Effects of Pile-Fermentation Duration on the Taste Quality of Single-Cultivar Large-Leaf Dark Tea: Insights from Metabolomics and Microbiomics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Tea Samples Collection
2.3. Sensory Quality Evaluation of Tea Samples
2.4. Color Variation Determination of Tea Infusions
2.5. Metabolites Identification by Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry (UPLC-MS/MS)
2.6. Statistical Analysis of Metabolites
2.7. Identification of Bacteria and Fungi DNA Sequences
2.8. Correlation Analysis of Metabolomics and Microbiomics
3. Results and Discussion
3.1. Quality Characteristics of Tea Samples in Different PF Duration
3.2. Metabolite Profiles During Dark Tea PF Process
3.2.1. Dynamic Changes in Overall Metabolites
3.2.2. Dynamic Changes in Differential Metabolites
3.2.3. Dynamics of Taste Differential Metabolites and Screening of Key Taste Metabolites
3.2.4. Contribution of Compounds and Key Taste Metabolites to Taste Formation in Single-Cultivar Large-Leaf Dark Tea
3.3. Comparison of Microbial Community Structures in Different PF Duration
3.4. Potential Contribution of Microorganisms to Dark Tea Taste
3.5. Potential Taste Formation Mechanism Involving Microbial Interactions During the Dark Tea PF Process
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, F.; Wei, X.; Liu, H.; Li, H.; Xia, Y.; Wu, D.; Zhang, P.; Gandhi, G.R.; Li, H.-B.; Gan, R. State-of-the-art review of dark tea: From chemistry to health benefits. Trends Food Sci. Technol. 2021, 109, 126–138. [Google Scholar] [CrossRef]
- Luo, Q.; Luo, L.; Zhao, J.; Wang, Y.; Luo, H. Biological potential and mechanisms of Tea’s bioactive compounds: An Updated review. J. Adv. Res. 2023, 65, 345–363. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Bai, S.; An, R.; Peng, Z.; Chen, H.; Jiang, R.; Ouyang, J.; Liu, C.; Wang, Z.; Ou, X.; et al. Key Metabolites Influencing Astringency and Bitterness in Yinghong 9 Large-Leaf Dark Tea Before and After Pile-Fermentation. J. Agric. Food Chem. 2024, 72, 27378–27388. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Li, N.; Zhou, F.; Ouyang, J.; Lu, D.; Xu, W.; Li, J.; Lin, H.; Zhang, Z.; Xiao, J.; et al. Microbial bioconversion of the chemical components in dark tea. Food Chem. 2020, 312, 126043. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hao, J.; Zhou, J.; He, C.; Yu, Z.; Chen, S.; Chen, Y.; Ni, D. Pile-fermentation of dark tea: Conditions optimization and quality formation mechanism. LWT 2022, 166, 113753. [Google Scholar] [CrossRef]
- Shi, J.; Ma, W.; Wang, C.; Wu, W.; Tian, J.; Zhang, Y.; Shi, Y.; Wang, J.; Peng, Q.; Lin, Z.; et al. Impact of Various Microbial-Fermented Methods on the Chemical Profile of Dark Tea Using a Single Raw Tea Material. J. Agric. Food Chem. 2021, 69, 4210–4222. [Google Scholar] [CrossRef]
