Stabilization and Preservation of Bioactive Compounds in Black Elderberry By-Product Extracts Using Maltodextrin and Gum Arabic via Spray Drying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Herbal Material, Extract Preparation, and Chemicals
2.2. Encapsulation Process—Spray Drying
2.3. Physical and Chemical Characterization of Powders
2.3.1. Encapsulation Yield (EY) and Moisture Content (MC)
2.3.2. Bulk and Tapped Densities
2.3.3. Particle Size and SEM Analysis
2.3.4. HPLC Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Powder Characterization
3.1.1. Encapsulation Yields and Moisture Contents of Encapsulated Extracts
3.1.2. Flowability and Compressibility Parameters of Powders
3.1.3. Morphological and Particle Size Parameters
3.2. Encapsulation Efficacy of Encapsulated Elderberry Extracts Analyzed Using HPLC-DAD Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Routray, W.; Orsat, V. Microwave-Assisted Extraction of Flavonoids: A Review. Food Bioprocess Technol. 2012, 5, 409–424. [Google Scholar] [CrossRef]
- Silva, P.; Ferreira, S.; Nunes, F.M. Elderberry (Sambucus nigra L.) by-Products a Source of Anthocyanins and Antioxidant Polyphenols. Ind. Crops Prod. 2017, 95, 227–234. [Google Scholar] [CrossRef]
- Veberic, R.; Jakopic, J.; Stampar, F.; Schmitzer, V. European Elderberry (Sambucus nigra L.) Rich in Sugars, Organic Acids, Anthocyanins and Selected Polyphenols. Food Chem. 2009, 114, 511–515. [Google Scholar] [CrossRef]
- Domínguez, R.; Zhang, L.; Rocchetti, G.; Lucini, L.; Pateiro, M.; Munekata, P.E.S.; Lorenzo, J.M. Elderberry (Sambucus nigra L.) as Potential Source of Antioxidants. Characterization, Optimization of Extraction Parameters and Bioactive Properties. Food Chem. 2020, 330, 127266. [Google Scholar] [CrossRef] [PubMed]
- Duymuş, H.G.; Göger, F.; Başer, K.H.C. In Vitro Antioxidant Properties and Anthocyanin Compositions of Elderberry Extracts. Food Chem. 2014, 155, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Olejnik, A.; Kowalska, K.; Olkowicz, M.; Rychlik, J.; Juzwa, W.; Myszka, K.; Dembczyński, R.; Białas, W. Anti-Inflammatory Effects of Gastrointestinal Digested Sambucus nigra L. Fruit Extract Analysed in Co-Cultured Intestinal Epithelial Cells and Lipopolysaccharide-Stimulated Macrophages. J. Funct. Foods 2015, 19, 649–660. [Google Scholar] [CrossRef]
- Torabian, G.; Valtchev, P.; Adil, Q.; Dehghani, F. Anti-Influenza Activity of Elderberry (Sambucus nigra). J. Funct. Foods 2019, 54, 353–360. [Google Scholar] [CrossRef]
- Bartak, M.; Lange, A.; Słonska, A.; Cymerys, J. Antiviral and Healing Potential of Sambucus nigra Extracts. Bionatura 2020, 5, 1264–1270. [Google Scholar] [CrossRef]
- Radványi, D.; Juhász, R.; Kun, S.; Szabó-Nótin, B.; Barta, J. Preliminary Study of Extraction of Biologically Active Compounds from Elderberry (Sambucus nigra L.) Pomace. Acta Aliment. 2013, 42, 63–72. [Google Scholar] [CrossRef]
- Mutavski, Z.; Nastić, N.; Fernández, N.; Živković, J.; Šavikin, K.; Vujisić, L.; Veberič, R.; Medič, A.; Vidović, S. Valorization of Elderberry Pomace Using Emerging High-Pressure Technologies: Separation of Compounds with Different Polarities Using Subcritical H2O, Supercritical CO2, and CO2/H2O/EtOH Mixture. Food Bioprocess Technol. 2025, 18, 2867–2881. [Google Scholar] [CrossRef]
- Mutavski, Z.; Vidović, S.; Ambrus, R.; Šavikin, K.; Baixinho, J.; Fernández, N.; Nastić, N. CO2-Based Encapsulation of Rutin-Rich Extracts from Black Elderberry Waste Using Advanced PGSS Process. Foods 2024, 13, 3929. [Google Scholar] [CrossRef]
- Sustainable Development High-Level Political Forum on Sustainable Development, Convened Under the Auspices of the Economic and Social. Council Progress. Towards the Sustainable Development Goals; United Nations: New York, NY, USA, 2023.
