Involvement of Anion-Specific Effects in Changes in the Gelation and Thermodynamic Properties of Calcium Alginate Hydrogel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Calcium Alginate Hydrogels
2.3. Gelation Time
2.4. Rheology Tests
2.5. FTIR
2.6. Cryo-SEM
2.7. LF-NMR Relaxometry
2.8. Thermodynamic Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Effects of M/G Ratios and Calcium Salt Types on Gelation Time
3.2. Effects of the M/G Ratios and Calcium Salt Types on the Gelation Process
3.3. Effects of M/G Ratios and Calcium Salt Types on Chemical Structures
3.4. Effects of the M/G Ratios and Calcium Salt Types on Microstructure
3.5. Effects of the M/G Ratios and Calcium Salt Types on Moisture Migration
3.6. Effects of M/G Ratios and Calcium Salt Types on Thermodynamic Analysis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALG | alginate |
CaHMB | calcium β-hydroxy-β-methylbutyrate |
M/G ratios | mannuronic/guluronic acids ratios |
LVR | linear viscoelastic region |
FTIR | Fourier transform infrared spectroscopy |
cryo-SEM | cryo-scanning electron microscopy |
LF-NMR | low-field NMR |
CPMG | Carr-Purcell-Meiboom-Gill sequence |
T2 | transverse spin-spin |
TGA | thermal gravimetric analysis |
DTG | derivative thermogravimetric |
References
- Chen, B.; Ai, C.; He, Y.; Zheng, Y.; Chen, L.; Teng, H. Preparation and structural characterization of chitosan-sodium alginate nanocapsules and their effects on the stability and antioxidant activity of blueberry anthocyanins. Food Chem. X 2024, 23, 101744. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Luo, Y.; Guo, Y.; Zhou, Y.; Liao, X.; Li, D.; Lai, X.; Liu, Y. Development of alginate-based hydrogels: Crosslinking strategies and biomedical applications. Int. J. Biol. Macromol. 2023, 239, 124275. [Google Scholar] [CrossRef] [PubMed]
- Wan, P.; Wu, S.; Liu, Q.; Zou, Y.; Zhao, Z.; Chen, S. Recent advances in calcium alginate hydrogels encapsulating rejuvenator for asphalt self-healing. J. Road Eng. 2022, 2, 181–220. [Google Scholar] [CrossRef]
- Traffano-Schiffo, M.V.; Aguirre-Calvo, T.R.; Navajas-Porras, B.; Avanza, M.V.; Rufián-Henares, J.Á.; Santagapita, P.R. In vitro digestion and fermentation of cowpea pod extracts and proteins loaded in Ca(II)-alginate hydrogels. Foods 2024, 13, 3071. [Google Scholar] [CrossRef]
- Paoletti, S.; Donati, I. Comparative insights into the fundamental steps underlying gelation of plant and algal ionic polysaccharides: Pectate and alginate. Gels 2022, 8, 784. [Google Scholar] [CrossRef]
- Wu, S.W.; Hua, M.T.; Alsaid, Y.; Du, Y.J.; Ma, Y.F.; Zhao, Y.S.; Lo, C.Y.; Wang, C.R.; Wu, D.; Yao, B.W.; et al. Poly(vinyl alcohol) hydrogels with broad-range tunable mechanical properties via the Hofmeister effect. Adv. Mater. 2021, 33, 2007829. [Google Scholar] [CrossRef]
- Mazzini, V.; Liu, G.; Craig, V.S. Probing the Hofmeister series beyond water: Specific-ion effects in non-aqueous solvents. J. Chem. Phys. 2018, 148, 222805. [Google Scholar] [CrossRef]
