Valorization of Fruit and Vegetable Waste: An Approach to Focusing on Extraction of Natural Pigments
Abstract
:1. Introduction
2. Pigments in Agricultural Byproducts
2.1. Anthocyanins
2.2. Betalains
2.3. Carotenoids
2.4. Chlorophyll
3. Extraction Techniques
Source | Scientific Name | Extraction Techniques | Processing Conditions | Yield (per 100 g/d.w) and Pigment Extracted | References |
---|---|---|---|---|---|
Apple peel | Malus domestica | Solvent extraction method | 80% acetone or ethanol | 169.8 g cyanidin 3-glucoside | [34] |
Egg plant peel | Solanum melongena | Solvent extraction method | 70% methanol, acetone, and ethanol | 82.84 mg of methanol, 62.93 mg of ethanol, 51.55 mg of acetone | [35] |
Red grape pomace | Vitis vinifera | Water extraction | Hot water | 41–68% monomeric anthocyanins | [36] |
Egg plant peel | Solanum melongena | Water extraction | Water (80 C, 40 min) | - | [37] |
Blackberry residue | Rubus sp. | Solvent extraction method | Acidified ethanol and citric acid | 4.32 mg of cyanidin 3-glucoside | [38] |
Coffee exocarp | Coffea aps.: C. Arabica and C. robusta | Ethanol extraction | 60% ethanol | 0.145 mg of cyanidin 3-glucoside | [39] |
Banana peel | Musa sp. | Solvent extraction method | Ethanol, methanol, water, and acetone | 434 μg of cyanidin 3-glucoside | [40,41] |
Grape extracts | Vitis vinifera | Supercritical CO2 extraction | 30–40 °C,100–130 bar, Ethyl alcohol, 25–50 mL/min CO2 flow rate | 80–85% recovery of cyanidin 3-glucoside | [42] |
Grape products | Vitis vinifera | Combined extraction | Water temperature: 70 °C, ultrasound: 35 KHz, PEF (3 KV cm−1) | 7.93, 7.76, and 4.05 mg of methanol, acetone, and ethanol, respectively | [43] |
Grape skin | Vitis vinifera | Solvent extraction method | Acidified 0.01% HCl 70% acetone along with chloroform (evaporated at 30 °C) | 987.8–382.1 mg of Mv3G | [44] |
Grape extracts | Vitis vinifera | Supercritical CO2 extraction | 45–46 °C,160–165 kg/cm2, 6% ethanol | 1.176 mg/ml | [45] |
jaboticaba peel | Plinia cauliflora | Pressurized liquid extraction + supercritical CO2 | 5 MPa, 80 °C, 9 min in CO2, in the presence of ethanol | - | [46] |
Black currant waste | Ribes nigrum | Water extraction | Acidified water extraction via solid-phase extraction (SPE) | 2% w/w of dry weight | [47] |
jaboticaba peel | Plinia caulifora | Ultrasound-assisted extraction | Hydroalcoholic mixture, ultrasonic bath (40 KHz and 150 W) | 3.4 mg/g raw material | [48] |
Black currant byproducts | Ribes nigrum | Water extraction | Water | 718.47–389.0 mg of cyanidin 3-glucoside | [49] |
Jaboticaba pomace | Plinia caulifora | Ultrasound-assisted extraction | water, 531 W CM-2, 20 °C, 15 min | 510.35 mg of cyanidin 3-glucoside | [50] |
Red grape | Vitis vinifera | Combined extraction | water and ethanol UAE-water/ethanol (1:1), 25 KHz, 300 W, 20 °C, 60 min MAE-water/ethanol (1:1), 200 W, 50 °C, 60 min | UAE-34,188 ppm | [51] |
Red pitaya peel | Hylocereus polyrhizus | Solvent extraction | 80% acetone | 13.8 g betanin | [52] |
Prickly pear pericarp | Opuntia joconostle | Solvent extraction | 80% methanol + 0.1% HCl | 4.55 mg betanin | [53] |
Ulluco peel | Ullucus tuberosus | Solvent extraction | Methanol/water (60:40), 10 °C, 24 h | 100 μg/g | [54,55] |
Beetroot | Beta vulgaris | Ultrasound-assisted extraction | 50% aqueous ethanol/0.5% acetic acid. 50–60 Hz, 125 W, 22 C | peel-3.8–7.6 mg/g pomace-37.22 mg/100 g | [56] |
Dragon fruit | Hylocereus undatus | Ultrasound assisted extraction | 80% acetone, 15 min | 101.04 mg/100 g | [57] |
3.1. Ultrasound-Assisted Extraction
3.2. Microwave-Assisted Extraction
3.3. Enzyme-Assisted Extraction
3.4. Pressurized Liquid Extraction (PLE)
3.5. Supercritical Fluid Extraction
Extraction Method | Advantages | Disadvantages | References |
---|---|---|---|
Ultrasound-assisted extraction |
|
| [78,79,80] |
Microwave-assisted extraction |
|
| [65] |
Pulsed-electric-field extraction |
|
| [81,82] |
Supercritical fluid extraction |
|
| [83,84,85] |
High-hydrostatic-pressure extraction |
|
| [86] |
Pressurized liquid extraction |
|
| [87] |
High-voltage electrical discharge |
|
| [81] |
Enzyme-assisted extraction |
|
| [88,89,90] |
4. Enzymatic Degradation of Pigments: Mechanisms and Implications
4.1. Enzymatic Degradation of Chlorophylls
4.2. Enzymatic Breakdown of Betalains
4.3. Enzymatic Oxidation of Carotenoids
4.4. Degradation of Anthocyanin by Enzymes
5. Non-Enzymatic Degradation of Pigments: Mechanisms and Implications
5.1. Chlorophyll Degradation
5.2. Betalain Degradation
5.3. Carotenoid Degradation
5.4. Anthocyanin Degradation
6. Stabilization of Natural Pigments
7. Applications of Natural Pigments
7.1. Food Preservatives
7.2. Color as a Quality Indicator
7.3. Dietary Supplements
7.4. Bioactive Properties and Health Advantages
7.5. Extracts with Natural Pigments Used for the Green Synthesis of Metal Nanoparticles
7.6. Deposition of Pigments in Plastics
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nirmal, N.P.; Khanashyam, A.C.; Mundanat, A.S.; Shah, K.; Babu, K.S.; Thorakkattu, P.; Pandiselvam, R. Valorization of Fruit Waste for Bioactive Compounds and Their Applications in the Food Industry. Foods 2023, 12, 556. [Google Scholar] [CrossRef] [PubMed]