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing by-Products: A Review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Sulejmanović, M.; Milić, N.; Mourtzinos, I.; Nastić, N.; Kyriakoudi, A.; Drljača, J.; Vidović, S. Ultrasound-Assisted and Subcritical Water Extraction Techniques for Maximal Recovery of Phenolic Compounds from Raw Ginger Herbal Dust toward in Vitro Biological Activity Investigation. Food Chem. 2024, 437, 137774. [Google Scholar] [CrossRef] [PubMed]
- Sadilova, E.; Stintzing, F.C.; Carle, R. Thermal Degradation of Acylated and Nonacylated Anthocyanins. J. Food Sci. 2006, 71, C504–C512. [Google Scholar] [CrossRef]
- Page, S.; Khan, T.; Kühl, P.; Schwach, G.; Storch, K.; Chokshi, H. Patient Centricity Driving Formulation Innovation: Improvements in Patient Care Facilitated by Novel Therapeutics and Drug Delivery Technologies. Annu. Rev. Pharmacol. Toxicol. 2022, 62, 341–363. [Google Scholar] [CrossRef]
- Sohail Arshad, M.; Zafar, S.; Yousef, B.; Alyassin, Y.; Ali, R.; AlAsiri, A.; Chang, M.-W.; Ahmad, Z.; Ali Elkordy, A.; Faheem, A.; et al. A Review of Emerging Technologies Enabling Improved Solid Oral Dosage Form Manufacturing and Processing. Adv. Drug Deliv. Rev. 2021, 178, 113840. [Google Scholar] [CrossRef]
- Zabot, G.L.; Schaefer Rodrigues, F.; Polano Ody, L.; Vinícius Tres, M.; Herrera, E.; Palacin, H.; Córdova-Ramos, J.S.; Best, I.; Olivera-Montenegro, L. Encapsulation of Bioactive Compounds for Food and Agricultural Applications. Polymers 2022, 14, 4194. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, H.; Jafari, S.M. Introducing Nano/Microencapsulated Bioactive Ingredients for Extending the Shelf-Life of Food Products. Adv. Colloid Interface Sci. 2020, 282, 102210. [Google Scholar] [CrossRef]
- Sollohub, K.; Cal, K. Spray Drying Technique: II. Current Applications in Pharmaceutical Technology. J. Pharm. Sci. 2010, 99, 587–597. [Google Scholar] [CrossRef]
- Gallo, L.; Ramírez-Rigo, M.V.; Piña, J.; Bucalá, V. A Comparative Study of Spray-Dried Medicinal Plant Aqueous Extracts. Drying Performance and Product Quality. Chem. Eng. Res. Des. 2015, 104, 681–694. [Google Scholar] [CrossRef]
- Anandharamakrishnan, C.; Ishwarya, S.P. Spray Drying Techniques for Food Ingredient Encapsulation; Wiley: Hoboken, NJ, USA, 2015; ISBN 9781118864197. [Google Scholar]
- Ramachandran, R.P.; Nadimi, M.; Cenkowski, S.; Paliwal, J. Advancement and Innovations in Drying of Biopharmaceuticals, Nutraceuticals, and Functional Foods. Food Eng. Rev. 2024, 16, 540–566. [Google Scholar] [CrossRef] [PubMed]
