Low-Protein Diet Supplemented with Amino Acids Can Regulate the Growth Performance, Meat Quality, and Flavor of the Bamei Pigs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Preparation of Diets
2.3. Animals, Feeding Management, and Experimental Design
2.4. Growth Performance and Measurement Methods
- ADFI = total feed intake/(feeding days × number of feeding)
- FCR = total feed intake (kg)/total weight gain (kg)
2.5. Slaughtering Performance and Measurement Methods
2.6. Determination and Method of Pork Physical Quality
2.7. Determination and Method of Nutritional Value of Pork
2.8. Determination of Content of Inosinic Acid and Related Substances in Pork
- C: The concentration of IMP (µg/mL) in the solution to be measured calculated by the standard curve.
- V: The final volume of the sample (mL).
- m: Weighed mass of the raw meat sample (g).
2.9. Determination of Amino Acids and Fatty Acids in Pork
- C: The concentration of AA (g/mL) in the solution to be measured calculated by the standard curve.
- V: The final volume of the sample (mL).
- m: Weighed mass of the raw meat sample (kg).
- W: Content of individual fatty acids in the sample, expressed in milligrams per kilogram (mg/kg).
- C: Concentration of fatty acid methyl esters (FAMEs) in the test solution, in milligrams per liter (mg/L).
- V: Final volume of the test solution, in milliliters (mL).
- k: Conversion factor for transforming FAMEs to their corresponding free fatty acids (pre-determined from certified standards).
- N: Dilution factor applied during sample preparation.
- m: Weighed mass of the sample, in grams (g).
2.10. Determination of Volatile Compounds in Pork
2.11. Data Processing and Analysis
3. Results
3.1. Analysis of Growth Performance of Bamei Pigs
3.2. Analysis of Slaughter Performance of Bamei Pigs
3.3. Analysis of Longissimus Thoracis Muscle Meat Quality of Bamei Pigs
3.4. Analysis of Longissimus Thoracis Muscle Nutrient Content of Bamei Pigs
3.5. Analysis of Longissimus Thoracis Muscle Amino Acids of Bamei Pigs
3.6. Analysis of Longissimus Thoracis Muscle Fatty Acids of Bamei Pigs
3.7. Analysis of Volatile Compounds in Longissimus Thoracis Muscle of Bamei Pig
3.8. Analysis of Relative Aontent of Main Volatile Compounds in Longissimus Thoracis Muscle of Bamei Pig
4. Discussion
4.1. Effects of Dietary Protein Levels on Growth Performance of Bamei Pigs
4.2. Effect of Dietary Protein Levels on Slaughter Performance of Bamei Pigs
4.3. Effects of Dietary Protein Levels on the Quality and Muscle Nutrient Content of Bamei Pork
4.4. Effect of Dietary Protein Levels on Muscle Amino Acids in Bamei Pigs
4.5. Effect of Dietary Protein Levels on Muscle Fatty Acids in Bamei Pigs
4.6. Effects of Dietary Protein Levels on the Types and Content of Volatile Compounds in the Muscles of Bamei Pigs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shriver, J.A.; Carter, S.D.; Sutton, A.L.; Richert, B.T.; Senne, B.W.; Pettey, L.A. Effects of adding fiber sources to reduced-crude protein, amino acid-supplemented diets on nitrogen excretion, growth performance, and carcass traits of finishing pigs. J. Anim. Sci. 2003, 81, 492–502. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, J.; Wang, G.; Cai, S.; Zeng, X.; Qiao, S. Advances in low-protein diets for swine. J. Anim. Sci. Biotechnol. 2018, 9, 769–78260. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.; Han, S.; Zhou, J.; Li, P.; Wang, G.; Yu, H.; Cai, S.; Zeng, X.; Johnston Lee, J.; Levesque Crystal, L.; et al. Effects of dietary crude protein level and N-carbamylglutamate supplementation on nutrient digestibility and digestive enzyme activity of jejunum in growing pigs. J. Anim. Sci. 2020, 98, skaa088. [Google Scholar] [CrossRef]