- Jin, Y.; Lu, S.; Chen, X.; Fang, Q.; Guan, X.; Qin, L.; Chen, C.; Zhao, C. Time-Salt type superposition and salt processing of poly (methacrylamide) hydrogel based on Hofmeister series. Macromolecules 2024, 57, 2746–2755. [Google Scholar] [CrossRef]
- Tao, Y.H.; Ma, J.M.; Huang, C.X.; Lai, C.H.; Ling, Z.; Yong, Q. Effects of the Hofmeister anion series salts on the rheological properties of Sesbania cannabina galactomannan. Int. J. Biol. Macromol. 2021, 188, 350–358. [Google Scholar] [CrossRef]
- Tatini, D.; Sarri, F.; Maltoni, P.; Ambrosi, M.; Carretti, E.; Ninham, B.W.; Lo Nostro, P. Specific ion effects in polysaccharide dispersions. Carbohydr. Polym. 2017, 173, 344–352. [Google Scholar] [CrossRef]
- Abedi, E.; Altemimi, A.B.; Roohi, R.; Hashemi, S.M.B.; Conte, F.L. Understanding starch gelatinization and rheology modeling of tapioca starch–NaCl/CaCl2 blends: Thermodynamic properties and gelatinization reaction kinetics during pre-and post-ultrasonication. Int. J. Biol. Macromol. 2024, 272, 132865. [Google Scholar] [CrossRef] [PubMed]
- Donati, I.; Christensen, B.E. Alginate-metal cation interactions: Macromolecular approach. Carbohydr. Polym. 2023, 321, 121280. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Hou, J.; Hu, B.; Shao, L.; Zhang, Y.; Xu, D. Determination of calcium β-hydroxy-β-methyl butyrate content in milk and dairy products by solid-phase extraction and high performance liquid chromatography. J. Food Compos. Anal. 2024, 132, 106362. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, Q.; Liu, J.C.; Yan, J.N.; Wang, C.; Lai, B.; Zhang, L.C.; Wu, H.T. Construction and characterization of alginate/calcium β-hydroxy-β-methylbutyrate hydrogels: Effect of M/G ratios and calcium ion concentration. Int. J. Biol. Macromol. 2024, 273, 133162. [Google Scholar] [CrossRef]
- Mazzini, V.; Craig, V.S. Specific-ion effects in non-aqueous systems. Curr. Opin. Colloid Interface Sci. 2016, 23, 82–93. [Google Scholar] [CrossRef]
- Kang, B.; Tang, H.; Zhao, Z.; Song, S. Hofmeister series: Insights of ion specificity from amphiphilic assembly and interface property. ACS omega 2020, 5, 6229–6239. [Google Scholar] [CrossRef]
- Yi, Y.; Song, J.; Meng, D.; Li, J.; Shu, Y.; Wu, X. Effects of calcium salts on experimental characterizations of sodium alginate hydrogels and the drug release of electrospun naringin-loaded microspheres hybrid hydrogel scaffolds. Mater. Lett. 2023, 333, 133663. [Google Scholar] [CrossRef]
- Li, L.; Lai, B.; Yan, J.N.; Yambazi, M.H.; Wang, C.; Wu, H.T. Characterization of complex coacervation between chia seed gum and whey protein isolate: Effect of pH, protein/polysaccharide mass ratio and ionic strength. Food Hydrocoll. 2024, 148, 109445. [Google Scholar] [CrossRef]
- Ryu, J.; Rosenfeld, S.E.; McClements, D.J. Creation of plant-based meat analogs: Effects of calcium salt type on structure and texture of potato protein-alginate composite gels. Food Hydrocoll. 2024, 156, 110312. [Google Scholar] [CrossRef]