- George, S.; Thomas, A.; Kumar, M.V.P.; Kamdod, A.S.; Rajput, A.; T, J.J.; Abdullah, S. Impact of Processing Parameters on the Quality Attributes of Spray-Dried Powders: A Review. Eur. Food Res. Technol. 2023, 249, 241–257. [Google Scholar] [CrossRef]
- Saavedra-Leos, Z.; Leyva-Porras, C.; Araujo-Díaz, S.; Toxqui-Terán, A.; Borrás-Enríquez, A. Technological Application of Maltodextrins According to the Degree of Polymerization. Molecules 2015, 20, 21067–21081. [Google Scholar] [CrossRef]
- Sukri, N.; Multisona, R.R.; Zaida; Saputra, R.A.; Mahani; Nurhadi, B. Effect of Maltodextrin and Arabic Gum Ratio on Physicochemical Characteristic of Spray Dried Propolis Microcapsules. Int. J. Food Eng. 2021, 17, 159–165. [Google Scholar] [CrossRef]
- Vladić, J.; Nastić, N.; Janković, T.; Šavikin, K.; Menković, N.; Lončarević, I.; Vidović, S. Microencapsulation of Sideritis raeseri Boiss. & Heldr. Subsp. Raeseri Extract Using Spray Drying with Maltodextrin and Whey Protein. Period. Polytech. Chem. Eng. 2022, 66, 229–238. [Google Scholar] [CrossRef]
- Laureanti, E.J.G.; Paiva, T.S.; de Matos Jorge, L.M.; Jorge, R.M.M. Microencapsulation of Bioactive Compound Extracts Using Maltodextrin and Gum Arabic by Spray and Freeze-Drying Techniques. Int. J. Biol. Macromol. 2023, 253, 126969. [Google Scholar] [CrossRef]
- Mutavski, Z.; Nastić, N.; Živković, J.; Šavikin, K.; Veberič, R.; Medič, A.; Pastor, K.; Jokić, S.; Vidović, S. Black Elderberry Press Cake as a Source of Bioactive Ingredients Using Green-Based Extraction Approaches. Biology 2022, 11, 1465. [Google Scholar] [CrossRef]
- Xiao, Z.; Xia, J.; Zhao, Q.; Niu, Y.; Zhao, D. Maltodextrin as Wall Material for Microcapsules: A Review. Carbohydr. Polym. 2022, 298, 120113. [Google Scholar] [CrossRef]
- Kang, S.; Xiao, Y.; Wang, K.; Cui, M.; Chen, D.; Guan, D.; Luan, G.; Xu, H. Development and Evaluation of Gum Arabic-Based Antioxidant Nanocomposite Films Incorporated with Cellulose Nanocrystals and Fruit Peel Extracts. Food Packag. Shelf Life 2021, 30, 100768. [Google Scholar] [CrossRef]
- Ribeiro, A.M.; Shahgol, M.; Estevinho, B.N.; Rocha, F. Microencapsulation of Vitamin A by Spray-Drying, Using Binary and Ternary Blends of Gum Arabic, Starch and Maltodextrin. Food Hydrocoll. 2020, 108, 106029. [Google Scholar] [CrossRef]
- Delaporte, A.; Duchemin, B.; Grisel, M.; Gore, E. Impact of Wall Material-to-Active Ratio in the Stability of Spray-Dried Ascorbic Acid Using Maltodextrin and Gum Arabic. Molecules 2024, 29, 3587. [Google Scholar] [CrossRef]
- Bhusari, S.N.; Muzaffar, K.; Kumar, P. Effect of Carrier Agents on Physical and Microstructural Properties of Spray Dried Tamarind Pulp Powder. Powder Technol. 2014, 266, 354–364. [Google Scholar] [CrossRef]