- Viñas-Ospino, A.; López-Malo, D.; Esteve, M.J.; Frígola, A.; Blesa, J. Green Solvents: Emerging Alternatives for Carotenoid Extraction from Fruit and Vegetable By-Products. Foods 2023, 12, 863. [Google Scholar] [CrossRef]
- Barba, F.J.; Zhu, Z.; Koubaa, M.; Sant’Ana, A.S.; Orlien, V. Green Alternative Methods for the Extraction of Antioxidant Bioactive Compounds from Winery Wastes and By-Products: A Review. Trends Food Sci. Technol. 2016, 49, 96–109. [Google Scholar] [CrossRef]
- Chemat, F.; Abert Vian, M.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef]
- Delgado-Vargas, F.; Jiménez, A.R.; Paredes-López, O. Natural Pigments: Carotenoids, Anthocyanins, and Betalains—Characteristics, Biosynthesis, Processing, and Stability. Crit. Rev. Food Sci. Nutr. 2000, 40, 173–289. [Google Scholar] [CrossRef] [PubMed]
- Agar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef]
- Fernández-López, J.A.; Fernández-Lledó, V.; Angosto, J.M. New Insights into Red Plant Pigments: More Than Just Natural Colorants. RSC Adv. 2020, 10, 24669–24682. [Google Scholar] [CrossRef] [PubMed]
- Faustino, M.; Veiga, M.; Sousa, P.; Costa, E.M.; Silva, S.; Pintado, M. Agro-Food Byproducts as a New Source of Natural Food Additives. Molecules 2019, 24, 1056. [Google Scholar] [CrossRef]
- Vanoh, D.; Mohammad, J.I.; Murtey, M.D. Plant and food waste as a source of therapeutic compounds. In Sustainable Agriculture Reviews 56: Bioconversion of Food and Agricultural Waste into Value-Added Materials; Springer International Publishing: Cham, Switzerland, 2022; pp. 253–296. [Google Scholar]
- Brunet, C.; de la Sayette, A. Natural Pigments for (Bio)-Plastics Colouring. In Proceedings of the XXXI International Horticultural Congress (IHC 2022) 1361, Angers, France, 14–20 August 2022; pp. 149–162. [Google Scholar]
- Kultys, E.; Kurek, M.A. Green Extraction of Carotenoids from Fruit and Vegetable Byproducts: A Review. Molecules 2022, 27, 518. [Google Scholar] [CrossRef]
- Nieto, G. Anthocyanins: Health Benefits and Potential Use as Functional Ingredient: A Review. In Anthocyanins: Antioxidant Properties, Sources and Health Benefits; Rodriguez, J.M.L., Barba, F.J., Munekata, P.E.S., Eds.; Nova Science Publishers: New York, NY, USA, 2020; pp. 1–27. [Google Scholar]
- Andersen, Ø.M.; Jordheim, M. Basic Anthocyanin Chemistry and Dietary Sources. In Anthocyanins in Health and Disease; Wallace, T.C., Giusti, M.M., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 13–90. [Google Scholar]
- Dangles, O. Anthocyanins as Natural Food Colorings: The Chemistry Behind and Challenges Still Ahead. J. Agric. Food Chem. 2024, 72, 12356–12372. [Google Scholar] [CrossRef]
- Sharma, M.; Usmani, Z.; Gupta, V.K.; Bhat, R. Valorization of Fruits and Vegetable Wastes and By-Products to Produce Natural Pigments. Crit. Rev. Biotechnol. 2021, 41, 535–563. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Chu, M.; Yu, X.; Xie, Y.; Li, Y.; Du, Y.; Yan, N. Anthocyanins and Proanthocyanidins: Chemical Structures, Food Sources, Bioactivities, and Product Development. Food Rev. Int. 2023, 39, 4581–4609. [Google Scholar] [CrossRef]
- Custodio-Mendoza, J.A.; Aktaş, H.; Zalewska, M.; Wyrwisz, J.; Kurek, M.A. A Review of Quantitative and Topical Analysis of Anthocyanins in Food. Molecules 2024, 29, 1735. [Google Scholar] [CrossRef]
- Leong, H.Y.; Show, P.L.; Lim, M.H.; Ooi, C.W.; Ling, T.C. Natural Red Pigments from Plants and Their Health Benefits: A Review. Food Rev. Int. 2018, 34, 463–482. [Google Scholar] [CrossRef]
- Azeredo, H.M.C. Betalains: Properties, Sources, Applications, and Stability—A Review. Int. J. Food Sci. Technol. 2009, 44, 2365–2376. [Google Scholar] [CrossRef]
- Carrillo, C.; Wilches-Pérez, D.; Hallmann, E.; Kazimierczak, R.; Rembiałkowska, E. Organic versus Conventional Beetroot: Bioactive Compounds and Antioxidant Properties. LWT 2019, 116, 108552. [Google Scholar] [CrossRef]
- Zannou, O.; Oussou, K.F.; Chabi, I.B.; Odouaro, O.B.; Deli, M.G.; Goksen, G.; Galanakis, C.M. A Comprehensive Review of Recent Development in Extraction and Encapsulation Techniques of Betalains. Crit. Rev. Food Sci. Nutr. 2023, 64, 11263–11280. [Google Scholar] [CrossRef]
- Fu, Y.; Shi, J.; Xie, S.Y.; Zhang, T.Y.; Soladoye, O.P.; Aluko, R.E. Red Beetroot Betalains: Perspectives on Extraction, Processing, and Potential Health Benefits. J. Agric. Food Chem. 2020, 68, 11595–11611. [Google Scholar] [CrossRef]
- Sadowska-Bartosz, I.; Bartosz, G. Biological Properties and Applications of Betalains. Molecules 2021, 26, 2520. [Google Scholar] [CrossRef]
- Cubas, C.; Gloria-Lobo, M.; González, M. Optimization of the Extraction of Chlorophylls in Green Beans (Phaseolus vulgaris L.) by N,N-Dimethylformamide Using Response Surface Methodology. J. Food Compos. Anal. 2008, 21, 125–133. [Google Scholar] [CrossRef]
- Humphrey, A.M. Chlorophyll as a Color and Functional Ingredient. J. Food Sci. 2006, 69, C422–C425. [Google Scholar] [CrossRef]
