorena, D., & Astiasaran, I. (2025). Beef- and Pork-Based Dishes from Catering Services: Composition and In Vitro Digestion Effects on Digestibility and Lipid Oxidation. Foods, 14(5), 789. https://doi.org/10.3390/foods14050789