- Hu, S.; He, C.; Li, Y.; Yu, Z.; Chen, Y.; Wang, Y.; Ni, D. Changes of fungal community and non-volatile metabolites during pile-fermentation of dark green tea. Food Res. Int. 2021, 147, 110472. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Pan, L.; Guan, M.; Yuan, X.; Li, S.; Ren, D.; Gu, Y.; Liang, M.; Yi, L. Aroma and taste analysis of pickled tea from spontaneous and yeast-enhanced fermentation by mass spectrometry and sensory evaluation. Food Chem. 2024, 442, 138472. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, S.; Li, H.; Luo, L.; Zeng, L. Identification of the key phytochemical components responsible for sensory characteristics of Hunan fuzhuan brick tea. J. Food Compos. Anal. 2023, 120, 105289. [Google Scholar] [CrossRef]
- Ku, K.M.; Kim, J.; Park, H.; Liu, K.; Lee, C.H. Application of Metabolomics in the Analysis of Manufacturing Type of Pu-erh Tea and Composition Changes with Different Postfermentation Year. J. Agric. Food Chem. 2010, 58, 345–352. [Google Scholar] [CrossRef]
- Li, T.; Wei, Y.; Feng, W.; Lu, M.; Ke, H.; Li, Y.; Shao, A.; Dai, Q.; Ning, J. Exploring the mysterious effect of piling fermentation on Pu-erh tea quality formation: Microbial action and moist-heat action. LWT 2023, 185, 115132. [Google Scholar] [CrossRef]
- Bian, X.; Miao, W.; Zhao, M.; Zhao, Y.; Xiao, Y.; Li, N.; Wu, J. Microbiota drive insoluble polysaccharides utilization via microbiome-metabolome interplay during Pu-erh tea fermentation. Food Chem. 2022, 377, 132007. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xiao, Y.; Zhong, K.; Wu, Y.; Gao, H. Delving into the Biotransformation Characteristics and Mechanism of Steamed Green Tea Fermented by Aspergillus niger PW-2 Based on Metabolomic and Proteomic Approaches. Foods 2022, 11, 865. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Peng, L.; Xu, L.; Yu, X.; Zhu, Y.; Wei, X. Metabolic function and quality contribution of tea-derived microbes, and their safety risk in dark tea manufacture. Food Chem. 2025, 464, 141818. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Gao, Y.; Xu, Y.; Zhou, H.; Zhou, K.; Li, C.; Xu, B. Microbiota dynamics and volatile metabolite generation during sausage fermentation. Food Chem. 2023, 423, 136297. [Google Scholar] [CrossRef]
- Ma, C.; Ma, B.; Zhou, B.; Xu, L.; Hu, Z.; Li, X.; Chen, X. Pile-fermentation mechanism of ripened Pu-erh tea: Omics approach, chemical variation and microbial effect. Trends Food Sci. Technol. 2024, 146, 104379. [Google Scholar] [CrossRef]
- Qiao, X.; Zhang, S.; He, S.; Liu, S. Urate oxidase treatment increases the quality of autumn Yellowish Yinghong 9 black tea. LWT 2023, 184, 115092. [Google Scholar] [CrossRef]
- GB23776-2018; Methodology for Sensory Evaluation of Tea. Standardization Administration of China: Beijing, China, 2018.
- Mao, Y.; Wang, J.; Chen, G.; Granato, D.; Zhang, L.; Fu, Y.; Gao, Y.; Yin, J.; Luo, L.; Xu, Y. Effect of chemical composition of black tea infusion on the color of milky tea. Food Res. Int. 2021, 139, 109945. [Google Scholar] [CrossRef]
