Impact of Tray and Freeze Drying on Physico-Chemical and Functional Properties of Underutilized Garcinia lanceifolia (Rupohi thekera)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Collection
2.2. Proximate Analysis
2.3. Gross Calorific Value (GCV)
2.4. Color
2.5. Mineral Analysis
2.6. Sample Preparation for Phytochemical Analysis
2.7. Total Phenolic Content (TPC)
2.8. Total Flavonoid Content (TFC)
2.9. DPPH (2, 2-Diphenyl-1-picrylhydrazyl) Assay
2.10. FRAP Assay
2.11. Metal Chelating Capacity (MCC)
2.12. Functional Properties
2.12.1. Glucose Adsorption Capacity
2.12.2. Alpha-Amylase Inhibition
2.12.3. Estimation of Glucose Uptake by Baker’s Yeast (Saccharomyces cerevisiae) Cells
2.13. FTIR
2.14. Statistical Analysis
3. Results and Discussion
3.1. Chemical and Physical Characteristics of G. lanceifolia Fruit
3.2. Effect of Tray Drying and Freeze Drying on Physicochemical Properties and Phytochemical Properties of G. lanceifolia Fruit
3.3. Funtional Properties
3.4. FTIR Analysis of G. lanceifolia Fruit Powder
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dutta, D.; Hazarika, P.; Hazarika, P. Distribution and Diversity of Garcinia L. in Upper Brahmaputra Valley, Assam. Int. J. Curr. Res. 2017, 9, 59644–59655. [Google Scholar]
- Bora, N.S.; Bairy, P.S.; Salam, A.; Kakoti, B.B. Antidiabetic and antiulcerative potential of Garcinia lanceifolia Roxb. bark. Future J. Pharm. Sci. 2020, 6, 85. [Google Scholar] [CrossRef]
- Angami, T.; Wangchu, L.; Singh, B.; Khonglah, L.; Thokchom, A. Chapter-18 Garcinia lanceifolia Roxb. (Clusiaceae). In Perennial Underutilized Horticultural Species of India; Waman, A.A., Bohra, P., Eds.; JAYA Publishing House: Delhi, India, 2021; pp. 181–189. [Google Scholar]
- Mazumdar, H.; Neog, M.; Deka, M.; Ali, N.; Rajbongshi, A.; Chakravorty, M. Value Addition of Some Minor Fruits of NE India-A Strategy for doubling farmer’s income. (A review). Int. J. Sci. Res. Publ. 2020, 10, 10095. [Google Scholar] [CrossRef]
- Mohammad, A.H.; Dey, P.; Rahman, I.J. Effect of osmotic pretreatment and drying temperature on drying kinetics, antioxidant activity, and overall quality of taikor (Garcinia pedunculata Roxb.) slices. Saudi J. Biol. Sci. 2021, 28, 7269–7280. [Google Scholar]
- Bhattacharjee, S.; Ramakrishnan, E.; Deb, P.K.; Sarma, P.P.; Choudhury, D.; Kabilan, S.; Devi, R. Influence of Drying Condition on Nutritional and Chemical Profile of Garcinia pedunculata Roxb. Fruit. Pharmacogn. Mag. 2023, 19, 269–283. [Google Scholar] [CrossRef]
- Mphahlele, R.R.; Fawole, O.A.; Makunga, N.P.; Opara, U.L. Effect of drying on the bioactive compounds, antioxidant, antibacterial and antityrosinase activities of pomegranate peel. BMC Complement. Altern. Med. 2016, 16, 143. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.U.; Malik, A.U.; Ali, S.; Imtiaz, A.; Munir, A.; Amjad, W.; Anwar, R. Modern drying techniques in fruits and vegetables to overcome postharvest losses: A review. J. Food Process. Preserv. 2019, 43, e14280. [Google Scholar] [CrossRef]