- Olivares-Marín, M.; Castro-Díaz, M.; Drage, T.C.; Maroto-Valer, M.M. Use of small-amplitude oscillatory shear rheometry to study the flow properties of pure and potassium-doped Li2ZrO3 sorbents during the sorption of CO2 at high temperatures. Sep. Purif. Technol. 2010, 73, 415–420. [Google Scholar] [CrossRef]
- Kim, M.H.; Park, H.; Park, W.H. Effect of pH and precursor salts on in situ formation of calcium phosphate nanoparticles in methylcellulose hydrogel. Carbohydr. Polym. 2018, 191, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Higham, A.K.; Bonino, C.A.; Raghavan, S.R.; Khan, S.A. Photo-activated ionic gelation of alginate hydrogel: Real-time rheological monitoring of the two-step crosslinking mechanism. Soft Matter 2014, 10, 4990–5002. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.H.K.; Simon, C.G. Fast setting calcium phosphate-chitosan scaffold: Mechanical properties and biocompatibility. Biomaterials 2005, 26, 1337–1348. [Google Scholar] [CrossRef] [PubMed]
- Moody, C.T.; Brown, A.E.; Massaro, N.P.; Patel, A.S.; Agarwalla, P.A.; Simpson, A.M.; Brown, A.C.; Zheng, H.; Pierce, J.G.; Brudno, Y. Restoring carboxylates on highly modified alginates improves gelation, tissue retention and systemic capture. Acta Biomater. 2022, 138, 208–217. [Google Scholar] [CrossRef]
- Saengsuk, N.; Laohakunjit, N.; Sanporkha, P.; Kaisangsri, N.; Selamassakul, O.; Ratanakhanokchai, K.; Uthairatanakij, A.; Waeonukul, R. Comparative physicochemical characteristics and in vitro protein digestibility of alginate/calcium salt restructured pork steak hydrolyzed with bromelain and addition of various hydrocolloids (low acyl gellan, low methoxy pectin and κ-carrageenan). Food Chem. 2022, 393, 133315. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, Z.; Liu, P.; Qiu, Z.; Gitis, V.; Feng, H.; Li, Y.; Cai, Y.; Xiang, H.; Li, H. Hydrogen-bond dominated phosphorus uptake by chitosan-calcium alginate coated melamine foam in ecological floating beds. Chem. Eng. J. 2024, 494, 153303. [Google Scholar] [CrossRef]
- Salah, N.; Sahare, P.D.; Lochab, S.P.; Kumar, P. TL and PL studies on CaSO4: Dy nanoparticles. Radiat. Meas. 2006, 41, 40–47. [Google Scholar] [CrossRef]
- Qi, C.Z.; Wu, X.; Liu, J.; Luo, X.J.; Zhang, H.B.; Yu, Z.Z. Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and Joule heating. J. Mater. Sci. Technol. 2023, 135, 213–220. [Google Scholar] [CrossRef]
- Min, C.; Yang, Q.; Pu, H.Y.; Cao, Y.A.; Ma, W.H.; Kuang, J.W.; Huang, J.R.; Xiong, Y.L. Textural characterization of calcium salts-induced mung bean starch-flaxseed protein composite gels as dysphagia food. Food Res. Int. 2023, 164, 112355. [Google Scholar] [CrossRef]
- Andriamanantoanina, H.; Rinaudo, M. Relationship between the molecular structure of alginates and their gelation in acidic conditions. Polymer Int. 2010, 59, 1531–1541. [Google Scholar] [CrossRef]