- Tan, S.B.; Newton, J.M. Powder Flowability as an Indication of Capsule Filling Performance. Int. J. Pharm. 1990, 61, 145–155. [Google Scholar] [CrossRef]
- Jung, H.; Lee, Y.; Yoon, W. Effect of Moisture Content on the Grinding Process and Powder Properties in Food: A Review. Processes 2018, 6, 69. [Google Scholar] [CrossRef]
- Gagneten, M.; Corfield, R.; Mattson, M.G.; Sozzi, A.; Leiva, G.; Salvatori, D.; Schebor, C. Spray-Dried Powders from Berries Extracts Obtained upon Several Processing Steps to Improve the Bioactive Components Content. Powder Technol. 2019, 342, 1008–1015. [Google Scholar] [CrossRef]
- Noyes, A.A.; Whitney, W.R. The Rate of Solution of Solid Substances in Their Own Solutions. J. Am. Chem. Soc. 1897, 19, 930–934. [Google Scholar] [CrossRef]
- Jafari, S.M.; Assadpoor, E.; He, Y.; Bhandari, B. Encapsulation Efficiency of Food Flavours and Oils during Spray Drying. Dry. Technol. 2008, 26, 816–835. [Google Scholar] [CrossRef]
- Pattnaik, M.; Pandey, P.; Martin, G.J.O.; Mishra, H.N.; Ashokkumar, M. Innovative Technologies for Extraction and Microencapsulation of Bioactives from Plant-Based Food Waste and Their Applications in Functional Food Development. Foods 2021, 10, 279. [Google Scholar] [CrossRef] [PubMed]
- Szymanowska, U.; Baraniak, B. Antioxidant and Potentially Anti-Inflammatory Activity of Anthocyanin Fractions from Pomace Obtained from Enzymatically Treated Raspberries. Antioxidants 2019, 8, 299. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Giusti, M.M. Anthocyanins: Natural Colorants with Health-Promoting Properties. Annu. Rev. Food Sci. Technol. 2010, 1, 163–187. [Google Scholar] [CrossRef]
- Ravichandran, K.S.; Silva, E.S.; Moncada, M.; Perkins-Veazie, P.; Lila, M.A.; Greenlief, C.M.; Thomas, A.L.; Hoskin, R.T.; Krishnaswamy, K. Spray Drying to Produce Novel Phytochemical-Rich Ingredients from Juice and Pomace of American Elderberry. Food Biosci. 2023, 55, 102981. [Google Scholar] [CrossRef]
- Imran, M.; Salehi, B.; Sharifi-Rad, J.; Aslam Gondal, T.; Saeed, F.; Imran, A.; Shahbaz, M.; Tsouh Fokou, P.V.; Umair Arshad, M.; Khan, H.; et al. Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules 2019, 24, 2277. [Google Scholar] [CrossRef]
- Calderon-Montano, J.M.; Burgos-Moron, E.; Perez-Guerrero, C.; Lopez-Lazaro, M. A Review on the Dietary Flavonoid Kaempferol. Mini-Rev. Med. Chem. 2011, 11, 298–344. [Google Scholar] [CrossRef]
- Ribeiro, A.M.; Estevinho, B.N.; Rocha, F. Spray Drying Encapsulation of Elderberry Extract and Evaluating the Release and Stability of Phenolic Compounds in Encapsulated Powders. Food Bioprocess Technol. 2019, 12, 1381–1394. [Google Scholar] [CrossRef]