- Rocha, G.C.; Duarte, M.E.; Kim, S.W. Advances, Implications, and Limitations of Low-Crude-Protein Diets in Pig Production. Animals 2022, 12, 3478. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.Y.; Johnson, T.A.; Ragland, D.; Adeola, O. Impact of ileal indigestible protein on fecal nitrogen excretion and fecal microbiota may be greater compared with total protein concentration of diets in growing pigs. J. Anim. Sci. 2023, 101, skac409. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, B.; Mi, M.M.; Zhang, Q.Y.; Bao, N.; Pan, L.; Zhao, Y.; Qin, G.X. Relationship between the amino acid release kinetics of feed proteins and nitrogen balance in finishing pigs. Animal 2021, 15, 100359. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, H.; Wan, K.; Zhou, K.; Wang, Y.; Li, J.; Tang, Z.; Sun, W.; Wu, L.; An, R.; et al. Effects of supplementing low-protein diets with sodium dichloroacetate and glucose on growth performance, carcass traits, and meat quality of growing-finishing pigs. J. Anim. Sci. 2022, 100, skab359. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.Y.; Shi, R.Z.; Qiang, Y.; Yin, H.H.; Qiao, S.Y. Influence of dietary net energy content on performance of growing pigs fed low crude protein diets supplemented with crystalline amino acids. J. Swine Health Prod. 2010, 18, 294–300. [Google Scholar]
- Li, Y.H.; Li, F.N.; Duan, Y.H.; Guo, Q.P.; Wen, C.Y.; Wang, W.L.; Huang, X.G.; Yin, Y.L. Low-protein diet improves meat quality of growing and finishing pigs through changing lipid metabolism, fiber characteristics, and free amino acid profile of the muscle. J. Anim. Sci. 2018, 96, 3221–3232. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, N.; Xie, C.Y.; Zeng, X.F.; Wang, D.H.; Qiao, S.Y. Effects of dietary crude protein level and amino acid balance on growth performance, carcass traits and meat quality of finishing pigs. J. Anim. Nutr. 2018, 30, 498–506. [Google Scholar] [CrossRef]
- Feng, Z.M.; Zhou, X.; Hua, S.; Kong, X.F.; Huang, R. Genotyping of five Chinese local pig breeds focused on meat quality by using PCR-RFLP based on halothane and Mx1. J. Food Agric. Environ. 2012, 10, 840–845. [Google Scholar]
- Xi, B.; Luo, J.; Gao, Y.Q.; Yang, X.L.; Guo, T.F.; Li, W.H.; Du, T.Q. Transcriptome-metabolome analysis of fatty acid of Bamei pork and Gansu Black pork in China. Bioprocess. Biosyst. Eng. 2021, 44, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Tang, X.; Fan, C.; Wang, L.; Shen, W.; Ren, S.; Zhang, L.; Zhang, Y. Gastrointestinal Tract and Dietary Fiber Driven Alterations of Gut Microbiota and Metabolites in Durco × Bamei Crossbred Pigs. Front. Nutr. 2022, 8, 806646. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, D.; Chen, G.; Chai, M.; Shi, C.; Geng, Y.; Che, Y.; Li, Y.; Liu, S.; Gao, Y.; Hou, H. Effects of dietary protein levels on production performance, meat quality and flavor of fattening pigs. Front. Nutr. 2022, 9, 910519. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bai, X.L. Effects of Different Protein Sources of Low Protein Diet on Growth Performance and Dynamic Changes of Amino Acids in Small Intestine of Finishing Pigs. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2017. [Google Scholar]
- Li, Y.; Feng, Y.; Chen, X.; He, J.; Luo, Y.; Yu, B.; Chen, D.; Huang, Z. Dietary short-term supplementation of grape seed proanthocyanidin extract improves pork quality and promotes skeletal muscle fiber type conversion in finishing pigs. Meat Sci. 2024, 210, 109436. [Google Scholar] [CrossRef] [PubMed]
- Skrlep, M.; Poklukar, K.; Kress, K.; Vrecl, M.; Fazarinc, G.; Batorek Lukač, N.; Weiler, U.; Stefanski, V.; Čandek-Potokar, M. Effect of immunocastration and housing conditions on pig carcass and meat quality traits. Transl. Anim. Sci. 2020, 4, txaa055. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, P.; Zhang, H.; Mi, Z.; Zhang, L.; Zhang, G. Determination of 11 sulfonamides in pork by two-step liquid-liquid extraction-solid phase extraction purification coupled with high performance liquid chromatography-tandem mass spectrometr. Chin. J. Chromatogr. 2019, 37, 1098–1104. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhan, J.; Tang, X.; Li, T.; Duan, S. Characterization and identification of pork flavor compounds and their precursors in Chinese indigenous pig breeds by volatile profiling and multivariate analysis. Food Chem. 2022, 385, 132543. [Google Scholar] [CrossRef] [PubMed]
- Hoa, V.B.; Kyeong, S.R.; Nguyen, T.K.L.; Inho, H. Influence of particular breed on meat quality parameters, sensorycharacteristics, and volatile components. Food Sci. Biotechnol. 2013, 22, 651–658. [Google Scholar] [CrossRef]