- Papageorgiou, S.K.; Kouvelos, E.P.; Favvas, E.P.; Sapalidis, A.A.; Romanos, G.E.; Katsaros, F.K. Metal-carboxylate interactions in metal-alginate complexes studied with FTIR spectroscopy. Carbohydr. Res. 2010, 345, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Mascaraque, L.G.; Martínez-Sanz, M.; Hogan, S.A.; López-Rubio, A.; Brodkorb, A. Nano-and microstructural evolution of alginate beads in simulated gastrointestinal fluids. Impact of M/G ratio, molecular weight and pH. Carbohydr. Polym. 2019, 223, 115121. [Google Scholar] [CrossRef] [PubMed]
- Jaspers, M.; Rowan, A.E.; Kouwer, P.H.J. Tuning Hydrogel Mechanics Using the Hofmeister Effect. Adv. Funct. Mater. 2015, 25, 6503–6510. [Google Scholar] [CrossRef]
- El Nokab, M.E.; Lasorsa, A.; Sebakhy, K.O.; Picchioni, F.; van der Wel, P.C.A. Solid-state NMR spectroscopy insights for resolving different water pools in alginate hydrogels. Food Hydrocoll. 2022, 127, 107500. [Google Scholar] [CrossRef]
- Han, M.Y.; Wang, P.; Xu, X.L.; Zhou, G.H. Low-field NMR study of heat-induced gelation of pork myofibrillar proteins and its relationship with microstructural characteristics. Food Res. Int. 2014, 62, 1175–1182. [Google Scholar] [CrossRef]
- Su, C.Y.; Li, D.; Wang, L.Y.; Wang, Y. Green double crosslinked starch-alginate hydrogel regulated by sustained calcium ion-gluconolactone release for human motion monitoring. Chem. Eng. J. 2023, 455, 140653. [Google Scholar] [CrossRef]
- Satriaji, K.P.; Garcia, C.V.; Kim, G.H.; Shin, G.H.; Kim, J.T. Antibacterial bionanocomposite films based on CaSO4-crosslinked alginate and zinc oxide nanoparticles. Food Packag. Shelf Life 2020, 24, 100510. [Google Scholar] [CrossRef]
- Radoor, S.; Kassahun, S.K.; Kim, H. Selective adsorption of cationic dye by κ-carrageenan-potato starch bio-hydrogel: Kinetics, isotherm, and thermodynamic studies. Int. J. Biol. Macromol. 2024, 281, 136377. [Google Scholar] [CrossRef]
- Bao, Y.; Zheng, X.; Guo, R.; Wang, L.; Liu, C.; Zhang, W. Biomass chitosan/sodium alginate colorimetric imprinting hydrogels with integrated capture and visualization detection for cadmium (II). Carbohydr. Polym. 2024, 331, 121841. [Google Scholar] [CrossRef]
- Zhang, C.J.; Liu, Y.; Cui, L.; Yan, C.; Zhu, P. Bio-based calcium alginate nonwoven fabrics: Flame retardant and thermal degradation properties. J. Anal. Appl. Pyrolysis 2016, 122, 13–23. [Google Scholar] [CrossRef]
- da Silva Fernandes, R.; de Moura, M.R.; Glenn, G.M.; Aouada, F.A. Thermal, microstructural, and spectroscopic analysis of Ca2+ alginate/clay nanocomposite hydrogel beads. J. Mol. Liq. 2018, 265, 327–336. [Google Scholar] [CrossRef]
- Hachemaoui, M.; Mokhtar, A.; Mekki, A.; Zaoui, F.; Abdelkrim, S.; Hacini, S.; Boukoussa, B. Composites beads based on Fe3O4@ MCM-41 and calcium alginate for enhanced catalytic reduction of organic dyes. Int. J. Biol. Macromol. 2020, 164, 468–479. [Google Scholar] [CrossRef] [PubMed]
Sample | M/G Ratios | Mw (g/mol) | Polydispersity Mw/Mn |
---|---|---|---|
A21 | 2:1 | 667622 | 1.36 |
A11 | 1:1 | 366279 | 1.01 |
A12 | 1:2 | 450057 | 1.11 |
Sample | νasym(COO−) | νsym(COO−) | Δν(COO−) |
