Investigating the Impact of the Degree of Sharpness on the Microstructure of Fresh-Cut Apples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Color Measurement
a* − 3.012 b*)
2.3. Visual Appearance Score
2.4. Microstructural Analysis
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ansah, F.A.; Amodio, M.L.; De Chiara, M.L.V.; Colelli, G. Effects of equipment and processing conditions on quality of fresh-cut produce. J. Agric. Eng. 2018, 49, 827. [Google Scholar] [CrossRef]
- Francis, G.; Gallone, A.; Nychas, G.J.; Sofos, J.N.; Colelli, G.; Amodio, M.L.; Spano, G. Factors affecting quality and safety of fresh-cut produce. Crit. Rev. Food Sci. Nutr. 2012, 52, 595–610. [Google Scholar] [CrossRef] [PubMed]
- Incardona, A.; Fatchurrahman, D.; Amodio, M.L.; Colelli, G. Reducing Mechanical Damage Induced by Fresh-Cut Processing. Italus Hortus 2022, 29, 1–24. [Google Scholar] [CrossRef]
- Jacobo-Velázquez, D.A.; Martínez-Hernández, G.B.; Del, S.; Rodríguez, C.; Cao, C.-M.; Cisneros-Zevallos, L. Plants as Biofactories: Physiological Role of Reactive Oxygen Species on the Accumulation of Phenolic Antioxidants in Carrot Tissue under Wounding and Hyperoxia Stress. J. Agric. Food Chem. 2011, 59, 6583–6593. [Google Scholar] [CrossRef] [PubMed]
- Caretto, S.; Linsalata, V.; Colella, G.; Mita, G.; Lattanzio, V. Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress. Int. J. Mol. Sci. 2015, 16, 26378–26394. [Google Scholar] [CrossRef] [PubMed]
- Brecht, J.K.; Saltveit, M.E.; Talcott, S.T.; Schneider, K.R.; Felkey, K.; Bartz, J.A. Fresh-cut vegetables and fruits. In Horticultural Reviews, 30th ed.; Wiley: Hoboken, NJ, USA, 2004; pp. 1–77. [Google Scholar] [CrossRef]
- Singh, V.; Das, M.; Das, S.K. Effects of knife edge angle and speed on peak force and specific energy when cutting vegetables of diverse texture. Int. J. Food Stud. 2016, 5, 22–38. [Google Scholar] [CrossRef]
- Portela, S.I.; Cantwell, M.I. Cutting blade sharpness affects appearance and other quality attributes of fresh-cut cantaloupe melon. J. Food Sci. 2001, 66, 1265–1270. [Google Scholar] [CrossRef]
- Surjadinata, B.B.; Cisneros-Zevallos, L. Modeling wound-induced respiration of fresh-cut carrots (Daucus carota L.). J. Food Sci. 2003, 68, 2735–2740. [Google Scholar] [CrossRef]
- Mishra, B.B.; Gautam, S.; Sharma, A. Browning of fresh-cut eggplant: Impact of cutting and storage. Postharvest Biol. Technol. 2012, 67, 44–51. [Google Scholar] [CrossRef]
- Incardona, A.; Amodio, M.L.; Colelli, G. Monitoring the effect of cutting blade sharpness on quality of fresh-cut product. Acta Hortic. 2021, 1319, 67–74. [Google Scholar] [CrossRef]
- McCarthy, C.; Hussey, M. On the sharpness of straight edge blades in cutting soft solids: Part I—Indentation experiments. Eng. Fract. Mech. 2006, 73, 2970–2984. [Google Scholar] [CrossRef]
- McCarthy, C.T.; Annaidh, A.N.; Gilchrist, M.D. On the sharpness of straight edge blades in cutting soft solids: Part II—Analysis of blade geometry. Eng. Fract. Mech. 2010, 77, 437–451. [Google Scholar] [CrossRef]
- Lim, K.S.; Barigou, M. X-ray micro-computed tomography of cellular food products. Food Res. Int. 2004, 37, 1001–1012. [Google Scholar] [CrossRef]
- Wang, Z.; Herremans, E.; Janssen, S.; Cantre, D.; Verboven, P.; Nicolaï, B. Visualizing 3D food microstructure using tomographic methods: Advantages and disadvantages. Annu. Rev. Food Sci. Technol. 2018, 9, 323–343. [Google Scholar] [CrossRef]