- Ngamwonglumlert, L.; Devahastin, S.; Chiewchan, N. Natural Colorants: Pigment Stability and Extraction Yield Enhancement via Utilization of Appropriate Pretreatment and Extraction Methods. Crit. Rev. Food Sci. Nutr. 2017, 57, 3243–3259. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Vargas, F. Natural Colorants for Food and Nutraceutical Uses; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Ferruzzi, M.G.; Blakeslee, J. Digestion, Absorption, and Cancer Preventative Activity of Dietary Chlorophyll Derivatives. Nutr. Res. 2007, 27, 1–12. [Google Scholar] [CrossRef]
- Viera, I.; Pérez-Gálvez, A.; Roca, M. Green Natural Colorants. Molecules 2019, 24, 154. [Google Scholar] [CrossRef]
- Martins, P.L.; de Rosso, V.V. Carotenoids Achieving from Tomatoes Discarded Using Ionic Liquids as Extracting for Application in Food Industry. Presented at XIV Safety, Health and Environment World Congress Conference, Cubatäo, Brazil, 20–23 July 2014. [Google Scholar]
- Da Silva, R.P.F.F.; Rocha-Santos, T.A.P.; Duarte, A.C. Supercritical Fluid Extraction of Bioactive Compounds. TrAC Trends Anal. Chem. 2016, 76, 40–51. [Google Scholar] [CrossRef]
- Machado, A.P.D.F.; Pasquel-Reátegui, J.L.; Barbero, G.F.; Martínez, J. Pressurized Liquid Extraction of Bioactive Compounds from Blackberry (Rubus fruticosus L.) Residues: A Comparison with Conventional Methods. Food Res. Int. 2015, 77, 675–683. [Google Scholar] [CrossRef]
- Eh, A.L.; Teoh, S.G. Novel Modified Ultrasonication Technique for the Extraction of Lycopene from Tomatoes. Ultrason. Sonochem. 2012, 19, 151–159. [Google Scholar] [CrossRef]
- Wolfe, K.L.; Liu, R.H. Apple Peels as a Value-Added Food Ingredient. J. Agric. Food Chem. 2003, 51, 1676–1683. [Google Scholar] [CrossRef]
- Boulekbache-Makhlouf, L.; Medouni, L.; Medouni-Adrar, S.; Arkoub, L.; Madani, K. Effect of Solvent Extraction on Phenolic Content and Antioxidant Activity of the Byproduct of Eggplant. Ind. Crops Prod. 2013, 49, 668–674. [Google Scholar] [CrossRef]
- Monrad, J.K.; Suárez, M.; Motilva, M.J.; King, J.W.; Srinivas, K.; Howard, L.R. Extraction of Anthocyanins and Flavan-3-ols from Red Grape Pomace Continuously by Coupling Hot Water Extraction with a Modified Expeller. Food Res. Int. 2014, 65, 77–87. [Google Scholar] [CrossRef]
- Saraband, K.; Jafari, S.M.; Mahoonak, A.S.; Mohammadi, A. Application of Gum Arabic and Maltodextrin for Encapsulation of Eggplant Peel Extract as a Natural Antioxidant and Color Source. Int. J. Biol. Macromol. 2019, 140, 59–68. [Google Scholar] [CrossRef]
- Machado, A.P.D.F.; Rezende, C.A.; Rodrigues, R.A.; Barbero, G.F.; de Tarso Vieira e Rosa, P.; Martínez, J. Encapsulation of Anthocyanin-Rich Extract from Blackberry Residues by Spray-Drying, Freeze-Drying and Supercritical Antisolvent. Powder Technol. 2018, 340, 553–562. [Google Scholar] [CrossRef]
- Parra-Campos, A.; Ordóñez-Santos, L.E. Natural Pigment Extraction Optimization from Coffee Exocarp and Its Use as a Natural Dye in French Meringue. Food Chem. 2019, 285, 59–66. [Google Scholar] [CrossRef]
- González-Montelongo, R.; Gloria, L.M.; González, M. Antioxidant Activity in Banana Peel Extracts: Testing Extraction Conditions and Related Bioactive Compounds. Food Chem. 2010, 119, 1030–1039. [Google Scholar] [CrossRef]
- Mathew, N.S.; Negi, P.S. Traditional Uses, Phytochemistry and Pharmacology of Wild Banana (Musa acuminata Colla): A Review. J. Ethnopharmacol. 2017, 196, 124–140. [Google Scholar] [CrossRef]
- Bleve, M.; Ciurlia, L.; Erroi, E.; Lionetto, G.; Longo, L.; Rescio, L.; Schettino, T.; Vasapollo, G. An Innovative Method for the Purification of Anthocyanins from Grape Skin Extracts by Using Liquid and Sub-Critical Carbon Dioxide. Sep. Purif. Technol. 2008, 64, 192–197. [Google Scholar] [CrossRef]
- Corrales, M.; Toepfl, S.; Butz, P.; Knorr, D.; Tauscher, B. Extraction of Anthocyanins from Grape By-Products Assisted by Ultrasonics, High Hydrostatic Pressure or Pulsed Electric Fields: A Comparison. Innov. Food Sci. Emerg. Technol. 2008, 9, 85–91. [Google Scholar] [CrossRef]
- Gordillo, B.; Sigurdson, G.T.; Lao, F.; González-Miret, M.L.; Heredia, F.J.; Giusti, M.M. Assessment of the Color Modulation and Stability of Naturally Copigmented Anthocyanin-Grape Colorants with Different Levels of Purification. Food Res. Int. 2018, 106, 791–799. [Google Scholar] [CrossRef]
- Ghafoor, K.; Park, J.; Choi, Y.H. Optimization of Supercritical Fluid Extraction of Bioactive Compounds from Grape (Vitis labrusca B.) Peel by Using Response Surface Methodology. Innov. Food Sci. Emerg. Technol. 2010, 11, 485–490. [Google Scholar] [CrossRef]
- Santos, D.T.; Albarelli, J.Q.; Beppu, M.M.; Meireles, M.A.A. Stabilization of Anthocyanin Extract from Jabuticaba Skins by Encapsulation Using Supercritical CO2 as Solvent. Food Res. Int. 2013, 50, 617–624. [Google Scholar] [CrossRef]
- Farooque, S.; Rose, P.M.; Benohoud, M.; Blackburn, R.S.; Rayner, C.M. Enhancing the Potential Exploitation of Food Waste: Extraction, Purification, and Characterization of Renewable Specialty Chemicals from Blackcurrants (Ribes nigrum L.). J. Agric. Food Chem. 2018, 66, 12265–12273. [Google Scholar] [CrossRef]