- Qian, G.; Li, X.; Zhang, H.; Zhang, H.; Zhou, J.; Ma, X.; Sun, W.; Yang, W.; He, R.; Wahab, A.; et al. Metabolomics analysis reveals the accumulation patterns of flavonoids and phenolic acids in quinoa (Chenopodium quinoa Willd.) grains of different colors. Food Chem. X 2023, 17, 100594. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, Q.; Granato, D.; Xu, Y.; Ho, C. Association between chemistry and taste of tea: A review. Trends Food Sci. Technol. 2020, 101, 139–149. [Google Scholar] [CrossRef]
- Li, T.; Lu, C.; Wei, Y.; Zhang, J.; Shao, A.; Li, L.; Wang, Y.; Ning, J. Chemical imaging for determining the distributions of quality components during the piling fermentation of Pu-erh tea. Food Control 2024, 158, 110234. [Google Scholar] [CrossRef]
- Yan, K.; Wang, J.; Zhou, M.; Peng, Q.; Mahmoud, A.B.; Bai, X.; Baldermann, S.; Jiang, X.; Feng, S.; Wu, Y.; et al. Insights into potential flavor-active peptides and taste-related compounds in Longjing teas: A comparative study of ‘Longjing 43’ and ‘Qunti’ cultivars. Food Chem. 2025, 471, 142790. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Huang, L.; Xia, N.; Teng, J.; Zhang, Q.; Zhu, P.; Wang, H.; Deng, H. Combining non-targeted and targeted metabo-lomics to study key bitter and astringent substances of Liupao tea. Food Chem. 2025, 467, 142289. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; He, C.; Chen, Y.; Ho, C.; Wu, X.; Huang, Y.; Gao, Y.; Hou, A.; Li, Z.; Wang, Y.; et al. UPLC–QQQ–MS/MS-based widely targeted metabolomic analysis reveals the effect of solid-state fermentation with Eurotium cristatum on the dynamic changes in the metabolite profile of dark tea. Food Chem. 2022, 378, 131999. [Google Scholar] [CrossRef]
- Soares, S.; Silva, M.S.; García-Estevez, I.; Groβmann, P.; Brás, N.; Brandão, E.; Mateus, N.; de Freitas, V.; Behrens, M.; Meyerhof, W. Human Bitter Taste Receptors Are Activated by Different Classes of Polyphenols. J. Agric. Food Chem. 2018, 66, 8814–8823. [Google Scholar] [CrossRef]
- Sun, A.; Liu, G.; Sun, L.; Li, C.; Wu, Q.; Gao, J.; Xia, Y.; Geng, Y. Study on the Dynamic Changes in Non-Volatile Metabo-lites of Rizhao Green Tea Based on Metabolomics. Molecules 2023, 28, 7447. [Google Scholar] [CrossRef]
- Ikegaya, A.; Toyoizumi, T.; Ohba, S.; Nakajima, T.; Kawata, T.; Ito, S.; Arai, E. Effects of distribution of sugars and organic acids on the taste of strawberries. Food Sci. Nutr. 2019, 7, 2419–2426. [Google Scholar] [CrossRef]
- Aprea, E.; Charles, M.; Endrizzi, I.; Laura Corollaro, M.; Betta, E.; Biasioli, F.; Gasperi, F. Sweet taste in apple: The role of sorbitol, individual sugars, organic acids and volatile compounds. Sci. Rep. 2017, 7, 44950. [Google Scholar] [CrossRef]
- Chen, M.; Zu, Z.; Shen, S.; An, T.; Zhang, H.; Lu, H.; Fu, M.; Wen, Y.; Chen, Q.; Gao, X. Dynamic changes in the metabolite profile and taste characteristics of loose-leaf dark tea during solid-state fermentation by Eurotium cristatum. LWT 2023, 176, 114528. [Google Scholar] [CrossRef]