- Chen, G.; Sui, Y.; Chen, S. Detection of flavor compounds in longissimus muscle from four hybrid pig breeds of Sus scrofa, Bamei pig, and Large White. Biosci. Biotechnol. Biochem. 2014, 78, 1910–1916. [Google Scholar] [CrossRef]
- Prandini, A.; Sigolo, S.; Morlacchini, M.; Grilli, E.; Fiorentini, L. Microencapsulated lysine and low-protein diets: Effects on performance, carcass characteristics and nitrogen excretion in heavy growing-finishing pigs. J. Anim. Sci. 2013, 91, 4226–4234. [Google Scholar] [CrossRef] [PubMed]
- Tous, N.; Lizardo, R.; Vilà, B.; Gispert, M.; Font-I-Furnols, M.; Esteve-Garcia, E. Effect of reducing dietary protein and lysine on growth performance, carcass characteristics, intramuscular fat, and fatty acid profile of finishing barrows. J. Anim. Sci. 2014, 92, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Deng, D. A Study on the Nutritional and Physiological Effects of Supplementing Essential Amino Acids with Low Protein Diets on Pigs. Master’s Thesis, Institute of Subtropical Agroecology, Chinese Academy of Sciences, Changsha, China, 2007. [Google Scholar]
- Liang, X. Study on the Effect of Adding Oat Green Hay Powder to the Diet on the Reproductive Performance of Qinghai Bamei Binary Sows. Master’s Thesis, Qinghai University, Xining, China, 2014. [Google Scholar]
- Yin, J.; Li, Y.; Zhu, X.; Han, H.; Ren, W.; Chen, S.; Bin, P.; Liu, G.; Huang, X.; Fang, R.; et al. Effects of Long-Term Protein Restriction on Meat Quality, Muscle Amino Acids, and Amino Acid Transporters in Pigs. J. Agric. Food Chem. 2017, 65, 9297–9304. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Wei, H.; Cheng, C.; Xiang, Q.; Pang, J.; Peng, J. Supplementation of branched-chain amino acids to a reduced-protein diet improves growth performance in piglets: Involvement of increased feed intake and direct muscle growth-promoting effect. Br. J. Nutr. 2016, 115, 2236–2245. [Google Scholar] [CrossRef] [PubMed]
- Henry, Y.; Sève, B.; Colléaux, Y.; Ganier, P.; Saligaut, C.; Jégo, P. Interactive effects of dietary levels of tryptophan and protein on voluntary feed intake and growth performance in pigs, in relation to plasma free amino acids and hypothalamic serotonin. J. Anim. Sci. 1992, 70, 1873–1887. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chu, L.; Qiao, S.; Mao, X.; Zeng, X. Effects of dietary leucine supplementation in low crude protein diets on performance, nitrogen balance, whole-body protein turnover, carcass characteristics and meat quality of finishing pigs. Anim. Sci. J. 2016, 87, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Huang, P.; Qiu, K.; Sun, W.; Xu, L.; Zhang, X.; Yin, J. Influences of dietary protein sources and crude protein levels on intracellular free amino acid profile in the longissimus dorsi muscle of finishing gilts. J. Anim. Sci. Biotechnol. 2015, 6, 52. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Figueroa, J.L.; Lewis, A.J.; Miller, P.S.; Fischer, R.L.; Diedrichsen, R.M. Growth, carcass traits, and plasma amino acid concentrations of gilts fed low-protein diets supplemented with amino acids including histidine, isoleucine, and valine. J. Anim. Sci. 2003, 81, 1529–1537. [Google Scholar] [CrossRef] [PubMed]
- Teye, G.A.; Sheard, P.R.; Whittington, F.M.; Nute, G.R.; Stewart, A.; Wood, J.D. Influence of dietary oils and protein level on pork quality. 1. Effects on muscle fatty acid composition, carcass, meat and eating quality. Meat Sci. 2006, 73, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Tuitoek, K.; Young, L.G.; de Lange, C.F.; Kerr, B.J. The effect of reducing excess dietary amino acids on growing-finishing pig performance: An elevation of the ideal protein concept. J. Anim. Sci. 1997, 75, 1575–1583. [Google Scholar] [CrossRef] [PubMed]
- Knowles, T.A.; Southern, L.L.; Bidner, T.D.; Kerr, B.J.; Friesen, K.G. Effect of dietary fiber or fat in low-crude protein, crystalline amino acid-supplemented diets for finishing pigs. J. Anim. Sci. 1998, 76, 2818–2832. [Google Scholar] [CrossRef] [PubMed]