- Barros, H.D.F.Q.; Baseggio, A.M.; Angolini, C.F.F.; Pastore, G.M.; Cazarin, C.B.; Marostica-Junior, M.R. Influence of Different Types of Acids and pH in the Recovery of Bioactive Compounds in Jabuticaba Peel (Plinia cauliflora). Food Res. Int. 2019, 124, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, C.; Chung, M.M.; dos Santos, S.; Mayer, C.R.M.; Moraes, I.C.F.; Branco, I.G. Microencapsulation of an Anthocyanin-Rich Blackberry (Rubus spp.) By-Product Extract by Freeze-Drying. LWT 2017, 84, 256–262. [Google Scholar] [CrossRef]
- Souza, A.C.P.; Gurak, P.D.; Marczak, L.D.F. Maltodextrin, Pectin and Soy Protein Isolate as Carrier Agents in the Encapsulation of Anthocyanins-Rich Extract from Jaboticaba Pomace. Food Bioprod. Process. 2017, 102, 186–194. [Google Scholar] [CrossRef]
- Drosou, C.; Kyriakopoulou, K.; Bimpilas, A.; Tsimogiannis, D.; Krokida, M. A Comparative Study on Different Extraction Techniques to Recover Red Grape Pomace Polyphenols from Vinification Byproducts. Ind. Crops Prod. 2015, 75, 141–149. [Google Scholar] [CrossRef]
- Rodriguez, E.B.; Vidallon, M.L.P.; Mendoza, D.J.R.; Reyes, C.T. Health-Promoting Bioactivities of Betalains from Red Dragon Fruit (Hylocereus polyrhizus (Weber) Britton and Rose) Peels as Affected by Carbohydrate Encapsulation. J. Sci. Food Agric. 2016, 96, 4679–4689. [Google Scholar] [CrossRef]
- Osorio-Esquivel, O.; Álvarez, V.B.; Dorantes-Álvarez, L.; Giusti, M.M. Phenolics, Betacyanins and Antioxidant Activity in Opuntia joconostle Fruits. Food Res. Int. 2011, 44, 2160–2168. [Google Scholar] [CrossRef]
- Cejudo-Bastante, M.J.; Hurtado, N.; Mosquera, N.; Heredia, F.J. Potential Use of New Colombian Sources of Betalains. Color Stability of Ulluco (Ullucus tuberosus) Extracts under Different pH and Thermal Conditions. Food Res. Int. 2014, 64, 465–471. [Google Scholar] [CrossRef]
- Varelis, P.; Melton, L.; Shahidi, F. Encyclopedia of Food Chemistry; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Vulić, J.J.; Ćebović, T.N.; Čanadanović-Brunet, J.M.; Ćetković, G.S.; Čanadanović, V.M.; Djilas, S.M.; Šaponjac, V.T.T. In Vivo and In Vitro Antioxidant Effects of Beetroot Pomace Extracts. J. Funct. Foods 2014, 6, 168–175. [Google Scholar] [CrossRef]
- Mello, F.R.; de Bernardo, C.; Dias, C.O.; Gonzaga, L.; Amante, E.R.; Fett, R.; Candido, L.M.B. Antioxidant Properties, Quantification and Stability of Betalains from Pitaya (Hylocereus undatus) Peel. Cienc. Rural 2014, 45, 323–328. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Aliaño-González, M.J.; Ferreiro-González, M.; Espada-Bellido, E.; Carrera, C.; Palma, M.; Álvarez, J.A.; Ayuso, J.; Barbero, G.F. Extraction of Anthocyanins and Total Phenolic Compounds from Açai (Euterpe oleracea Mart.) Using an Experimental Design Methodology. Part 1: Pressurized Liquid Extraction. Agronomy 2020, 10, 183. [Google Scholar] [CrossRef]
- Nutter, J.; Fernandez, M.V.; Jagus, R.J.; Agüero, M.V. Development of an Aqueous Ultrasound-Assisted Extraction Process of Bioactive Compounds from Beet Leaves: A Proposal for Reducing Losses and Increasing Biomass Utilization. J. Sci. Food Agric. 2021, 101, 1989–1997. [Google Scholar] [CrossRef]
- Ozdemir, M.; Gungor, V.; Melikoglu, M.; Aydiner, C. Solvent Selection and Effect of Extraction Conditions on Ultrasound-Assisted Extraction of Phenolic Compounds from Galangal (Alpinia officinarum). J. Appl. Res. Med. Aromat. Plants 2024, 38, 100525. [Google Scholar] [CrossRef]
- Flórez, M.; Cazón, P.; Vázquez, M. Antioxidant Extracts of Nettle (Urtica dioica) Leaves: Evaluation of Extraction Techniques and Solvents. Molecules 2022, 27, 6015. [Google Scholar] [CrossRef] [PubMed]
- Vinatoru, M. An Overview of the Ultrasonically Assisted Extraction of Bioactive Principles from Herbs. Ultrason. Sonochem. 2001, 8, 303–313. [Google Scholar] [CrossRef]
- Tamminen, J.; Holappa, J.; Gradov, D.V.; Koiranen, T. Scaling Up Continuous Ultrasound-Assisted Extractor for Plant Extracts by Using Spinach Leaves as a Test Material. Ultrason. Sonochem. 2022, 90, 106171. [Google Scholar] [CrossRef]
- Nonglait, D.L.; Gokhale, J.S. Review Insights on the Demand for Natural Pigments and Their Recovery by Emerging Microwave-Assisted Extraction (MAE). Food Bioprocess Technol. 2024, 17, 1681–1705. [Google Scholar] [CrossRef]
- Lu, X.; Li, W.; Wang, Q.; Wang, J.; Qin, S. Progress on the Extraction, Separation, Biological Activity, and Delivery of Natural Plant Pigments. Molecules 2023, 28, 5364. [Google Scholar] [CrossRef]
- Grillo, G.; Gunjević, V.; Radošević, K.; Redovniković, I.R.; Cravotto, G. Deep Eutectic Solvents and Nonconventional Technologies for Blueberry-Peel Extraction: Kinetics, Anthocyanin Stability, and Antiproliferative Activity. Antioxidants 2020, 9, 1069. [Google Scholar] [CrossRef]
- Fernandez-Aulis, F.; Hernandez-Vazquez, L.; Aguilar-Osorio, G.; Arrieta-Baez, D.; Navarro-Ocana, A. Extraction and Identification of Anthocyanins in Corn Cob and Corn Husk from Cacahuacintle Maize. J. Food Sci. 2019, 84, 954–962. [Google Scholar] [CrossRef] [PubMed]
- Nadar, S.S.; Rao, P.; Rathod, V.K. Enzyme Assisted Extraction of Biomolecules as an Approach to Novel Extraction Technology: A Review. Food Res. Int. 2018, 108, 309–330. [Google Scholar] [CrossRef]