- Indiarto, R.; Asyifaa, A.H.; Angiputri Adiningsih, F.C.; Aulia, G.A.; Achmad, S.R. Conventional And Advanced Food drying Technology: A Current Review. Int. J. Sci. Technol. Res. 2021, 10, 99–107. [Google Scholar]
- Bhatta, S.; Stevanovic Janezic, T.; Ratti, C. Freeze-drying of plant-based foods. Foods 2020, 9, 87. [Google Scholar] [CrossRef] [PubMed]
- Dinesh, B.; Yadav, B.; Reddy, R.D.; Sai Padma, A.; Sukumaran, M. Determination of Ascorbic Acid Content in Some Indian Spices. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 864–868. [Google Scholar]
- AOAC. Association of Official Analytical Chemists, 16th ed.; AOAC: Washington, DC, USA, 1995. [Google Scholar]
- Shao, Y.; Lin, A.H. Improvement in the quantification of reducing sugars by miniaturizing the Somogyi-Nelson assay using a microtiter plate. Food Chem. 2018, 240, 898–903. [Google Scholar] [CrossRef]
- Saikia, S.; Dutta, H.; Saikia, D.; Mahanta, C.L. Quality characterisation and estimation of phytochemicals content and antioxidant capacity of aromatic pigmented and non-pigmented rice varieties. Food Res. Int. 2012, 46, 334–340. [Google Scholar] [CrossRef]
- Akinyele, I.O.; Shokunbi, O.S. Comparative analysis of dry ashing and wet digestion methods for the determination of trace and heavy metals in food samples. Food Chem. 2015, 173, 682–684. [Google Scholar] [CrossRef] [PubMed]
- Crosby, N.T. Determination of metals in foods. Analyst 1977, 102, 225–268. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.; Shourove, J.H.; Singha, R.; Tonmoy, T.A.; Chandra Biswas, G.; Meem, F.C.; John, P.H.; Samadder, M.; Al Faik, M.A. Assessment of antioxidant and antibacterial efficacy of some indigenous vegetables consumed by the Manipuri community in Sylhet, Bangladesh. Heliyon 2024, 10, e37750. [Google Scholar] [CrossRef]
- Abdullah, A.R.; Bakhari, N.A.; Osman, H. Study on the Relationship of the Phenolic, Flavonoid and Tannin Content to the Antioxidant Activity of Garcinia Atroviridis. Univers. J. Appl. Sci. 2013, 1, 95–100. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Dinis, T.C.; Maderia, V.M.; Almeida, L.M. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 1994, 315, 161–169. [Google Scholar] [CrossRef]
- Ou, S.; Kwok, K.; Li, Y.; Fu, L. In vitro study of possible role of dietary fiber in lowering postprandial serum glucose. J. Agric. Food Chem. 2001, 49, 1026–1029. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, V.P. Mechanism of glucose transport across the yeast cell membrane. J. Bacteriol. 1962, 84, 485–491. [Google Scholar] [CrossRef]
- Hazarika, T.K.; Lalnunsangi, C. Exploring genetic diversity of Garcinia lanceifolia Roxb. (Clusiaceae), a highly medicinal and endangered fruit of north-east India. Genet. Resour. Crop Evol. 2018, 66, 61–69. [Google Scholar] [CrossRef]
- Morandi Vuolo, M.; Silva Lima, V.; Maróstica Junior, M.R. Phenolic Compounds. In Bioactive Compounds; Segura Campos, M.R.E., Ed.; Woodhead Publishing: Cambridge, UK, 2019. [Google Scholar]
- Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef] [PubMed]
- Martins, N.; Barros, L.; Ferreira, I.C. In vivo antioxidant activity of phenolic compounds: Facts and gaps. Trends Food Sci. Technol. 2016, 48, 1–12. [Google Scholar] [CrossRef]