---|---|---|---|
A21-CaSO4 | 1607 | 1419 | 188 |
A21-CaI2 | 1611 | 1423 | 188 |
A21-CaHMB | 1611 | 1416 | 195 |
A21 | 1615 | 1417 | 198 |
A11-CaSO4 | 1615 | 1416 | 199 |
A11-CaI2 | 1614 | 1417 | 197 |
A11-CaHMB | 1615 | 1412 | 203 |
A11 | 1620 | 1417 | 203 |
A12-CaSO4 | 1614 | 1416 | 198 |
A12-CaI2 | 1615 | 1416 | 199 |
A12-CaHMB | 1615 | 1412 | 203 |
A12 | 1621 | 1417 | 204 |
Sample | T21 | T22 | T23 |
---|---|---|---|
A21-CaSO4 | 1.55 ± 0.06 a | 170.37 ± 6.91 ab | 1465.76 ± 59.41 a |
A21-CaI2 | 1.33 ± 0.19 b | 158.94 ± 6.44 b | 1607.91 ± 63.69 b |
A21-CaHMB | 2.05 ± 0.17 c | 174.36 ± 6.91 a | 1607.91 ± 63.69 b |
A21 | 1.74 ± 0.07 d | - | 1762.91 ± 0.00 c |
A11-CaSO4 | 1.13 ± 0.16 a | 174.36 ± 6.91 a | 1847.41 ± 73.17 a |
A11-CaI2 | 1.03 ± 0.15 a | 162.66 ± 6.44 ab | 1980.22 ± 78.43 b |
A11-CaHMB | 1.14 ± 0.20 a | 158.94 ± 6.44 b | 2025.50 ± 0.00 bc |
A11 | - | - | 2122.58 ± 84.07 c |
A12-CaSO4 | 0.53 ± 0.06 a | 138.34 ± 5.61 a | 1847.41 ± 73.17 a |
A12-CaI2 | 0.71 ± 0.08 b | 138.79 ± 14.94 ab | 2122.58 ± 84.07 b |
A12-CaHMB | 0.93 ± 0.04 c | 123.22 ± 4.88 b | 2074.04 ± 84.07 b |
A12 | - | - | 2122.58 ± 84.07 b |
Sample | T5% (°C) | T10% (°C) | Tmax (°C) | Residue (%) at 200 °C |
---|---|---|---|---|
A21-CaSO4 | 46.0 ± 2.5 a | 61.3 ± 0.4 a | 112.0 ± 2.0 a | 4.3 ± 1.1 a |
A21-CaI2 | 80.8 ± 1.5 b | 89.7 ± 0.5 b | 117.5 ± 1.4 b | 3.3 ± 1.9 a |
A21-CaHMB | 39.8 ± 0.5 c | 55.2 ± 1.5 c | 117.0 ± 0.8 b | 6.3 ± 2.0 a |
A11-CaSO4 | 76.7 ± 0.2 a | 88.3 ± 0.7 a | 117.3 ± 0.7 a | 3.0 ± 1.4 a |
A11-CaI2 | 73.9 ± 2.5 a | 87.7 ± 1.0 a | 116.4 ± 1.4 a | 4.6 ± 1.0 a |
A11-CaHMB | 79.9 ± 1.6 a | 90.7 ± 1.3 a | 118.0 ± 1.1 a | 4.5 ± 1.3 a |
A12-CaSO4 | 72.6 ± 1.8 a | 83.4 ± 1.3 a | 115.1 ± 1.8 a | 3.7 ± 1.4 a |
A12-CaI2 | 78.5 ± 2.2 a | 94.2 ± 1.6 b | 117.0 ± 1.5 a | 4.3 ± 1.0 a |
A12-CaHMB | 76.1 ± 1.2 a | 88.7 ± 1.0 c | 113.4 ± 1.9 a | 2.8 ± 1.3 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, L.; Liu, J.; Yan, J.; Wang, C.; Lai, B.; Dong, Y.; Wu, H. Involvement of Anion-Specific Effects in Changes in the Gelation and Thermodynamic Properties of Calcium Alginate Hydrogel. Foods 2025, 14, 634. https://doi.org/10.3390/foods14040634
Wang Y, Li L, Liu J, Yan J, Wang C, Lai B, Dong Y, Wu H. Involvement of Anion-Specific Effects in Changes in the Gelation and Thermodynamic Properties of Calcium Alginate Hydrogel. Foods. 2025; 14(4):634. https://doi.org/10.3390/foods14040634
Chicago/Turabian StyleWang, Yuqiao, Lin Li, Jiacheng Liu, Jianan Yan, Ce Wang, Bin Lai, Yu Dong, and Haitao Wu. 2025. "Involvement of Anion-Specific Effects in Changes in the Gelation and Thermodynamic Properties of Calcium Alginate Hydrogel" Foods 14, no. 4: 634. https://doi.org/10.3390/foods14040634
APA StyleWang, Y., Li, L., Liu, J., Yan, J., Wang, C., Lai, B., Dong, Y., & Wu, H. (2025). Involvement of Anion-Specific Effects in Changes in the Gelation and Thermodynamic Properties of Calcium Alginate Hydrogel. Foods, 14(4), 634. https://doi.org/10.3390/foods14040634