- Zou, Y.; Yuan, Y.; Liu, M.; Li, X.; Lai, Y.; Liu, X.; Tan, L.; Tang, Q.; Chen, W.; Li, D.; et al. Metagenomics reveal the role of microorganism and GH genes contribute to Sichuan South-road dark tea quality formation during pile fermentation. LWT 2023, 178, 114618. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, Y.; Lv, Y.; Bouphun, T.; Jia, W.; Liao, S.; Zhu, M.; Zou, Y. Variations in microbial diversity and chemical components of raw dark tea under different relative humidity storage conditions. Food Chem. X 2023, 19, 100863. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Zou, Y.; Zheng, Z.; Chen, Q.; Xu, W.; Wu, Y.; Gao, J.; Zhong, K.; Gao, H. Impact of Inoculating with Indigenous Bacillus marcorestinctum YC-1 on Quality and Microbial Communities of Yibin Yacai (Fermented Mustard) during the Fermentation Process. Foods 2022, 11, 3593. [Google Scholar] [CrossRef]
- Li, X.; He, Y.; Yang, W.; Mu, D.; Zhang, M.; Dai, Y.; Zheng, Z.; Jiang, S.; Wu, X. Comparative analysis of the microbial community and nutritional quality of sufu. Food Sci. Nutr. 2021, 9, 4117–4126. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Yang, C.; Zhang, X.; Wang, Y.; Li, Z.; Chen, Y.; Liu, Z.; Zhu, M.; Xiao, Y. Effects of solid-state fermentation with Bacillus subtilis LK-1 on the volatile profile, catechins composition and antioxidant activity of dark teas. Food Chem. X 2023, 19, 100811. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Chen, J.; Du, G.; Fang, F. Moromi mash dysbiosis trigged by salt reduction is relevant to quality and aroma changes of soy sauce. Food Chem. 2023, 406, 135064. [Google Scholar] [CrossRef] [PubMed]
- García-Varona, M.; Santos, E.M.; Jaime, I.; Rovira, J. Characterisation of Micrococcaceae isolated from different varieties of chorizo. Int. J. Food Microbiol. 2000, 54, 189–195. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Zhou, T.; Zhou, Y. Fungal flora and mycotoxin contamination in tea: Current status, detection meth-ods and dietary risk assessment—A comprehensive review. Trends Food Sci. Technol. 2022, 127, 207–220. [Google Scholar] [CrossRef]
- Cui, P.; Yan, H.; Granato, D.; Ho, C.; Ye, Z.; Wang, Y.; Zhang, L.; Zhou, Y. Quantitative analysis and dietary risk assess-ment of aflatoxins in Chinese post-fermented dark tea. Food Chem. Toxicol. 2020, 146, 111830. [Google Scholar] [CrossRef]
- Liao, S.; Zhao, Y.; Jia, W.; Niu, L.; Bouphun, T.; Li, P.; Chen, S.; Chen, W.; Tang, D.; Zhao, Y.; et al. Untargeted metabolomics and quantification analysis reveal the shift of chemical constituents between instant dark teas individually liquid-state fermented by Aspergillus cristatus, Aspergillus niger, and Aspergillus tubingensis. Front. Microbiol. 2023, 14. [Google Scholar] [CrossRef]
- Huang, X.; Tang, Q.; Li, Q.; Lin, H.; Li, J.; Zhu, M.; Liu, Z.; Wang, K. Integrative analysis of transcriptome and metabolome reveals the mechanism of foliar application of Bacillus amyloliquefaciens to improve summer tea quality (Camellia sinensis). Plant Physiol. Biochem. 2022, 185, 302–313. [Google Scholar] [CrossRef]