- Kotha, R.R.; Tareq, F.S.; Yildiz, E.; Luthria, D.L. Oxidative stress and antioxidants—A critical review on in vitro antioxidant assays. Antioxidants 2022, 11, 2388. [Google Scholar] [CrossRef]
- Antony, A.; Farid, M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Gil-Martin, E.; Forbes-Hernandez, T.; Romero, A.; Cianciosi, D.; Giampieri, F.; Battino, M. Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chem. 2022, 378, 131918. [Google Scholar] [CrossRef] [PubMed]
- Sepahpour, S.; Selamat, J.; Abdul Manap, M.Y.; Khatib, A.; Abdull Razis, A.F. Comparative Analysis of Chemical Composition, Antioxidant Activity and Quantitative Characterization of Some Phenolic Compounds in Selected Herbs and Spices in Different Solvent Extraction Systems. Molecules 2018, 23, 402. [Google Scholar] [CrossRef]
- Rodriguez De Luna, S.L.; Ramirez-Garza, R.E.; Serna Saldivar, S.O. Environmentally Friendly Methods for Flavonoid Extraction from Plant Material: Impact of Their Operating Conditions on Yield and Antioxidant Properties. Sci. World J. 2020, 2020, 6792069. [Google Scholar] [CrossRef]
- Ho, L.-H.; Ramli, N.F.; Tan, T.-C.; Muhamad, N.; Haron, M.N. Effect of Extraction Solvents and Drying Conditions on Total Phenolic Content and Antioxidant Properties of Watermelon Rind Powder. Sains Malays. 2018, 47, 99–107. [Google Scholar] [CrossRef]
- Shotorbani, N.Y.; Jamei, R.; Heidari, R. Antioxidant activities of two sweet pepper Capsicum annuum L. varieties phenolic extracts and the effects of thermal treatment. Avicenna J. Phytomed. 2013, 3, 25–34. [Google Scholar]
- Hossain, M.B.; Barry-Ryan, C.; Martin-Diana, A.B.; Brunton, N.P. Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chem. 2010, 123, 85–91. [Google Scholar] [CrossRef]
- Aldughaylibi, F.S.; Raza, M.A.; Naeem, S.; Rafi, H.; Alam, M.W.; Souayeh, B.; Farhan, M.; Aamir, M.; Zaidi, N.; Mir, T.A. Extraction of Bioactive Compounds for Antioxidant, Antimicrobial, and Antidiabetic Applications. Molecules 2022, 27, 5935. [Google Scholar] [CrossRef] [PubMed]
- Oyinloye, T.M.; Yoon, W.B. Effect of freeze-drying on quality and grinding process of food produce: A review. Processes 2020, 8, 354. [Google Scholar] [CrossRef]
- Zhao, T.; Dong, Q.; Zhou, H.; Yang, H. Drying kinetics, physicochemical properties, antioxidant activity and antidiabetic potential of Sargassum fusiforme processed under four drying techniques. LWT 2022, 163, 113578. [Google Scholar] [CrossRef]
- Chan, C.H.; Ngoh, G.C.; Yusoff, R. A brief review on anti diabetic plants: Global distribution, active ingredients, extraction techniques and acting mechanisms. Pharmacogn. Rev. 2012, 6, 22–28. [Google Scholar] [CrossRef] [PubMed]
Parameters (Dry Basis) | Fresh G. lanceifolia Fruit | Tray-Dried (50 ± 5 °C) | Freeze-Dried |
---|---|---|---|
Moisture (%) | 86.98 ± 0.36 c | 09.01 ± 0.32 a | 12.42 ± 0.81 b |
pH | 2.39 ± 0.14 a | 3.05 ± 0.12 a | 2.82 ± 0.04 a |
Titratable acidity (%) | 0.15 ± 0.01 a | 0.17 ± 0.01 a | 0.16 ± 0.01 a |
Ascorbic acid (mg/100 g) | 18.54 ± 0.01 c | 15.454 ± 0.01 b | 14.11 ± 0.01 a |