- Doran, O.; Moule, S.K.; Teye, G.A.; Whittington, F.M.; Hallett, K.G.; Wood, J.D. A reduced protein diet induces stearoyl-CoA desaturase protein expression in pig muscle but not in subcutaneous adipose tissue: Relationship with intramuscular lipid formation. Br. J. Nutr. 2006, 95, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Morales, A.; Grageola, F.; García, H.; Araiza, A.; Zijlstra, R.T.; Cervantes, M. Expression of cationic amino acid transporters, carcass traits, and performance of growing pigs fed low-protein amino acid-supplemented versus high protein diets. Genet. Mol. Res. 2013, 12, 4712–4722. [Google Scholar] [CrossRef] [PubMed]
- Hinson, R.B.; Schinckel, A.P.; Radcliffe, J.S.; Allee, G.L.; Sutton, A.L.; Richert, B.T. Effect of feeding reduced crude protein and phosphorus diets on weaning-finishing pig growth performance, carcass characteristics, and bone characteristics. J. Anim. Sci. 2009, 87, 1502–1517. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Mao, P.; Guo, L.; Qiao, S. Crystalline amino acids supplementation improves the performance and carcass traits in late-finishing gilts fed low-protein diets. Anim. Sci. J. 2020, 91, e13317. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Tian, G.; Chen, D.; Zheng, P.; Yu, J.; He, J.; Mao, X.; Huang, Z.; Luo, Y.; Luo, J.; et al. Effect of different dietary protein levels and amino acids supplementation patterns on growth performance, carcass characteristics and nitrogen excretion in growing-finishing pigs. J. Anim. Sci. Biotechnol. 2019, 10, 75. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goodarzi, P.; Wileman, C.M.; Habibi, M.; Walsh, K.; Sutton, J.; Shili, C.N.; Chai, J.; Zhao, J.; Pezeshki, A. Effect of Isoleucine and Added Valine on Performance, Nutrients Digestibility and Gut Microbiota Composition of Pigs Fed with Very Low Protein Diets. Int. J. Mol. Sci. 2022, 23, 14886. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maeda, K.; Yamamoto, F.; Toyoshi, M.; Irie, M. Effects of dietary lysine/protein ratio and fat levels on growth performance and meat quality of finishing pigs. Anim. Sci. J. 2014, 85, 427–434. [Google Scholar] [CrossRef]
- Chen, J. Effects of Dietary Protein Levels on the Growth Performance and Meat Quality Traits of Duyueba Ternary Hybrid Pigs. Master’s Thesis, Northwest A&F University, Xianyang, China, 2016. [Google Scholar]
- Chen, J.; Zhang, H.; Gao, H.; Kang, B.; Chen, F.; Li, Y.; Fu, C.; Yao, K. Effects of Dietary Supplementation of Alpha-Ketoglutarate in a Low-Protein Diet on Fatty Acid Composition and Lipid Metabolism Related Gene Expression in Muscles of Growing Pigs. Animals 2019, 9, 838. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zeng, Z. Effect of Dietary Digestible Energy Level on Production Performance, Meat Quality and Fat Metabolism of Rongchang Roasted Sucking Pig or Roasted Baby Pig Strain. Master’s Thesis, Sichuan Agricultural University, Chengdu, China, 2011. [Google Scholar]
- Jiang, S.; Quan, W.; Luo, J.; Lou, A.; Zhou, X.; Li, F.; Shen, Q.W. Low-protein diets supplemented with glycine improves pig growth performance and meat quality: An untargeted metabolomic analysis. Front. Vet. Sci. 2023, 10, 1170573. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- DeVol, D.L.; McKeith, F.K.; Bechtel, P.J.; Novakofski, J.; Shanks, R.D.; Carr, T.R. Author Notes, Variation in Composition and Palatability Traits and Relationships between Muscle Characteristics and Palatability in a Random Sample of Pork Carcasses. J. Anim. Sci. 1988, 66, 385–395. [Google Scholar] [CrossRef]
- Masic, U.; Yeomans, M.R. Umami flavor enhances appetite but also increases satiety. Am. J. Clin. Nutr. 2014, 100, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Norman, J.L.; Berg, E.P.; Heymann, H.; Lorenzen, C.L. Pork loin color relative to sensory and instrumental tenderness and consumer acceptance. Meat Sci. 2003, 65, 927–933. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, M.G.; Byrne, D.V.; Martens, M. Evaluation of pork colour sensory colour assessment using trained and untrained sensory panellists. Meat Sci. 2003, 63, 119–129. [Google Scholar] [PubMed]
- Lindahl, G.; Lundström, K.; Tornberg, E. Contribution of pigment content, myoglobin forms and internal reflectance to the colour of pork loin and ham from pure breed pigs. Meat Sci. 2001, 59, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.P.; Zhou, P.; Li, J.L.; Zhang, L.; Gao, F.; Zhou, G.H. Effects of adding cysteamine to low-protein amino acid balanced diet on growing pork quality and related gene expression. J. Anim. Husb. Vet. Med. 2017, 48, 660–668. [Google Scholar] [CrossRef]