- Olakanmi, S.; Karunakaran, C.; Jayas, D. Applications of X-ray micro-computed tomography and small-angle X-ray scattering techniques in food systems: A concise review. J. Food Eng. 2023, 342, 111355. [Google Scholar] [CrossRef]
- Du, Z.; Hu, Y.; Ali Buttar, N.; Mahmood, A. X-ray computed tomography for quality inspection of agricultural products: A review. Food Sci. Nutr. 2019, 7, 3146–3160. [Google Scholar] [CrossRef]
- Prawiranto, K.; Defraeye, T.; Derome, D.; Bühlmann, A.; Hartmann, S.; Verboven, P.; Nicolai, B.; Carmeliet, J. Impact of drying methods on the changes of fruit microstructure unveiled by X-ray micro-computed tomography. RSC Adv. 2019, 9, 10606–10624. [Google Scholar] [CrossRef]
- Erkinbaev, C.; Ramachandran, R.P.; Cenkowski, S.; Paliwal, J. A comparative study on the effect of superheated steam and hot air drying on microstructure of distillers’ spent grain pellets using X-ray micro-computed tomography. J. Food Eng. 2018, 232, 54–62. [Google Scholar] [CrossRef]
- Contardo, I.; Bouchon, P. Enhancing Micro-CT methods to quantify oil content and porosity in starch-gluten matrices. J. Food Eng. 2018, 237, 154–161. [Google Scholar] [CrossRef]
- Karmoker, P.; Obatake, W.; Tanaka, F.; Tanaka, F. Visualization of porosity and thermal conductivity distributions of Japanese apricot and pear during storage using X-ray computed tomography. Eng. Agric. Environ. Food 2019, 12, 505–510. [Google Scholar] [CrossRef]
- Nugraha, B.; Verboven, P.; Janssen, S.; Wang, Z.; Nicolaï, B.M. Non-destructive porosity mapping of fruit and vegetables using X-ray CT. Postharvest Biol. Technol. 2019, 153, 79–86. [Google Scholar] [CrossRef]
- Chen, Y.; Parrilli, A.; Jaedig, F.; Fuhrmann, A.; Staedeli, C.; Fischer, P.; Windhab, E.J. Micro-computed tomography study on bread dehydration and structural changes during ambient storage. J. Food Eng. 2021, 296, 110462. [Google Scholar] [CrossRef]
- Nugraha, B.; Verboven, P.; Janssen, S.; Hertog, M.L.; Boone, M.; Josipovic, I.; Nicolaï, B.M. Oxygen diffusivity mapping of fruit and vegetables based on X-ray CT. J. Food Eng. 2021, 306, 110640. [Google Scholar] [CrossRef]
- Janssen, S.; Verboven, P.; Nugraha, B.; Wang, Z.; Boone, M.; Josipovic, I.; Nicolaï, B.M. 3D pore structure analysis of intact ‘Braeburn’ apples using X-ray micro-CT. Postharvest Biol. Technol. 2020, 159, 111014. [Google Scholar] [CrossRef]
- Chigwaya, K.; Karuppanapandian, T.; Schoeman, L.; Viljoen, D.W.; Crouch, I.J.; Nugraha, B.; Verboven, P.; Nicolaï, B.M.; Crouch, E.M. X-ray CT and porosity mapping to determine the effect of ‘Fuji’ apple morphological and microstructural properties on the incidence of CO2-induced internal browning. Postharvest Biol. Technol. 2021, 174, 111464. [Google Scholar] [CrossRef]
- Vicent, V.; Verboven, P.; Ndoye, F.T.; Alvarez, G.; Nicolaï, B. A new method developed to characterize the 3D microstructure of frozen apple using X-ray micro-CT. J. Food Eng. 2017, 212, 154–164. [Google Scholar] [CrossRef]
- Cefola, M.; Amodio, M.L.; Cornacchia, R.; Rinaldi, R.; Vanadia, S.; Colelli, G. Effect of atmosphere composition on the quality of ready-to-use broccoli raab (Brassica rapa L.). J. Sci. Food Agric. 2010, 90, 789–797. [Google Scholar] [CrossRef]
- Amodio, M.L.; Derossi, A.; Colelli, G. Modeling phenolic content during storage of cut fruit and vegetables: A consecutive reaction mechanism. J. Food Eng. 2015, 140, 1–8. [Google Scholar] [CrossRef]
- Available online: https://www.microphotonics.com/wp-content/uploads/2016/01/CTAn_parameters.pdf (accessed on 1 August 2009).