TSS (° Brix) | 5.0 ± 0.01 | ND | ND |
Total ash (%) | 1.83 ± 0.23 a | 1.84 ± 0.23 a | 2.05 ± 0.04 a |
Crude protein (%) | 2.61 ± 0.02 a | 3.53 ± 0.45 b | 4.44 ± 0.19 c |
Crude fiber (%) | 2.30 ± 0.01 a | 5.04 ± 0.82 c | 3.37 ± 0.20 b |
Total carbohydrates (%) | 5.43 ± 0.08 a | 6.12 ± 0.04 b | 8.29 ± 0.31 c |
Reducing sugar (%) | 0.51 ± 0.21 a | 0.69 ± 0.13 b | 1.95 ± 0.12 c |
Gross calorific value (kcal/g) | 1.98 ± 0.03 a | 2.99 ± 0.04 c | 2.74 ± 0.08 b |
Color | |||
L* | 53.02 ± 0.09 b | 49.65 ± 0.04 a | 65.34 ± 0.01 c |
a* | 10.22 ± 0.22 b | 6.03 ± 0.51 a | 18.61 ± 0.63 c |
b* | 9.26 ± 0.23 b | 6.83 ± 0.41 a | 11.29 ± 0.10 c |
Hue | 42.18 ± 0.12 b | 48.34 ± 0.98 c | 31.50 ± 0.45 a |
Drying Method | Solvent | TPC (mg GAE/100 g) | TFC (mg QE/100 g) | DPPH (%) | FRAP (mg/100 g) | MCC (%) |
---|---|---|---|---|---|---|
Tray drying | Water | 358.00 ± 1.00 c | 74.33 ± 1.15 a | 67.04 ± 1.82 d | 77.16 ± 0.06 e | 23.69 ± 2.09 e |
n-hexane | 15.33 ± 0.58 a | ND | 65.01 ± 0.69 c | 27.27 ± 0.81 a | 1.51 ± 1.09 a | |
80% methanol | 481.67 ± 2.09 e | 341.67 ± 0.57 e | 77.01 ± 0.99 i | 71.63 ± 0.58 c | 10.92 ± 1.00 b | |
80% ethanol | 495.67 ± 0.58 f | 237.33 ± 1.53 c | 80.24 ± 0.42 j | 83.87 ± 0.15 h | ND | |
80% acetone | 542.00 ± 1.00 h | ND | 75.99 ± 0.89 h | 80.30 ± 0.00 f | ND | |
Freeze drying | Water | 464.00 ± 2.08 d | 113.33 ± 1.15 b | 56.60 ± 0.42 b | 74.07 ± 1.78 d | 20.22 ± 2.42 d |
n-hexane | 29.33 ± 1.15 b | ND | 44.04 ± 0.73 a | 31.36 ± 0.05 b | ND | |
80% methanol | 529.00 ± 0.59 i | 382.33 ± 1.52 f | 69.99 ± 0.64 e | 77.90 ± 1.55 e | 19.86 ± 1.29 c | |
80% ethanol | 577.33 ± 2.31 d | 233.33 ± 0.58 c | 72.95 ± 0.64 fg | 81.83 ± 0.46 g | ND | |
80% acetone | 634.00 ± 1.73 j | ND | 73.13 ± 0.28 fg | 80.33 ± 0.06 f | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boruah, A.; Nath, P.C.; Nayak, P.K.; Bhaswant, M.; Saikia, S.; Kalita, J.; Rustagi, S.; Tiwari, A.; Sridhar, K. Impact of Tray and Freeze Drying on Physico-Chemical and Functional Properties of Underutilized Garcinia lanceifolia (Rupohi thekera). Foods 2025, 14, 705. https://doi.org/10.3390/foods14040705
Boruah A, Nath PC, Nayak PK, Bhaswant M, Saikia S, Kalita J, Rustagi S, Tiwari A, Sridhar K. Impact of Tray and Freeze Drying on Physico-Chemical and Functional Properties of Underutilized Garcinia lanceifolia (Rupohi thekera). Foods. 2025; 14(4):705. https://doi.org/10.3390/foods14040705
Chicago/Turabian StyleBoruah, Aradhana, Pinku Chandra Nath, Prakash Kumar Nayak, Maharshi Bhaswant, Sangeeta Saikia, Jatin Kalita, Sarvesh Rustagi, Ajita Tiwari, and Kandi Sridhar. 2025. "Impact of Tray and Freeze Drying on Physico-Chemical and Functional Properties of Underutilized Garcinia lanceifolia (Rupohi thekera)" Foods 14, no. 4: 705. https://doi.org/10.3390/foods14040705
APA StyleBoruah, A., Nath, P. C., Nayak, P. K., Bhaswant, M., Saikia, S., Kalita, J., Rustagi, S., Tiwari, A., & Sridhar, K. (2025). Impact of Tray and Freeze Drying on Physico-Chemical and Functional Properties of Underutilized Garcinia lanceifolia (Rupohi thekera). Foods, 14(4), 705. https://doi.org/10.3390/foods14040705