- Suarez, B.J.; Latorre, M.A.; Guada, J.A. The effect of protein restriction during the growing period on carcass, meat and fat quality of heavy barrows and gilts. Meat Sci. 2016, 112, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Goerl, K.F.; Eilert, S.J.; Mandigo, R.W.; Chen, H.Y.; Miller, P.S. Pork characteristics as affected by two populations of swine and six crude protein levels. J. Anim. Sci. 1995, 73, 3621–3626. [Google Scholar] [CrossRef]
- Bidner, B.S.; Ellis, M.; Witte, D.P.; Carr, S.N.; McKeith, F.K. Influence of dietary lysine level, pre-slaughter fasting, and rendement napole genotype on fresh pork quality. Meat Sci. 2004, 68, 53–60. [Google Scholar] [CrossRef]
- Ruusunen, M.; Partanen, K.; Pösö, R.; Puolannea, E. The effect of dietary protein supply on carcass composition, size of organs, muscle properties and meat quality of pigs. Livest. Sci. 2006, 107, 170–181. [Google Scholar] [CrossRef]
- Benz, J.M.; Tokach, M.D.; Dritz, S.S.; Nelssen, J.L.; Derouchey, J.M.; Sulabo, R.C.; Goodband, R.D. Effects of increasing choice white grease in corn- and sorghum-based diets on growth performance, carcass characteristics, and fat quality characteristics of finishing pigs. J. Anim. Sci. 2011, 89, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Kong, X.; Hu, C.; Zhou, B.; Wang, C.; Shen, Q.W. Fatty Acid Content, Flavor Compounds, and Sensory Quality of Pork Loin as Affected by Dietary Supplementation with l-arginine and Glutamic Acid. J. Food Sci. 2019, 84, 3445–3453. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Y.; Peng, Y.; He, J.; Xiao, D.; Chen, C.; Li, F.; Huang, R.; Yin, Y. Dietary mulberry leaf powder affects growth performance, carcass traits and meat quality in finishing pigs. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1934–1945. [Google Scholar] [CrossRef] [PubMed]
- Qin, C. The Effect and Mechanism of Dietary Protein Supply on Pork Quality and Intestinal Physiology. Master’s Thesis, China Agricultural University, Beijing, China, 2017. [Google Scholar]
- Wang, Q.; Liu, Y.P. Study on the content of lnosine monophosphate and delicious amino acids in different strains of Daheng high quality chickens. China Anim. Husb. Vet. Med. 2012, 39, 232–235. (In Chinese) [Google Scholar]
- Huang, C.; Zheng, M.; Huang, Y.; Liu, X.; Zhong, L.; Ji, J.; Zhou, L.; Zeng, Q.; Ma, J.; Huang, L. The effect of purine content on sensory quality of pork. Meat Sci. 2021, 172, 108346. [Google Scholar] [CrossRef] [PubMed]
- Siri-Tarino, P.W.; Sun, Q.; Hu, F.B.; Krauss, R.M. Saturated fat, carbohydrate, and cardiovascular disease. Am. J. Clin. Nutr. 2010, 91, 502–509. [Google Scholar] [CrossRef]
- De Oliveira, P.A.; Kovacs, C.; Moreira, P.; Magnoni, D.; Saleh, M.H.; Faintuch, J. Unsaturated Fatty Acids Improve Atherosclerosis Markers in Obese and Overweight Non-diabetic Elderly Patients. Obes. Surg. 2017, 27, 2663–2671. [Google Scholar] [CrossRef]
- Mukherjee, A.; Kenny, H.A.; Lengyel, E. Unsaturated Fatty Acids Maintain Cancer Cell Stemness. Cell Stem Cell. 2017, 20, 291–292. [Google Scholar] [CrossRef]
- Schumacher, M.; DelCurto-Wyffels, H.; Thomson, J.; Boles, J. Fat Deposition and Fat Effects on Meat Quality—A Review. Animals 2022, 12, 1550. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, L.; Huang, Y.; Wang, Y.; Shan, T. Effects of Polyunsaturated Fatty Acids Supplementation on the Meat Quality of Pigs: A Meta-Analysis. Front. Nutr. 2021, 8, 746765. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wood, J.D.; Lambe, N.R.; Walling, G.A.; Whitney, H.; Jagger, S.; Fullarton, P.J.; Bayntun, J.; Hallett, K.; Bünger, L. Effects of low protein diets on pigs with a lean genotype. 1. Carcass composition measured by dissection and muscle fatty acid composition. Meat Sci. 2013, 95, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tang, Z.; Li, T.; Chen, C.; Huang, F.; Yang, J.; Xu, Q.; Zhen, J.; Wu, Z.; Li, M.; et al. Pyruvate is an effective substitute for glutamate in regulating porcine nitrogen excretion. J. Anim. Sci. 2018, 96, 3804–3814. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huo, Y.J.; Zhan, J.S.; Yu, T.S.; Zhu, J.P.; Zhao, G.Q. Effects of different dietary protein levels on growth performance, meat quality and serum biochemical indexes of Huai pigs. Acta PrataSinica 2015, 24, 133–141. [Google Scholar] [CrossRef]