- Yildiz, G.; Palma, S.; Feng, H. Ultrasonic cutting as a new method to produce fresh-cut red delicious and golden delicious apples. J. Food Sci. 2019, 84, 2432–2440. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.S.; Jeong, M.C.; Moon, K.D. Effects of cutting methods on qualities of fresh-cut apples and leafy vegetables. Korean J. Food Preserv. 2012, 19, 173–177. [Google Scholar] [CrossRef]
- Li, X.; Long, Q.; Gao, F.; Han, C.; Jin, P.; Zheng, Y. Effect of cutting styles on quality and antioxidant activity in fresh-cut pitaya fruit. Postharvest Biol. Technol. 2016, 124, 1–7. [Google Scholar] [CrossRef]
- del Aguila, J.S.; Sasaki, F.F.; Heiffig, L.S.; Ortega, E.M.M.; Jacomino, A.P.; Kluge, R.A. Fresh-Cut Radish Using Different Cut Types and Storage Temperatures. Postharvest Biol. Technol. 2006, 40, 149–154. [Google Scholar] [CrossRef]
- Artés-Hernández, F.; Rivera-Cabrera, F.; Kader, A.A. Quality Retention and Potential Shelf-Life of Fresh-Cut Lemons as Affected by Cut Type and Temperature. Postharvest Biol. Technol. 2007, 43, 245–254. [Google Scholar] [CrossRef]
- Du, W.-X.; Avena-Bustillos, R.J.; Breksa III, A.P.; McHugh, T.H. Effect of UV-B Light and Different Cutting Styles on Antioxidant Enhancement of Commercial Fresh-Cut Carrot Products. Food Chem. 2012, 134, 1862–1869. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.-S.; Moon, K.-D. Browning Characteristics of Fresh-Cut ‘Tsugaru’ Apples as Affected by Pre-Slicing Storage Atmospheres. Food Chem. 2009, 114, 1433–1437. [Google Scholar] [CrossRef]
- Ting, V.J.L.; Silcock, P.; Bremer, P.J.; Biasioli, F. X-Ray Micro-Computer Tomographic Method to Visualize the Microstructure of Different Apple Cultivars. J. Food Sci. 2013, 78, E1735–E1742. [Google Scholar] [CrossRef]
- Mosqueda-Melgar, J.; Tapia, M.S. Edible Coatings as Carriers of Food Additives on Fresh-Cut Fruits and Vegetables. Stewart Postharvest Rev. 2010, 3, 3. [Google Scholar] [CrossRef]
- Herremans, E.; Verboven, P.; Hertog, M.L.A.T.M.; Cantre, D.; van Dael, M.; de Schryver, T.; Nicolaï, B.M. Spatial Development of Transport Structures in Apple (Malus × domestica Borkh.) Fruit. Front. Plant Sci. 2015, 6, 679. [Google Scholar] [CrossRef] [PubMed]
- Soliva-Fortuny, R.C.; Grigelmo-Miguel, N.; Hernando, I.; Lluch, M.A.; Martín-Belloso, O. Effect of Minimal Processing on the Textural and Structural Properties of Fresh-Cut Pears. J. Sci. Food Agric. 2002, 82, 1682–1688. [Google Scholar] [CrossRef]
30 N | 100 N | 140 N | 190 N | A: Treatment | B: Time | A × B | |
---|---|---|---|---|---|---|---|
L* | 81.5 a | 79.9 b | 80.1 b | 79.9 b | **** | **** | **** |
a* | 1.6 b | 2.7 a | 2.6 a | 2.5 a | **** | **** | ** |
b* | 25.4 b | 26.7 a | 27.0 a | 26.5 a | **** | **** | * |
Chroma | 25.4 b | 26.9 a | 27.1 a | 26.7 a | **** | **** | ** |
Hue angle | 86.4 a | 84.4 b | 84.7 b | 84.7 b | **** | **** | ** |
Browning index | 38.1 b | 42.5 a | 42.8 a | 42.0 a | **** | **** | ** |
Visual score | 4.1 a | 3.8 b | 3.6 b | 3.2 c | **** | **** | **** |
DoS1 | DoS4 | |
---|---|---|
Porosity | 14.12 ± 1.5 | 11.43 ± 5.21 |
Structure separation index | 280 ± 8.75 | 332.43 ± 25.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Incardona, A.; Amodio, M.L.; Derossi, A.; Colelli, G. Investigating the Impact of the Degree of Sharpness on the Microstructure of Fresh-Cut Apples. Foods 2025, 14, 636. https://doi.org/10.3390/foods14040636
Incardona A, Amodio ML, Derossi A, Colelli G. Investigating the Impact of the Degree of Sharpness on the Microstructure of Fresh-Cut Apples. Foods. 2025; 14(4):636. https://doi.org/10.3390/foods14040636
Chicago/Turabian StyleIncardona, Alessia, Maria Luisa Amodio, Antonio Derossi, and Giancarlo Colelli. 2025. "Investigating the Impact of the Degree of Sharpness on the Microstructure of Fresh-Cut Apples" Foods 14, no. 4: 636. https://doi.org/10.3390/foods14040636
APA StyleIncardona, A., Amodio, M. L., Derossi, A., & Colelli, G. (2025). Investigating the Impact of the Degree of Sharpness on the Microstructure of Fresh-Cut Apples. Foods, 14(4), 636. https://doi.org/10.3390/foods14040636