- Boateng, I.D.; Clark, K. Trends in Extracting Agro-Byproducts’ Phenolics Using Non-Thermal Technologies and Their Combinative Effect: Mechanisms, Potentials, Drawbacks, and Safety Evaluation. Food Chem. 2024, 437, 137841. [Google Scholar] [CrossRef] [PubMed]
- Cano-Lamadrid, M.; Artes-Hernandez, F. By-Products Revalorization with Non-Thermal Treatments to Enhance Phytochemical Compounds of Fruit and Vegetables Derived Products: A Review. Foods 2021, 11, 59. [Google Scholar] [CrossRef]
- Šeremet, D.; Durgo, K.; Jokić, S.; Huđek, A.; Cebin, A.V.; Mandura, A.; Jurasović, J.; Komes, D. Valorization of Banana and Red Beetroot Peels: Determination of Basic Macrocomponent Composition, Application of Novel Extraction Methodology and Assessment of Biological Activity in Vitro. Sustainability 2020, 12, 4539. [Google Scholar] [CrossRef]
- Shen, L.; Xiong, X.; Zhang, D.; Zekrumah, M.; Hu, Y.; Gu, X.; Wang, C.; Zou, X. Optimization of Betacyanins from Agricultural By-Products Using Pressurized Hot Water Extraction for Antioxidant and In Vitro Oleic Acid-Induced Steatohepatitis Inhibitory Activity. J. Food Biochem. 2019, 43, e13044. [Google Scholar] [CrossRef]
- Carpentieri, S.; Soltanipour, F.; Ferrari, G.; Pataro, G.; Donsì, F. Emerging green techniques for the extraction of antioxidants from agri-food by-products as promising ingredients for the food industry. Antioxidants 2021, 10, 1417. [Google Scholar] [CrossRef]
- Wrona, O.; Rafińska, K.; Możeński, C.; Buszewski, B. Supercritical Fluid Extraction of Bioactive Compounds from Plant Materials. J. AOAC Int. 2017, 100, 1624–1635. [Google Scholar] [CrossRef]
- Čechovičienė, I.; Kazancev, K.; Hallmann, E.; Sendžikienė, E.; Kruk, M.; Viškelis, J.; Tarasevičienė, Ž. Supercritical CO2 and Conventional Extraction of Bioactive Compounds from Different Cultivars of Blackberry (Rubus fruticosus L.) Pomace. Plants 2024, 13, 2931. [Google Scholar] [CrossRef]
- Prado, J.M.; Vardanega, R.; Debien, I.C.N.; Meireles, M.A.d.A.; Gerschenson, L.N.; Sowbhagya, H.B.; Chemat, S. Conventional extraction. In Food Waste Recovery: Processing Technologies and Industrial Techniques; Elsevier Inc.: Burlington, NJ, USA, 2015. [Google Scholar]
- Linares, G.; Rojas, M.L. Ultrasound-assisted extraction of natural pigments from food processing by-products: A review. Front. Nutr. 2022, 9, 891462. [Google Scholar] [CrossRef]
- Fernando, G.S.N.; Wood, K.; Papaioannou, E.H.; Marshall, L.J.; Sergeeva, N.N.; Boesch, C. Application of an ultrasound-assisted extraction method to recover betalains and polyphenols from red beetroot waste. ACS Sustain. Chem. Eng. 2021, 9, 8736–8747. [Google Scholar] [CrossRef]
- Ordóñez-Santos, L.E.; Esparza-Estrada, J.; Vanegas-Mahecha, P. Ultrasound-assisted extraction of total carotenoids from mandarin epicarp and application as natural colorant in bakery products. LWT 2021, 139, 110598. [Google Scholar] [CrossRef]
- Bocker, R.; Silva, E.K. Pulsed electric field assisted extraction of natural food pigments and colorings from plant matrices. Food Chem. X 2022, 15, 100398. [Google Scholar] [CrossRef] [PubMed]
- Visockis, M.; Bobinaitė, R.; Ruzgys, P.; Barakauskas, J.; Markevičius, V.; Viškelis, P.; Šatkauskas, S. Assessment of plant tissue disintegration degree and its related implications in the pulsed electric field (PEF)–assisted aqueous extraction of betalains from the fresh red beetroot. Innov. Food Sci. Emerg. Technol. 2021, 73, 102761. [Google Scholar] [CrossRef]
- Abou Elmaaty, T.; Sayed-Ahmed, K.; Elsisi, H.; Magdi, M. Optimization of extraction of natural antimicrobial pigments using supercritical fluids: A review. Processes 2022, 10, 2111. [Google Scholar] [CrossRef]
- Urbonavičienė, D.; Bobinaitė, R.; Trumbeckaitė, S.; Raudonė, L.; Janulis, V.; Bobinas, Č.; Viškelis, P. Agro-industrial tomato by-products and extraction of functional food ingredients. Zemdirb. Agric. 2018, 105, 63–70. [Google Scholar] [CrossRef]
- Bobinaitė, R.; Kraujalis, P.; Tamkutė, L.; Urbonavičienė, D.; Viškelis, P.; Venskutonis, P.R. Recovery of bioactive substances from rowanberry pomace by consecutive extraction with supercritical carbon dioxide and pressurized solvents. J. Ind. Eng. Chem. 2020, 85, 152–160. [Google Scholar] [CrossRef]
- Corrales, M.; García, A.F.; Butz, P.; Tauscher, B. Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. J. Food Eng. 2009, 90, 415–421. [Google Scholar] [CrossRef]
- Zielinski, A.A.F.; del Pilar Sanchez-Camargo, A.; Benvenutti, L.; Ferro, D.M.; Dias, J.L.; Ferreira, S.R.S. High-Pressure Fluid Technologies: Recent Approaches to the Production of Natural Pigments for Food and Pharmaceutical Applications. Trends Food Sci. Technol. 2021, 118, 850–869. [Google Scholar] [CrossRef]
- Sowbhagya, H.B.; Chitra, V.N. Enzyme-Assisted Extraction of Flavorings and Colorants from Plant Materials. Crit. Rev. Food Sci. Nutr. 2010, 50, 146–161. [Google Scholar] [CrossRef]
- Puri, M.; Sharma, D.; Barrow, C.J. Enzyme-Assisted Extraction of Bioactives from Plants. Trends Biotechnol. 2012, 30, 37–44. [Google Scholar] [CrossRef]
- Streimikyte, P.; Viskelis, P.; Viskelis, J. Enzyme-Assisted Extraction of Plants for Sustainable and Functional Applications. Int. J. Mol. Sci. 2022, 23, 2359. [Google Scholar] [CrossRef] [PubMed]