- Duan, Y.; Zheng, C.; Zheng, J.; Ma, L.; Ma, X.; Zhong, Y.; Zhao, X.; Li, F.; Guo, Q.; Yin, Y. Profiles of muscular amino acids, fatty acids, and metabolites in Shaziling pigs of different ages and relation to meat quality. Sci. China Life Sci. 2022, 66, 1323–1339. [Google Scholar] [CrossRef] [PubMed]
- Estévez, M.; Morcuende, D.; Ventanas, S.; Cava, R. Analysis of volatiles in meat from Iberian pigs and lean pigs after refrigeration and cooking by using SPME-GC-MS. J. Agric. Food Chem. 2003, 51, 3429–3435. [Google Scholar] [CrossRef]
- Han, S.; Schroeder, E.A.; Silva-García, C.G.; Hebestreit, K.; Mair, W.B.; Brunet, A. Mono-unsaturated fatty acids link H3K4me3 modifiers to C. elegans lifespan. Nature 2017, 544, 185–190. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fu, Y.; Cao, S.; Yang, L.; Li, Z. Flavor formation based on lipid in meat and meat products: A review. J. Food Biochem. 2022, 46, e14439. [Google Scholar] [CrossRef] [PubMed]
- Huff-Lonergan, E.; Baas, T.J.; Malek, M.; Dekkers, J.C.; Prusa, K.; Rothschild, M.F. Correlations among selected pork quality traits. J. Anim. Sci. 2002, 80, 617–627. [Google Scholar] [CrossRef]
- Mottram, D.S. Flavour formation in meat and meat products: A review. Food Chem. 1998, 62, 415–424. [Google Scholar] [CrossRef]
- Del Pulgar, J.S.; Roldan, M.; Ruiz-Carrascal, J. Volatile Compounds Profile of Sous-Vide Cooked Pork Cheeks as Affected by Cooking Conditions (Vacuum Packaging, Temperature and Time). Molecules 2013, 18, 12538–12547. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Choi, J.Y.; Shinde, P.; Jin, Z.; Kim, J.S.; Chae, B.J. Effects of dietary protein level and phase feeding regimen on growth performance, carcass characteristics and pork quality in growing-finishing pigs. J. Anim. Sci. Technol. 2010, 52, 205–212. [Google Scholar] [CrossRef]
Raw Material | Control Group | Group I | Group II |
---|---|---|---|
Corn | 63.50 | 68.00 | 72.00 |
Soybean meal | 18.30 | 12.90 | 7.20 |
Wheat bran | 5.00 | 5.00 | 5.00 |
Alfalfa meal | 5.00 | 6.50 | 9.00 |
Bentonite | 4.00 | 2.90 | 1.60 |
Soybean oil | 1.50 | 1.70 | 2.00 |
Allzyme ① | 0.10 | 0.10 | 0.10 |
Lysine | 0.09 | 0.23 | 0.37 |
Methionine | - | 0.03 | 0.05 |
Threonine | - | 0.08 | 0.15 |
Tryptophan | - | 0.03 | 0.05 |
CaCO3 | 0.51 | 0.46 | 0.30 |
CaHPO4 | 1.15 | 1.22 | 1.33 |
vit. and mineral mix ② | 0.50 | 0.50 | 0.50 |
NaCl | 0.35 | 0.35 | 0.35 |
Total | 100.00 | 100.00 | 100.00 |
Nutrient content ③ | |||
DE/(MJ/kg) | 13.14 | 13.13 | 13.11 |
CP | 16.00% | 14.00% | 12.00% |
CF | 3.22 | 3.50 | 4.02 |
Ca | 0.60 | 0.61 | 0.60 |
TP | 0.55 | 0.55 | 0.55 |
Na | 0.16 | 0.16 | 0.17 |
Cl | 0.27 | 0.27 | 0.28 |
SID Lys | 0.86 | 0.86 | 0.86 |
SID Met | 0.26 | 0.26 | 0.26 |
SID Thr | 0.59 | 0.59 | 0.59 |
SID Trp | 0.19 | 0.19 | 0.19 |
Items | Control Group | Group I | Group II | p-Value |
---|---|---|---|---|
IBW/kg | 50.85 ± 2.12 | 51.05 ± 2.01 | 51.20 ± 1.58 | 0.125 |
FBW/kg | 104.45 ± 3.60 | 102.95 ± 3.08 | 108.67 ± 2.29 | 0.085 |
ADFI/kg·day−1 | 2.30 ± 0.26 | 2.32 ± 0.14 | 2.37 ± 0.16 | 0.110 |
ADG/kg·day−1 | 0.77 ± 0.05 | 0.74 ± 0.01 | 0.82 ± 0.02 | 0.062 |
FCR/kg feed·kg gain−1 | 2.99 ± 0.61 | 3.14 ± 0.56 | 2.89 ± 0.46 | 0.058 |
Item | Control Group | Group I | Group II | p-Value |
---|---|---|---|---|
Carcass weight/kg | 71.84 ± 1.46 | 71.56 ± 0.90 | 76.31 ± 1.46 | 0.105 |
Dressing percentage/% | 68.78 ± 2.30 | 69.51 ± 1.81 | 70.22 ± 1.17 | 0.456 |
Backfat thickness/cm | 5.54 ± 0.68 a | 3.38 ± 1.01 b | 3.34 ± 0.88 b | 0.016 |
Skin thickness/mm | 2.88 ± 0.13 | 3.30 ± 2.57 | 3.25 ± 1.14 | 0.088 |
Carcass length/cm | 99.20 ± 4.30 | 102.19 ± 9.00 | 98.11 ± 10.92 | 0.232 |
Loin eye area/cm2 | 36.08 ± 7.15 | 19.60 ± 10.27 | 34.99 ± 8.62 | 0.844 |
Hind leg weight/kg | 8.71 ± 2.58 | 9.93 ± 1.18 | 8.75 ± 2.59 | 0.112 |
Heart weight/kg | 0.30 ± 0.00 | 0.28 ± 0.06 | 0.33 ± 0.10 | 0.762 |