- Jiménez-González, O.; Guerrero-Beltrán, J.Á. Extraction, Microencapsulation, Color Properties, and Experimental Design of Natural Pigments Obtained by Spray Drying. Food Eng. Rev. 2021, 13, 769–811. [Google Scholar] [CrossRef]
- Yao, X.; Xiang, S.; Nie, K.; Gao, Z.; Zhang, W.; Fang, Y.; Nishinari, K.; Phillips, G.O.; Jiang, F. Whey Protein Isolate/Gum Arabic Intramolecular Soluble Complexes Improving the Physical and Oxidative Stabilities of Conjugated Linoleic Acid Emulsions. RSC Adv. 2016, 6, 14635–14642. [Google Scholar] [CrossRef]
- Oyinloye, T.M.; Yoon, W.B. Effect of Freeze-Drying on Quality and Grinding Process of Food Produce: A Review. Processes 2020, 8, 354. [Google Scholar] [CrossRef]
- Esmaeili, F.; Hashemiravan, M.; Eshaghi, M.R.; Gandomi, H. Encapsulation of Arctium lappa L. Root Extracts by Spray-Drying and Freeze-Drying Using Maltodextrin and Gum Arabic as Coating Agents and It’s Application in Synbiotic Orange-Carrot Juice. J. Food Meas. Charact. 2022, 16, 2908–2921. [Google Scholar] [CrossRef]
Code | Maltodextrin (%) | Gum arabic (%) |
---|---|---|
SD 1 | 100 (1.45 g) | 0 (0.00 g) |
SD 2 | 80 (1.16 g) | 20 (0.29 g) |
SD 3 | 60 (0.87 g) | 40 (0.58 g) |
SD 4 | 40 (0.58 g) | 60 (0.87 g) |
SD 5 | 20 (0.29 g) | 80 (1.16 g) |
SD 6 | 0 (0.00 g) | 100 (1.45 g) |
MC | EY | BD | TD | CI | HR | PS | |
---|---|---|---|---|---|---|---|
SD 1 | 5.63 ± 0.15 a | 83.84 ± 3.39 a | 160.25 ± 5.07 c | 266.67 ± 3.79 ab | 39.91 ± 0.76 a | 1.66 ± 0.08 a | 1.73 ± 1.27 c |
SD 2 | 4.95 ± 0.20 b | 80.00 ± 3.70 a | 162.63 ± 3.59 bc | 253.12 ± 6.44 bc | 35.75 ± 0.90 b | 1.56 ± 0.06 ab | 1.94 ± 0.08 bc |
SD 3 | 4.20 ± 0.12 c | 77.44 ± 3.57 a | 194.36 ± 5.79 a | 277.14 ± 3.53 a | 29.87 ± 0.87 c | 1.43 ± 0.06 bc | 2.05 ± 0.10 ab |
SD 4 | 3.85 ± 0.10 c | 75.36 ± 3.54 a | 178.61 ± 7.99 ab | 247.22 ± 3.02 c | 27.75 ± 0.62 c | 1.38 ± 0.01 c | 2.20 ± 0.58 a |
SD 5 | 3.95 ± 0.18 c | 78.23 ± 2.87 a | 187.23 ± 8.21 a | 258.33 ± 12.34 bc | 27.52 ± 1.37 c | 1.38 ± 0.03 c | 2.03 ± 1.65 ab |
SD 6 | 4.10 ± 0.09 c | 81.25 ± 1.12 a | 185.96 ± 1.87 a | 255.55 ± 3.25 bc | 27.23 ± 1.11 c | 1.37 ± 0.02 c | 2.01 ± 1.02 ab |
Code | C3Sam ** (mg/g) | C3Glu ** (mg/g) | C3Gal ** (mg/g) | Rut ** (mg/g) | IQ ** (mg/g) | CA ** (mg/g) | KMP1 **/*** (mg/g) | KMP2 **/*** (mg/g) |
---|---|---|---|---|---|---|---|---|
PE | 28.34 ± 0.43 | 22.77 ± 0.34 | 2.19 ± 0.04 | 8.86 ± 0.27 | 2.89 ± 0.06 | 2.10 ± 0.01 | 4.17 ± 0.06 | 0.66 ± 0.02 |
PE + C | 19.16 ± 0.21 a | 15.18 ± 0.23 a | 1.46 ± 0.01 a | 5.91 ± 0.25 a | 1.94 ± 0.03 a | 1.40 ± 0.01 a | 2.78 ± 0.05 a | 0.44 ± 0.01 a |