- Sun, Y.; Yuan, X.; Luo, Z.; Cao, Y.; Liu, S.; Liu, Y. Metabolomic and transcriptomic analyses reveal comparisons against liquid-state fermentation of primary dark tea, green tea and white tea by Aspergillus cristatus. Food Res. Int. 2023, 172, 113115. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Peng, J.; Li, Q.; Song, Q.; Cronk, Q.; Xiong, B. Optimization of pile-fermentation process, quality and microbial diversity analysis of dark hawk tea (Machilus rehderi). LWT 2024, 192, 115707. [Google Scholar] [CrossRef]
- Koropatkin, N.M.; Cameron, E.A.; Martens, E.C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 2012, 10, 323–335. [Google Scholar] [CrossRef] [PubMed]
Tea Sample | Day 0 | Day 10 | Day 20 | Day 30 | Day 40 | Day 50 | Day 60 |
---|---|---|---|---|---|---|---|
Bitterness | 3 | 4 | 5 | 4 | 2 | 1 | - |
Astringency | 8 | 7 | 5 | 2 | 1 | - | - |
Sweetness | - | - | - | 2 | 4 | 5 | 6 |
Sourness | - | 2 | 4 | 4 | 3 | - | - |
Freshness | 2 | 2 | 1 | - | - | - | - |
NO. | Compounds | Formula | Group | Class | CAS | Taste | Threshold (mg/kg) |
---|---|---|---|---|---|---|---|
1 | Cyclic AMP | C10H12N5O6P | 7 | Nucleotides and derivatives | 60-92-4 | Fresh | 32,900 |
2 | D-Glucose 6-phosphate | C6H13O9P | 7 | Others | 56-73-5 | Sweet | 360 |
3 | Theaflavin-3-gallate | C36H28O16 | 7 | Tannins | 30462-34-1 | Crinkle type astringent | 10.742 |
4 | Theaflavin-3′-Gallate | C36H28O16 | 7 | Tannins | 28543-07-9 | Crinkle type astringent | 10.742 |
5 | Theaflavin 3,3′-Digallate | C43H32O20 | 7 | Tannins | 30462-35-2 | Crinkle type astringent | 11.284 |
6 | L-AsparticAcid | C4H7NO4 | 11 | Amino acids and derivatives | 56-84-8 | Fresh | 80 |
7 | L-Tryptophan | C11H12N2O2 | 11 | Amino acids and derivatives | 73-22-3 | Bitter | 1225 |
Astringent | 102 | ||||||
8 | D-Serine | C3H7NO3 | 11 | Amino acids and derivatives | 312-84-5 | Sweet | 3150–4200 |
9 | Nicotinamide | C6H6N2O | 11 | Others | 98-92-0 | Bitter | 730–980 |
10 | D-(+)-Sucrose | C12H22O11 | 11 | Others | 57-50-1 | Sweet | 7200 |
11 | Procyanidin C1 | C45H38O18 | 11 | Tannins | 37064-30-5 | Bitter | 347 |
Crinkle type astringent | 260 | ||||||
12 | 6-Aminocaproic acid | C6H13NO2 | 11 | Organic acids | 60-32-2 | Bitter | 3670–4200 |
13 | L-Valine | C5H11NO2 | 12 | Amino acids and derivatives | 72-18-4 | Bitter | 1950 |
14 | L-Phenylalanine | C9H11NO2 | 12 | Amino acids and derivatives | 63-91-2 | Bitter | 910 |
15 | Salicin | C13H18O7 | 12 | Phenolic acids | 138-52-3 | Bitter | 83 |
16 | Rutin | C27H30O16 | 12 | Flavonoids | 153-18-4 | Astringent | 1220–1830 |
17 | (-)-Epicatechin gallate | C22H18O10 | 12 | Flavonoids | 1257-08-5 | Bitter | 200 |
Crinkle type astringent | 115 | ||||||
18 | Succinic acid | C4H6O4 | 12 | Organic acids | 110-15-6 | Sour | 94 |
Fresh | 83 | ||||||
19 | γ-Aminobutyric acid | C4H9NO2 | 12 | Amino acids and derivatives | 56-12-2 | Dry mouth feeling | 2.1 |
20 | Adenosine | C10H13N5O4 | 1 | Nucleotides and derivatives | 58-61-7 | Bitter | 800–1600 |
21 | Guanosine | C10H13N5O5 | 1 | Nucleotides and derivatives | 118-00-3 | Bitter | 4250 |
22 | Epigallocatechin gallate | C22H18O11 | 1 | Flavonoids | 989-51-5 | Crinkle type astringent | 87 |