Liver weight/kg | 1.38 ± 0.03 | 1.08 ± 0.10 | 1.08 ± 0.70 | 0.684 |
Spleen weight/kg | 0.18 ± 0.03 | 0.20 ± 0.05 | 0.14 ± 0.06 | 0.621 |
Lung weight/kg | 0.75 ± 0.01 | 0.67 ± 0.03 | 0.77 ± 0.10 | 0.301 |
Kidney weight/kg | 0.33 ± 0.03 | 0.26 ± 0.06 | 0.35 ± 0.09 | 0.193 |
Stomach weight/kg | 0.93 ± 0.08 | 0.85 ± 0.01 | 0.92 ± 0.13 | 0.274 |
Gastric contents pH | 6.18 ± 0.57 a | 5.24 ± 0.89 ab | 3.52 ± 1.28 b | 0.045 |
Cecal contents pH | 6.39 ± 0.43 | 6.43 ± 0.04 | 5.90 ± 0.39 | 0.324 |
Jejunal contents pH | 6.84 ± 0.20 | 6.79 ± 0.21 | 6.67 ± 0.45 | 0.186 |
Item | Control Group | Group I | Group II | p-Value |
---|---|---|---|---|
Shear force/N | 46.18 ± 0.03 | 48.35 ± 1.52 | 47.71 ± 2.52 | 0.294 |
Filtration rate/% | 4.89 ± 0.31 | 4.17 ± 0.81 | 6.07 ± 1.44 | 0.062 |
Cooking loss/% | 33.94 ± 1.29 | 34.89 ± 3.07 | 34.16 ± 3.70 | 0.058 |
Marbling score | 3.82 ± 0.14 a | 3.30 ± 0.30 b | 3.84 ± 0.14 a | 0.024 |
L45 min | 42.05 ± 0.45 | 39.14 ± 3.41 | 41.85 ± 2.23 | 0.900 |
L24 h | 48.59 ± 2.89 | 44.98 ± 4.00 | 49.38 ± 2.23 | 0.141 |
a45 min | 4.02 ± 0.32 | 5.74 ± 1.65 | 4.08 ± 1.39 | 0.147 |
a24 h | 9.54 ± 0.24 | 8.03 ± 2.13 | 8.41 ± 1.38 | 0.156 |
b45 min | 11.88 ± 0.85 | 10.50 ± 1.29 | 12.42 ± 0.46 | 0.273 |
b24 h | 16.34 ± 0.84 | 14.82 ± 1.49 | 16.18 ± 0.05 | 0.051 |
pH45 min | 6.27 ± 0.03 | 6.22 ± 0.22 | 6.15 ± 0.42 | 0.119 |
pH24 h | 5.53 ± 0.15 | 5.49 ± 0.17 | 5.56 ± 0.11 | 0.620 |
pH72 h | 5.52 ± 0.05 | 5.41 ± 0.20 | 5.50 ± 0.09 | 0.367 |
Compound (%) | Control Group | Group I | Group II | p-Value |
---|---|---|---|---|
Moisture | 66.25 ± 1.55 | 68.27 ± 2.96 | 68.47 ± 1.60 | 0.146 |
Crude protein (CP) | 22.65 ± 0.35 | 23.30 ± 1.18 | 22.17 ± 2.27 | 0.402 |
Crude fat (EE) | 6.80 ± 0.50 | 6.27 ± 1.51 | 6.03 ± 1.11 | 0.447 |
Ash | 1.10 ± 0.03 | 1.11 ± 0.06 | 1.15 ± 0.05 | 0.253 |
Inosinc acid (IMP) | 0.30 ± 0.03 | 0.28 ± 0.02 | 0.27 ± 0.01 | 0.129 |
Amino Acid (g/kg) | Control Group | Group I | Group II | p-Value |
---|---|---|---|---|
Threonine | 7.88 ± 0.07 | 8.98 ± 0.87 | 7.59 ± 0.70 | 0.085 |
Valine | 9.56 ± 0.22 | 13.28 ± 5.01 | 9.01 ± 0.77 | 0.233 |
Methionine | 4.71 ± 0.03 b | 11.33 ± 1.93 a | 3.89 ± 1.53 b | 0.016 |
Isoleucine | 10.30 ± 0.17 | 10.06 ± 1.81 | 9.66 ± 0.91 | 0.789 |
Leucine | 17.38 ± 0.28 | 17.33 ± 2.92 | 16.77 ± 1.38 | 0.899 |
Phenylalanine | 8.69 ± 0.12 | 11.48 ± 3.52 | 8.38 ± 0.64 | 0.210 |
Lysine | 20.17 ± 0.04 | 17.43 ± 8.45 | 19.78 ± 1.80 | 0.776 |
Cystine | 7.41 ± 0.01 b | 8.93 ± 0.37 a | 9.27 ± 0.14 a | <0.001 |
Tyrosine | 9.71 ± 0.15 | 13.76 ± 5.71 | 9.41 ± 0.99 | 0.282 |
Histidine | 14.39 ± 0.29 | 12.04 ± 7.72 | 13.05 ± 2.33 | 0.830 |
Serine | 8.48 ± 0.17 b | 9.38 ± 0.11 a | 8.36 ± 0.66 b | 0.039 |
Arginine | 14.60 ± 0.14 | 13.52 ± 5.31 | 14.99 ± 0.86 | 0.841 |
Aspartic acid | 19.28 ± 0.36 | 20.70 ± 0.57 | 18.69 ± 1.62 | 0.118 |
Glycine | 8.46 ± 0.06 b | 9.06 ± 0.40 a | 8.18 ± 0.18 b | 0.015 |
Glutamic acid | 26.83 ± 0.08 | 22.00 ± 11.63 | 26.07 ± 2.15 | 0.666 |
Alanine | 20.21 ± 0.26 | 20.32 ± 1.51 | 19.46 ± 1.42 | 0.811 |
Proline | 8.74 ± 0.05 | 9.08 ± 0.44 | 8.55 ± 0.32 | 0.189 |
TAA | 216.80 ± 3.02 | 228.68 ± 13.34 | 211.12 ± 17.42 | 0.160 |
EAA | 104.79 ± 1.86 | 123.21 ± 16.04 | 102.80 ± 9.38 | 0.055 |
FAA | 69.17 ± 0.58 | 65.28 ± 17.16 | 67.93 ± 9.00 | 0.895 |
SAA | 73.94 ± 1.25 | 74.25 ± 10.22 | 71.93 ± 5.04 | 0.899 |
AAA | 60.50 ± 0.57 | 57.74 ± 19.84 | 57.81 ± 6.07 | 0.845 |
BAA | 89.34 ± 1.50 | 102.81 ± 9.87 | 85.16 ± 8.50 | 0.065 |
Glutamate/TAA (%) | 12.38 ± 1.12 | 9.44 ± 2.58 | 12.35 ± 0.86 | 0.071 |
EAA/TAA (%) | 48.33 ± 5.84 | 54.27 ± 3.25 | 48.67 ± 6.25 | 0.088 |
FAA/TAA (%) | 31.70 ± 3.68 | 28.32 ± 2.56 | 32.21 ± 2.77 | 0.074 |
Group | Fatty Acid (mg/kg) | Control Group | Group I | Group II | p-Value |
---|---|---|---|---|---|
Saturated Fatty Acid (SFA) | C10:0 Decanoic Acid | 46.00 ± 2.01 c | 78.67 ± 28.11 b | 83.3 ± 19.14 a | 0.012 |
C12:0 Lauric acid | 59.50 ± 0.50 | 66.67 ± 21.94 | 65.33 ± 21.59 | 0.125 | |
C14:0 Myristic acid | 1084.00 ± 2.00 | 944.67 ± 357.03 | 1009.22 ± 264.59 | 0.158 | |
C16:0 Palmitic acid | 19,462.00 ± 814.00 | 15,961.67 ± 3968.80 | 15,925.33 ± 3934.64 | 0.213 | |
C17:0 Heptadecanoic acid | 56.50 ± 13.50 | 84.67 ± 30.02 | 77.33 ± 13.05 | 0.241 | |