- Indrasti, D.; Andarwulan, N.; Purnomo, E.H.; Wulandari, N. Stability of Chlorophyll as Natural Colorant: A Review for Suji (Dracaena angustifolia Roxb.) Leaves’ Case. Curr. Res. Nutr. Food Sci. J. 2018, 6, 609–625. [Google Scholar] [CrossRef]
- Tanaka, A.; Ito, H. Chlorophyll Degradation and Its Physiological Function. Plant Cell Physiol. 2025, 66, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, P.; Shokramraji, Z.; Tavakkoli, S.; Mihaylova, D.; Lante, A. Chlorophylls as Natural Bioactive Compounds Existing in Food By-Products: A Critical Review. Plants 2023, 12, 1533. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. Update on Natural Food Pigments—A Mini-Review on Carotenoids, Anthocyanins, and Betalains. Food Res. Int. 2019, 124, 200–205. [Google Scholar] [CrossRef]
- Senthilkumar, S.; Vijayakumar, R.M. Biochemical, Physiological and Horticultural Perspectives of Fruit Colour Pigmentation: A Review. Res. Rev. J. Agric. Allied Sci. 2014, 3, 9–16. [Google Scholar]
- Lema, A.A.; Mahmod, N.H.; Khandaker, M.M.; Abdulrahman, M.D. Roselle Anthocyanin Stability Profile and Its Potential Role in Post-Harvest Deterioration: A Review. Plant Sci. Today 2022, 9, 119–131. [Google Scholar] [CrossRef]
- Liu, Y.; Tikunov, Y.; Schouten, R.E.; Marcelis, L.F.; Visser, R.G.; Bovy, A. Anthocyanin Biosynthesis and Degradation Mechanisms in Solanaceous Vegetables: A Review. Front. Chem. 2018, 6, 52. [Google Scholar] [CrossRef]
- Carrillo, C.; Nieto, G.; Martinez-Zamora, L.; Ros, G.; Kamiloglu, S.; Munekata, P.E.; Pateiro, M.; Lorenzo, J.M.; Fernández-López, J.; Viuda-Martos, M.; et al. Novel Approaches for the Recovery of Natural Pigments with Potential Health Effects. J. Agric. Food Chem. 2022, 70, 6864–6883. [Google Scholar] [CrossRef]
- Sanna, D.; Fadda, A. Waste from Food and Agro-Food Industries as Pigment Sources: Recovery Techniques, Stability and Food Applications. Nutraceuticals 2022, 2, 365–383. [Google Scholar] [CrossRef]
- Magalhães, D.; Gonçalves, R.; Rodrigues, C.V.; Rocha, H.R.; Pintado, M.; Coelho, M.C. Natural Pigments Recovery from Food By-Products: Health Benefits Towards the Food Industry. Foods 2024, 13, 2276. [Google Scholar] [CrossRef]
- Masyita, A.; Hardinasinta, G.; Astuti, A.D.; Firdayani, F.; Mayasari, D.; Hori, A.; Kuraishi, T. Natural Pigments: Innovative Extraction Technologies and Their Potential Application in Health and Food Industries. Front. Pharmacol. 2025, 15, 1507108. [Google Scholar] [CrossRef]
- Nabi, B.G.; Mukhtar, K.; Ahmed, W.; Manzoor, M.F.; Ranjha, M.M.A.N.; Kieliszek, M.; Aadil, R.M. Natural Pigments: Anthocyanins, Carotenoids, Chlorophylls, and Betalains as Colorants in Food Products. Food Biosci. 2023, 52, 102403. [Google Scholar] [CrossRef]
- Choudhury, N.; Meghwal, M.; Das, K. Microencapsulation: An Overview on Concepts, Methods, Properties and Applications in Foods. Food Front. 2021, 2, 426–442. [Google Scholar] [CrossRef]
- Ghosh, S.; Sarkar, T.; Das, A.; Chakraborty, R. Natural Colorants from Plant Pigments and Their Encapsulation: An Emerging Window for the Food Industry. LWT 2022, 153, 112527. [Google Scholar] [CrossRef]
- Saénz, C.; Tapia, S.; Chávez, J.; Robert, P. Microencapsulation by Spray Drying of Bioactive Compounds from Cactus Pear (Opuntia ficus-indica). Food Chem. 2009, 114, 616–622. [Google Scholar] [CrossRef]
- Molina, A.K.; Vega, E.N.; Pereira, C.; Dias, M.I.; Heleno, S.A.; Rodrigues, P.; Fernandes, I.P.; Barreiro, M.F.; Kostic, M.; Sokovic, M.; et al. Promising Antioxidant and Antimicrobial Food Colourants from Lonicera caerulea L. var. Kamtschatica. Antioxidants 2019, 8, 394. [Google Scholar] [CrossRef]
- Nayak, C.A.; Rastogi, N.K. Effect of Selected Additives on Microencapsulation of Anthocyanin by Spray Drying. Dry. Technol. 2010, 28, 1396–1404. [Google Scholar] [CrossRef]
- Vega, E.N.; Molina, A.K.; Pereira, C.; Dias, M.I.; Heleno, S.A.; Rodrigues, P.; Fernandes, I.P.; Barreiro, M.F.; Kostić, M.; Soković, M.; et al. Anthocyanins from Rubus fruticosus L. and Morus nigra L. Applied as Food Colorants: A Natural Alternative. Plants 2021, 10, 1181. [Google Scholar] [CrossRef]
- Jiménez-Aguilar, D.M.; Ortega-Regules, A.E.; Lozada-Ramírez, J.D.; Pérez-Pérez, M.C.I.; Vernon-Carter, E.J.; Welti-Chanes, J. Color and Chemical Stability of Spray-Dried Blueberry Extract Using Mesquite Gum as Wall Material. J. Food Compos. Anal. 2011, 24, 889–894. [Google Scholar] [CrossRef]
- Idham, Z.; Muhamad, I.I.; Sarmidi, M.R. Degradation Kinetics and Color Stability of Spray-Dried Encapsulated Anthocyanins from Hibiscus sabdariffa L. J. Food Process Eng. 2012, 35, 522–542. [Google Scholar] [CrossRef]
- Kandasamy, S.; Naveen, R. A Review on the Encapsulation of Bioactive Components Using Spray-Drying and Freeze-Drying Techniques. J. Food Process Eng. 2022, 45, e14059. [Google Scholar] [CrossRef]
- Kuck, L.S.; Noreña, C.P.Z. Microencapsulation of Grape (Vitis labrusca var. Bordo) Skin Phenolic Extract Using Gum Arabic, Polydextrose, and Partially Hydrolyzed Guar Gum as Encapsulating Agents. Food Chem. 2016, 194, 569–576. [Google Scholar] [CrossRef]