Bitter | 87–174 | ||||||
23 | Gallocatechin gallate | C22H18O11 | 1 | Flavonoids | 4233-96-9 | Crinkle type astringent | 180 |
Bitter | 180 | ||||||
24 | L-(-)-Tyrosine | C9H11NO3 | 3 | Amino acids and derivatives | 60-18-4 | Bitter | 725–1090 |
25 | L-theanine | C7H14N2O3 | 3 | Amino acids and derivatives | 3081-61-6 | Silky type astringent | 1050 |
26 | L-Tyramine | C8H11NO | 3 | Amino acids and derivatives | 51-67-2 | Bitter | 274–343 |
27 | Chlorogenic acid | C16H18O9 | 3 | Phenolic acids | 327-97-9 | Sour | 361 |
Bitter | 50 | ||||||
28 | Neochlorogenic acid | C16H18O9 | 3 | Phenolic acids | 906-33-2 | Bitter | 50 |
Sour | 1000 | ||||||
29 | L-Epicatechin | C15H14O6 | 3 | Flavonoids | 490-46-0 | Bitter | 230 |
Crinkle type astringent | 230 | ||||||
30 | Anchoic Acid | C9H16O4 | 3 | Organic acids | 123-99-9 | Sour | 188 |
31 | Ferulic acid | C10H10O4 | 4 | Phenolic acids | 1135-24-6 | Crinkle type astringent | 13 |
32 | Methyl gallate | C8H8O5 | 4 | Flavonoids | 99-24-1 | Astringent | 42.688 |
33 | Histamine | C5H9N3 | 5 | Amino acids and derivatives | 51-45-6 | Bitter | 1110–2220 |
34 | 4-Hydroxybenzoic acid | C7H6O3 | 5 | Phenolic acids | 99-96-7 | Sour | 276 |
Bitter | 1100–1660 | ||||||
Astringent | 92 | ||||||
35 | Cytosine | C4H5N3O | 5 | Nucleotides and derivatives | 71-30-7 | Bitter | 780–1000 |
36 | Adenine | C5H5N5 | 5 | Nucleotides and derivatives | 73-24-5 | Bitter | 270–540 |
37 | Guanine | C5H5N5O | 5 | Nucleotides and derivatives | 73-40-5 | Bitter | >760 |
38 | 7-Methylxanthine | C6H6N4O2 | 5 | Nucleotides and derivatives | 552-62-5 | Bitter | 100–200 |
39 | Cytidine | C9H13N3O5 | 5 | Nucleotides and derivatives | 65-46-3 | Bitter | 3650–4860 |
40 | Protocatechuic acid | C7H6O4 | 5 | Flavonoids | 99-50-3 | Crinkle type astringent | 31–32 |
41 | L-(+)-Tartaric acid | C4H6O6 | 5 | Organic acids | 87-69-4 | Sour | 41 |
42 | 2-Methylsuccinic acid | C5H8O4 | 5 | Organic acids | 498-21-5 | Sour | 99 |
43 | Phe-Phe | C18H20N2O3 | 6 | Amino acids and derivatives | 2577-40-4 | Bitter | 200–300 |
44 | N-Glycyl-L-leucine | C8H16N2O3 | 6 | Amino acids and derivatives | 869-19-2 | Bitter | 4700 |
45 | Glycylisoleucine | C8H16N2O3 | 6 | Amino acids and derivatives | 19461-38-2 | Bitter | 410 |
46 | Glycyl-L-proline | C7H12N2O3 | 6 | Amino acids and derivatives | 704-15-4 | Bitter | 1030 |
47 | Vanillic acid | C8H8O4 | 6 | Phenolic acids | 121-34-6 | Crinkle type astringent | 53 |
48 | Pyrocatechol | C6H6O2 | 6 | Phenolic acids | 120-80-9 | Bitter | 198 |
Astringent | 99 | ||||||
49 | Caffeic acid | C9H8O4 | 6 | Phenolic acids | 331-39-5 | Crinkle type astringent | 13 |
50 | Gallic acid | C7H6O5 | 6 | Flavonoids | 149-91-7 | Crinkle type astringent | 46.2–50 |
Bitter | >140 | ||||||
51 | L-Ascorbic acid | C6H8O6 | 6 | Others | 50-81-7 | Sour | 120 |
52 | 3-Hydroxybutyrate | C4H8O3 | 6 | Organic acids | 300-85-6 | Bitter | >10,400 |
53 | L-Isoleucine | C6H13NO2 | 9 | Amino acids and derivatives | 73-32-5 | Bitter | 1310–1575 |