SD 1 | 17.55 ± 0.35 b (91.60%) * | 14.20 ± 0.18 ab (93.54%) * | 0.87 ± 0.03 b (59.59%) * | 3.17 ± 0.13 b (53.67%) * | 1.67 ± 0.02 b (86.23%) * | 1.10 ± 0.05 c (78.57%) * | 0.44 ± 0.02 bc (15.83%) * | 0.21 ± 0.01 d (47.73%) * |
SD 2 | 15.94 ± 0.49 c (83.19%) * | 12.73 ± 0.23 cd (83.86%) * | 0.82 ± 0.03 bc (56.16%) * | 3.26 ± 0.12 b (55.19%) * | 1.65 ± 0.07 b (85.20%) * | 1.18 ± 0.05 bc (84.29%) * | 0.53 ± 0.01 b (19.06%) * | 0.27 ± 0.01 b (61.36%) * |
SD 3 | 14.36 ± 0.38 d (74.95%) * | 11.49 ± 0.51 d (75.69%) * | 0.74 ± 0.01 d (50.68%) * | 2.82 ± 0.11 c (47.74%) * | 1.54 ± 0.07 c (79.52%) * | 1.30 ± 0.07 a (92.86%) * | 0.38 ± 0.01 c (13.67%) * | 0.18 ± 0.01 e (40.91%) * |
SD 4 | 15.80 ± 0.50 cd (82.46%) * | 12.70 ± 0.32 cd (83.66%) * | 0.81 ± 0.02 bcd (55.48%) * | 3.09 ± 0.08 bc (52.31%) * | 1.63 ± 0.06 bc (84.16%) * | 1.38 ± 0.06 a (98.57%) * | 0.44 ± 0.01 bc (15.83%) * | 0.22 ± 0.01 cd (50.00%) * |
SD 5 | 16.32 ± 0.59 bc (85.18%) * | 13.07 ± 0.63 bc (86.10%) * | 0.84 ± 0.01 b (57.53%) * | 3.19 ± 0.14 b (54.01%) * | 1.66 ± 0.07 b (85.71%) * | 1.37 ± 0.04 a (97.86%) * | 0.47 ± 0.02 bc (16.91%) * | 0.24 ± 0.01 c (54.54%) * |
SD 6 | 15.10 ± 0.71 cd (78.81%) * | 12.10 ± 0.55 cd (79.71%) * | 0.75 ± 0.02 cd (51.37%) * | 2.99 ± 0.07 bc (50.62%) * | 1.61 ± 0.02 bc (83.13%) * | 1.29 ± 0.04 ab (92.14%) * | 0.41 ± 0.01 bc (14.75%) * | 0.20 ± 0.01 de (45.45%) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutavski, Z.; Vidović, S.; Lazarević, Z.; Ambrus, R.; Motzwickler-Németh, A.; Aladić, K.; Nastić, N. Stabilization and Preservation of Bioactive Compounds in Black Elderberry By-Product Extracts Using Maltodextrin and Gum Arabic via Spray Drying. Foods 2025, 14, 723. https://doi.org/10.3390/foods14050723
Mutavski Z, Vidović S, Lazarević Z, Ambrus R, Motzwickler-Németh A, Aladić K, Nastić N. Stabilization and Preservation of Bioactive Compounds in Black Elderberry By-Product Extracts Using Maltodextrin and Gum Arabic via Spray Drying. Foods. 2025; 14(5):723. https://doi.org/10.3390/foods14050723
Chicago/Turabian StyleMutavski, Zorana, Senka Vidović, Zorica Lazarević, Rita Ambrus, Anett Motzwickler-Németh, Krunoslav Aladić, and Nataša Nastić. 2025. "Stabilization and Preservation of Bioactive Compounds in Black Elderberry By-Product Extracts Using Maltodextrin and Gum Arabic via Spray Drying" Foods 14, no. 5: 723. https://doi.org/10.3390/foods14050723
APA StyleMutavski, Z., Vidović, S., Lazarević, Z., Ambrus, R., Motzwickler-Németh, A., Aladić, K., & Nastić, N. (2025). Stabilization and Preservation of Bioactive Compounds in Black Elderberry By-Product Extracts Using Maltodextrin and Gum Arabic via Spray Drying. Foods, 14(5), 723. https://doi.org/10.3390/foods14050723