- Das, A.; Parashar, D.P.; Raychaudhuri, U.; Chakraborty, R. Studying the Effect of Different Drying Methods on Phenolic Content, Antioxidant Activity, Color and Antimicrobial Activity in Assam Tea (Camellia assamica). J. Plant Biochem. Biotechnol. 2022, 31, 615–624. [Google Scholar] [CrossRef]
- Ferreira, D.S.; Faria, A.F.; Grosso, C.R.F.; Mercadante, A.Z. Encapsulation of Blackberry Anthocyanins by Thermal Gelation of Curdlan. J. Braz. Chem. Soc. 2009, 20, 1908–1915. [Google Scholar] [CrossRef]
- Avendaño-Romero, G.C.; López-Malo, A.; Palou, E. Propiedades del Alginato y Aplicaciones en Alimentos. Prop. Alginato Apl. Aliment. 2013, 7, 87–96. [Google Scholar]
- Ferreira, D.S. Compostos Bioativos em Amora-Preta e Encapsulação do Seu Extrato Antociânico por Gelificação Térmica com Curdlana. Master’s Thesis, State University of Campinas, Campinas, Brazil, 2008. [Google Scholar]
- Heidari, F.; Jafari, S.M.; Ziaiifar, A.M.; Malekjani, N. Stability and Release Mechanisms of Double Emulsions Loaded with Bioactive Compounds: A Critical Review. Adv. Colloid Interface Sci. 2022, 299, 102567. [Google Scholar] [CrossRef]
- Rigi, M.; Ojagh, S.M.; Alishahi, A.; Hasani, S. Characterizing and Developing the Antioxidant and Antimicrobial Properties of the Nano-Encapsulated Bioactive Compounds of Spirulina platensis in Liposome. J. Aquat. Food Prod. Technol. 2022, 31, 591–598. [Google Scholar] [CrossRef]
- Zhao, L.; Temelli, F.; Chen, L. Encapsulation of Anthocyanin in Liposomes Using Supercritical Carbon Dioxide: Effects of Anthocyanin and Sterol Concentrations. J. Funct. Foods 2017, 34, 159–167. [Google Scholar] [CrossRef]
- Ganguly, S.; Bandyopadhyay, K.; Dutta, P.; Pramanik, A. A Review on Microbial Pigment: A Good Source of Biocolour. Pharma Innov. J. 2019, 8, 416–420. [Google Scholar]
- Akter, J.; Hossain, M.A.; Takara, K.; Islam, M.Z.; Hou, D.X. Antioxidant Activity of Different Species and Varieties of Turmeric (Curcuma spp.): Isolation of Active Compounds. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2019, 215, 9–17. [Google Scholar] [CrossRef]
- Wu, D.; Sun, D.W. Color Measurements by Computer Vision for Food Quality Control—A Review. Trends Food Sci. Technol. 2013, 29, 5–20. [Google Scholar] [CrossRef]
- Hewlings, S.J.; Kalman, D.S. Curcumin: A Review of Its Effects on Human Health. Foods 2017, 6, 92. [Google Scholar] [CrossRef]
- Hormozi, M.; Ghoreishi, S.; Baharvand, P. Astaxanthin Induces Apoptosis and Increases Activity of Antioxidant Enzymes in LS-180 Cells. Artif. Cells Nanomed. Biotechnol. 2019, 47, 891–895. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.V.T.D.; Baiao, D.D.S.; Ferreira, V.F.; Paschoalin, V.M.F. Betanin as a Multipath Oxidative Stress and Inflammation Modulator: A Beetroot Pigment with Protective Effects on Cardiovascular Disease Pathogenesis. Crit. Rev. Food Sci. Nutr. 2021, 62, 539–554. [Google Scholar] [CrossRef]
- Frugé, A.D.; Smith, K.S.; Riviere, A.J.; Demark-Wahnefried, W.; Arthur, A.E.; Murrah, W.M.; Braxton-Lloyd, K. Primary Outcomes of a Randomized Controlled Crossover Trial to Explore the Effects of a High Chlorophyll Dietary Intervention to Reduce Colon Cancer Risk in Adults: The Meat and Three Greens (M3G) Feasibility Trial. Nutrients 2019, 11, 2349. [Google Scholar] [CrossRef] [PubMed]
- Sen, T.; Barrow, C.J.; Deshmukh, S.K. Microbial Pigments in the Food Industry—Challenges and the Way Forward. Front. Nutr. 2019, 6, 7. [Google Scholar] [CrossRef]
- Chhikara, N.; Kushwaha, K.; Sharma, P.; Gat, Y.; Panghal, A. Bioactive Compounds of Beetroot and Utilization in Food Processing Industry: A Critical Review. Food Chem. 2019, 272, 192–200. [Google Scholar] [CrossRef]
- Maqbool, M.A.; Aslam, M.; Akbar, W.; Iqbal, Z. Biological Importance of Vitamins for Human Health: A Review. J. Agric. Basic Sci. 2017, 2, 50–58. [Google Scholar]
- Singh, T.; Pandey, V.K.; Dash, K.K.; Zanwar, S.; Singh, R. Natural Bio-Colorant and Pigments: Sources and Applications in Food Processing. J. Agric. Food Res. 2023, 12, 100628. [Google Scholar] [CrossRef]
- Wu, L.; Hsu, H.-W.; Chen, Y.-C.; Chiu, C.-C.; Lin, Y.-I.; Ho, J.-A.A. Antioxidant and Antiproliferative Activities of Red Pitaya. Food Chem. 2006, 95, 319–327. [Google Scholar] [CrossRef]
- Vidal, P.J.; López-Nicolás, J.M.; Gandía-Herrero, F.; García-Carmona, F. Inactivation of Lipoxygenase and Cyclooxygenase by Natural Betalains and Semi-Synthetic Analogues. Food Chem. 2014, 154, 246–254. [Google Scholar] [CrossRef]
- Gengatharan, A.; Dykes, G.A.; Choo, W.S. Betalains: Natural Plant Pigments with Potential Application in Functional Foods. LWT 2015, 64, 645–649. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic Compounds in Plants and Agri-Industrial By-Products: Antioxidant Activity, Occurrence, and Potential Uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Shak, N.M.; Kamarudin, S.K.; Timmiati, S.N. Green Synthesis of Metal and Metal Oxide Nanoparticles via Plant Extracts: An Overview. Mater. Res. Express 2019, 6, 112004. [Google Scholar] [CrossRef]
- Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of Metallic Nanoparticles Using Plant Extracts. Biotechnol. Adv. 2013, 31, 346–356. [Google Scholar] [CrossRef]
- Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ Synthesis of Metals and Their Oxide Nanoparticles: Applications for Environmental Remediation. J. Nanobiotechnol. 2018, 16, 84. [Google Scholar] [CrossRef] [PubMed]
- Rajak, K.K.; Pahilani, P.; Patel, H.; Kikani, B.; Desai, R.; Kumar, H. Green Synthesis of Silver Nanoparticles Using Curcuma longa Flower Extract and Antibacterial Activity. arXiv 2023, arXiv:2304.04777. [Google Scholar] [CrossRef]
- Haridas, E.S.H.; Bhattacharya, S.; Varma, M.K.R.; Chandra, G.K. Green Synthesis of Eco-Friendly Silver Nanoparticles Using Coffee arabica Leaf Extract and Development of a Cost-Effective Biosensor for Cysteine. arXiv 2022, arXiv:2209.03823. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Asghar, W.; Akhtar, A.; Ayub, H.; Aslam, I.; Khalid, N.; Al-Mssallem, M.Q.; Alessa, F.M.; Ghazzawy, H.S.; Attimarad, M. Anthocyanin delivery systems: A critical review of recent research findings. Appl. Sci. 2022, 12, 12347. [Google Scholar] [CrossRef]
- Arsyad, W.S.; Cassandra, F.; Asharuddin, M.; Suere, S.; Ramadhan, L.O.A.N.; Hidayat, R. Green synthesis of silver nanoparticles from anthocyanin extracts of purple cabbage (Brassica oleracea var capitata) and its characteristics for dye-sensitized solar cells (DSSC) application. J. Phys. Conf. Ser. 2022, 2274, 012001. [Google Scholar] [CrossRef]
- Neciosup-Puican, A.A.; Pérez-Tulich, L.; Trujillo, W.; Parada-Quinayá, C. Green Synthesis of Silver Nanoparticles from Anthocyanin Extracts of Peruvian Purple Potato INIA 328—Kulli papa. Nanomaterials 2024, 14, 1147. [Google Scholar] [CrossRef]
- Babu, P.J.; Saranya, T.; Chandrasekaran, N. Anthocyanin-Mediated Synthesis of Silver Nanoparticles and Their Biological Applications. J. Environ. Chem. Eng. 2020, 8, 104310. [Google Scholar] [CrossRef]
- Devi, P.; Rajput, S. Green Chemistry Approaches: Anthocyanins in Nanoparticle Synthesis and Their Biomedical Applications. J. Mol. Struct. 2020, 1206, 127695. [Google Scholar] [CrossRef]
- Cherian, P.; Diana, K.J.; Nair, R.N.; Joseph, N. Antibacterial Activity of Silver Nanoparticles extracted from Betanin Pigments of Beta vulgaris L. And Amaranthus tricolor L. Int. J. Food Nutr. Sci. (IJFANS) 2022, 11, 1180–1193. [Google Scholar]
- Jamwal, N.; Kaur, G. Role of Pigments in Sustainable Packaging Solutions: A Review. Mater. Today Proc. 2022, 49, 2735–2742. [Google Scholar] [CrossRef]
- Zehra, S.H.; Ramzan, K.; Viskelis, J.; Viskelis, P.; Balciunaitiene, A. Advancements in Green Synthesis of Silver-Based Nanoparticles: Antimicrobial and Antifungal Properties in Various Films. Nanomaterials 2025, 4, 252. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, M. Migration of Pigments in Food Packaging: Mechanisms and Regulations. Polymers 2023, 15, 2023. [Google Scholar] [CrossRef]
- Vibrantz Technologies. Innovations in Near-Infrared Detectable Pigments for Recyclability. 2023. Available online: https://vibrantz.com/ (accessed on 12 April 2025).
- Neubauer, N.; Scifo, L.; Navratilova, J.; Gondikas, A.; Mackevica, A.; Borschneck, D.; Chaurand, P.; Vidal, V.; Rose, J.; von der Kammer, F.; et al. Nanoscale coloristic pigments: Upper limits on releases from pigmented plastic during environmental aging, in food contact, and by leaching. Environ. Sci. Technol. 2017, 51, 11669–11680. [Google Scholar] [CrossRef]
- Kumar, Y.; Bist, Y.; Thakur, D.; Nagar, M.; Saxena, D.C. A review on the role of pH-sensitive natural pigments in biopolymers based intelligent food packaging films. Int. J. Biol. Macromol. 2024, 276, 133869. [Google Scholar] [CrossRef] [PubMed]
- Zehra, H.; Khan, S.; Zehra, M. Removal of Cr6+ from Synthetic Polluted Water using Fe Modified Sugarcane Bagasse & Peanut shell Powder. J. Chem. Environ. 2023, 2, 1–13. [Google Scholar] [CrossRef]
- Zehra, S.M.; Bibi, M.; Mahmood, A.; Khattak, A.; Asad, M.Z.; Zehra, S.H. Phenol–Furfural Resin/Graphite/Ag-Based Electrically Conductive Adhesive Composites from Waste Bagasse with Enhanced Thermo-Electric Properties. Polymers 2023, 15, 3283. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramzan, K.; Zehra, S.H.; Balciunaitiene, A.; Viskelis, P.; Viskelis, J. Valorization of Fruit and Vegetable Waste: An Approach to Focusing on Extraction of Natural Pigments. Foods 2025, 14, 1402. https://doi.org/10.3390/foods14081402
Ramzan K, Zehra SH, Balciunaitiene A, Viskelis P, Viskelis J. Valorization of Fruit and Vegetable Waste: An Approach to Focusing on Extraction of Natural Pigments. Foods. 2025; 14(8):1402. https://doi.org/10.3390/foods14081402
Chicago/Turabian StyleRamzan, Khadija, Syeda Hijab Zehra, Aiste Balciunaitiene, Pranas Viskelis, and Jonas Viskelis. 2025. "Valorization of Fruit and Vegetable Waste: An Approach to Focusing on Extraction of Natural Pigments" Foods 14, no. 8: 1402. https://doi.org/10.3390/foods14081402
APA StyleRamzan, K., Zehra, S. H., Balciunaitiene, A., Viskelis, P., & Viskelis, J. (2025). Valorization of Fruit and Vegetable Waste: An Approach to Focusing on Extraction of Natural Pigments. Foods, 14(8), 1402. https://doi.org/10.3390/foods14081402