54 | α-Aminocaproic acid | C6H13NO2 | 9 | Amino acids and derivatives | 327-57-1 | Bitter | 2360–2890 |
55 | L-(+)-Lysine | C6H14N2O2 | 9 | Amino acids and derivatives | 56-87-1 | Bitter | 11,700–13,160 |
56 | L-Glutamine | C5H10N2O3 | 9 | Amino acids and derivatives | 56-85-9 | Salty | 7300 |
57 | 2-Aminoisobutyric acid | C4H9NO2 | 9 | Amino acids and derivatives | 62-57-7 | Sweet | 515–1030 |
58 | Salicylic acid | C7H6O3 | 8 | Phenolic acids | 69-72-7 | Sweet | 414 |
59 | Terephthalic acid | C8H6O4 | 8 | Phenolic acids | 100-21-0 | Sweet | >6640 |
60 | Thymine | C5H6N2O2 | 8 | Nucleotides and derivatives | 65-71-4 | Bitter | 440–630 |
61 | 1,7-Dimethylxanthine | C7H8N4O2 | 8 | Nucleotides and derivatives | 611-59-6 | Bitter | 90–160 |
62 | Hypoxanthine | C5H4N4O | 8 | Nucleotides and derivatives | 68-94-0 | Bitter | 5990 |
63 | 1-Methylxanthine | C6H6N4O2 | 8 | Nucleotides and derivatives | 6136-37-4 | Bitter | 230–300 |
64 | Uracil | C4H4N2O2 | 8 | Nucleotides and derivatives | 66-22-8 | Bitter | <2800 |
65 | Thymidine | C10H14N2O5 | 8 | Nucleotides and derivatives | 50-89-5 | Bitter | 480–730 |
66 | D-Sorbitol | C6H14O6 | 8 | Others | 50-70-4 | Sweet | 6160 |
67 | Nicotinic acid | C6H5NO2 | 8 | Others | 59-67-6 | Bitter | 2460–3800 |
68 | Dulcitol | C6H14O6 | 8 | Others | 608-66-2 | Sweet | 8000 |
69 | Theophylline | C7H8N4O2 | 8 | Alkaloids | 58-55-9 | Bitter | 110–160 |
70 | 2-Furanoic acid | C5H4O3 | 8 | Organic acids | 88-14-2 | Astringent | 18 |
71 | Adipic Acid | C6H10O4 | 8 | Organic acids | 124-04-9 | Sour | 168 |
72 | α-Hydroxyisobutyric acid | C4H8O3 | 8 | Organic acids | 594-61-6 | Sweet | >10,400 |
73 | Cytidylic acid | C9H14N3O8P | 2 | Nucleotides and derivatives | 63-37-6 | Fresh | 2260 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Chen, R.; Sun, L.; Li, Q.; Lai, X.; Zhang, Z.; Lai, Z.; Hao, M.; Li, Q.; Lin, S.; et al. Effects of Pile-Fermentation Duration on the Taste Quality of Single-Cultivar Large-Leaf Dark Tea: Insights from Metabolomics and Microbiomics. Foods 2025, 14, 670. https://doi.org/10.3390/foods14040670
Yang W, Chen R, Sun L, Li Q, Lai X, Zhang Z, Lai Z, Hao M, Li Q, Lin S, et al. Effects of Pile-Fermentation Duration on the Taste Quality of Single-Cultivar Large-Leaf Dark Tea: Insights from Metabolomics and Microbiomics. Foods. 2025; 14(4):670. https://doi.org/10.3390/foods14040670
Chicago/Turabian StyleYang, Wanying, Ruohong Chen, Lingli Sun, Qiuhua Li, Xingfei Lai, Zhenbiao Zhang, Zhaoxiang Lai, Mengjiao Hao, Qian Li, Sen Lin, and et al. 2025. "Effects of Pile-Fermentation Duration on the Taste Quality of Single-Cultivar Large-Leaf Dark Tea: Insights from Metabolomics and Microbiomics" Foods 14, no. 4: 670. https://doi.org/10.3390/foods14040670
APA StyleYang, W., Chen, R., Sun, L., Li, Q., Lai, X., Zhang, Z., Lai, Z., Hao, M., Li, Q., Lin, S., Ni, H., & Sun, S. (2025). Effects of Pile-Fermentation Duration on the Taste Quality of Single-Cultivar Large-Leaf Dark Tea: Insights from Metabolomics and Microbiomics. Foods, 14(4), 670. https://doi.org/10.3390/foods14040670