C18:0 Stearic acid | 8745.50 ± 338.50 a | 6408.33 ± 1134.80 b | 6631.00 ± 1035.83 b | 0.026 | |
C20:0 Arachidic acid | 158.50 ± 2.50 | 122.00 ± 43.59 | 113.33 ± 37.00 | 0.153 | |
Monounsaturated Fatty Acid (MUFA) | C14:1 Tetradecenoic acid | 22.50 ± 2.50 b | 22.00 ± 10.00 b | 40.00 ± 10.00 a | <0.001 |
C16:1 Palmitoleic acid | 2840.50 ± 249.50 | 2591.33 ± 644.80 | 2878.67 ± 1131.18 | 0.136 | |
C18:1n9c Oleic acid | 29,356.50 ± 2690.50 | 28,796.00 ± 8380.40 | 26,911.67 ± 3840.88 | 0.154 | |
C20:1 cis-11-eicosenoic acid | 83.00 ± 19.00 c | 126.00 ± 67.54 b | 302.00 ± 347.62 a | <0.001 | |
C22:1n9 Erucic acid | 18.00 ± 0.01 b | 37.33 ± 15.01 a | 28.00 ± 4.00 ab | 0.021 | |
Polyunsaturated Fatty Acid (PUFA) | C18:2n6c Linoleic acid | 2083.00 ± 425.00 | 3345.00 ± 1624.84 | 2680.00 ± 411.14 | 0.223 |
C18:3n3 α-linolenic acid | 472.00 ± 7.00 | 571.33 ± 254.34 | 319.00 ± 176.37 | 0.210 | |
C18:3n6 γ-linolenic acid | 18.00 ± 8.00 | 26.67 ± 10.07 | 18.00 ± 0.01 | 0.123 | |
C20:2 cis-11,14-eicosadienoic acid | 104.00 ± 22.00 | 171.67 ± 81.16 | 127.00 ± 26.00 | 0.214 | |
C20:3n3 cis-11,14,17-eicosatrienoic acid | 30.00 ± 11.00 | 55.33 ± 24.58 | 65.67 ± 63.51 | 0.244 | |
C20:3n6 cis-8,11,14-eicosatrienoic acid | 47.50 ± 21.50 | 69.67 ± 22.03 | 65.00 ± 16.46 | 0.112 | |
C20:4n6 Arachidonic acid | 315.50 ± 190.50 | 375.00 ± 178.60 | 316.33 ± 139.59 | 0.212 | |
Total Fatty Acid (TFA) | 65,022.50 ± 4813.62 | 59,904.33 ± 14,533.43 | 57,711.33 ± 10,378.71 | 0.118 | |
SFA/TFA (%) | 45.54 ± 5.78 | 39.51 ± 10.41 | 41.42 ± 8.95 | 0.211 | |
UFA/TFA (%) | 54.43 ± 12.21 | 60.41 ± 14.21 | 58.48 ± 16.01 | 0.115 | |
MUFA/TFA (%) | 49.71 ± 8.66 | 52.71 ± 9.45 | 52.26 ± 8.78 | 0.089 | |
PUFA/TFA (%) | 4.72 ± 2.41 b | 7.70 ± 1.89 a | 6.22 ± 1.11 a | 0.002 |
Compound | Control Group | Group I | Group II |
---|---|---|---|
Phenolics | 12 | 11 | 11 |
Aldehydes | 28 | 32 | 29 |
Alcohols | 24 | 32 | 26 |
Acids | 16 | 16 | 17 |
Ketones | 12 | 11 | 19 |
Sulfides | 5 | 7 | 7 |
Alkanes | 28 | 31 | 33 |
Benzenes | 5 | 3 | 7 |
Furans | 2 | 4 | 3 |
Thiazoles | 4 | 5 | 1 |
Esters | 45 | 44 | 33 |
Others | 5 | 4 | 8 |
Total | 186 | 200 | 194 |
Compound Name (%) | Control Group | Group I | Group II | p-Value |
---|---|---|---|---|
Hexanal | 4.43 ± 3.37 c | 7.56 ± 1.68 b | 11.33 ± 7.82 a | <0.001 |
Heptaldehyde | 0.45 ± 0.33 b | 0.84 ± 0.16 ab | 1.88 ± 1.00 a | 0.025 |
Phenylacetaldehyde | 0.26 ± 0.21 | 0.95 ± 0.48 | 0.66 ± 0.40 | 0.055 |
Benzaldehyde | 0.25 ± 0.43 b | 3.49 ± 1.59 a | 4.53 ± 0.46 a | 0.046 |
E-2-Octenal | 0.27 ± 0.06 b | 0.59 ± 0.08 b | 1.39 ± 0.30 a | 0.039 |
Nonanal | 3.40 ± 2.54 | 4.31 ± 0.65 | 6.68 ± 1.83 | 0.066 |
Amyl alcohol | 0.24 ± 0.42 b | 0.33 ± 0.27 b | 0.76 ± 0.21 a | 0.029 |
Hexyl alcohol | 0.33 ± 0.58 | 0.17 ± 0.02 | 0.27 ± 0.02 | 0.051 |
2-Heptanone | 1.91 ± 0.04 a | 0.51 ± 0.02 b | 0.55 ± 0.03 b | 0.042 |
2,3-Octanedione | 1.27 ± 0.04 c | 2.21 ± 0.71 b | 3.27 ± 0.01 a | <0.001 |
Limonene | 9.07 ± 0.06 a | 0.32 ± 0.15 b | 0.29 ± 0.14 b | <0.001 |
2-Pentylfuran | 0.22 ± 0.01 b | 0.55 ± 0.12 b | 1.44 ± 0.43 a | 0.036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Hou, K.; Kong, M.; Zhang, W.; Li, W.; Geng, Y.; Ma, C.; Chen, G. Low-Protein Diet Supplemented with Amino Acids Can Regulate the Growth Performance, Meat Quality, and Flavor of the Bamei Pigs. Foods 2025, 14, 946. https://doi.org/10.3390/foods14060946
Wang D, Hou K, Kong M, Zhang W, Li W, Geng Y, Ma C, Chen G. Low-Protein Diet Supplemented with Amino Acids Can Regulate the Growth Performance, Meat Quality, and Flavor of the Bamei Pigs. Foods. 2025; 14(6):946. https://doi.org/10.3390/foods14060946
Chicago/Turabian StyleWang, Dong, Ke Hou, Mengjie Kong, Wei Zhang, Wenzhong Li, Yiwen Geng, Chao Ma, and Guoshun Chen. 2025. "Low-Protein Diet Supplemented with Amino Acids Can Regulate the Growth Performance, Meat Quality, and Flavor of the Bamei Pigs" Foods 14, no. 6: 946. https://doi.org/10.3390/foods14060946
APA StyleWang, D., Hou, K., Kong, M., Zhang, W., Li, W., Geng, Y., Ma, C., & Chen, G. (2025). Low-Protein Diet Supplemented with Amino Acids Can Regulate the Growth Performance, Meat Quality, and Flavor of the Bamei Pigs. Foods, 14(6), 946. https://doi.org/10.3390/foods14060946