The Phenolic Acid Content in Wheat Depending on the Intensification of Cultivation Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Field Experiment
2.2. Weather Conditions
2.3. Extraction Procedure
2.4. Determination of Polyphenolic Compounds
2.4.1. Extraction and Separation of Phenolic Acids
2.4.2. Phenolic Acid Identification
2.4.3. Quantitative Analysis of Phenolic Acids
2.5. Statistical Analysis
3. Results and Discussion
3.1. Identification of Phenolic Acids (PAs) in Winter Wheat Grain
3.2. Total Content of PA in the Grain of Winter Wheat Genotypes Depends on the Cultivation Technology Level
3.3. Scaled Heat Map for the Grain of Four Genotypes of Winter Wheat in Terms of the Content of Phenolic Acid (PA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shewry, P.R.; Piironen, V.; Lampi, A.M.; Edelmann, M.; Kariluoto, S.; Nurmi, T.; Fernandez-Orozco, R.; Ravel, C.; Charmet, G.; Andersson, A.A.M.; et al. The HEALTHGRAIN Wheat Diversity Screen: Effects of Genotype and Environment on Phytochemicals and Dietary Fiber Components. J. Agric. Food Chem. 2010, 58, 9291–9298. [Google Scholar] [CrossRef] [PubMed]
- Bellato, S.; Ciccoritti, R.; Del Frate, V.; Sgrulletta, D.; Carbone, K. Influence of genotype and environment on the content of 5-n alkylresorcinols. total phenols and on the antiradical activity of whole durum wheat grains. J. Cereal Sci. 2013, 57, 162–169. [Google Scholar] [CrossRef]
- Bordoni, A.; Danesi, F.; Di Nunzio, M.; Taccari, A.; Valli, V. Ancient wheat and health: A legend or the reality? A review on KAMUT khorasan wheat. Int. J. Food Sci. Nutr. 2017, 68, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Bobryk-Mamczarz, A.; Kiełtyka-Dadasiewicz, A.; Rachoń, L. Usefulness of Hulled Wheats Grown in Polish Environment for Wholegrain Pasta-Making. Foods 2021, 10, 458. [Google Scholar] [CrossRef]
- Szumiło, G.; Rachoń, L.; Krochmal-Marczak, B. Effect of algae Ecklonia maxima extract (Kelpak SL) on yields of common wheat. durum wheat and spelt wheat. Agron. Sci. 2019, 74, 5–14. [Google Scholar] [CrossRef]
- Leváková, Ľ.; Lacko-Bartošová, M. Phenolic acids and antioxidant activity of wheat species: A review. Agriculture 2017, 63, 92–101. [Google Scholar] [CrossRef]
- Gasztonyi, M.N.; Farkas, R.T.; Berki, M.; Petróczi, I.M.; Daood, H.G. Content of phenols in wheat as affected by varietal and agricultural factors. J. Food Compos. Anal. 2011, 24, 785–789. [Google Scholar] [CrossRef]
- Bento-Silva, A.; Koistinen, V.M.; Menda, P.; Bronze, M.R.; Hanhineva, K.; Sahlstrøm, S.; Kitrytė, V.; Moco, S.; Aura, A.-M. Factors afecting intake. metabolism and health benefts of phenolic acids: Do we understand individual variability? Eur. J. Nutr. 2020, 59, 1275–1293. [Google Scholar] [CrossRef]
- Zhu, Y.; Sang, S. Phytochemicals in whole grain wheat and their health-promoting effects. Mol. Nutr. Food Res. 2017, 61, 1600852. [Google Scholar] [CrossRef] [PubMed]
- Lafay, S.; Gil-Izquierdo, A. Bioavailability of phenolic acids. Phytochem. Rev. 2008, 7, 301–311. [Google Scholar] [CrossRef]
- Dinu, M.; Whittaker, A.; Pagliai, G.; Benedettelli, S.; Sofi, F. Ancient wheat species and human health: Biochemical and clinical implications. J. Nutr. Biochem. 2018, 52, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Prevention and Control of Noncommunicable Diseases in the European Region: A Progress Report 2021. Available online: https://www.who.int/europe/publications/i/item/WHO-EURO-2021-4479-44242-62494 (accessed on 8 November 2023).
- Călinoiu, L.F.; Vodnar, C.D. Whole Grains and Phenolic Acids: A Review on Bioactivity. Functionality, Health Benefits and Bioavailability. Nutrients 2018, 10, 1615. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, V.A.; Brandolini, A.; Hidalgo, A. Phenolic acids and antioxidant activity of wild, feral and domesticated diploid wheats. J. Cereal Sci. 2015, 64, 168–175. [Google Scholar] [CrossRef]
- Ndolo, V.U.; Beta, T. Comparative Studies on Composition and Distribution of Phenolic Acids in Cereal Grain Botanical Fractions. Cereal Chem. 2014, 91, 522–530. [Google Scholar] [CrossRef]
- Guo, W.; Beta, T. Phenolic acid composition and antioxidant potential of insoluble and soluble dietary fibre extracts derived from select whole-grain cereals. Int. Food Res. 2013, 51, 518–525. [Google Scholar] [CrossRef]
- Barret, E.M.; Batterham, M.J.; Ray, S.; Beck, E.J. Whole grain. bran and cereal fibre consumption and CVD: A systematic review. Br. J. Nutr. 2019, 121, 914–937. [Google Scholar] [CrossRef] [PubMed]
- Anantharaju, P.G.; Gowda, P.P.; Vimalambike, M.G.; Madhuapantula, S.V. An overview on the role of dietary phenolics for the treatment of cancers. Nutr. J. 2016, 15, 99. [Google Scholar] [CrossRef] [PubMed]
- Dom, K.K.; Liu, R.H. Antioxidant Activity of Grains. J. Agric. Food Chem. 2002, 50, 6182–6187. [Google Scholar] [CrossRef]
- Russell, W.; Duthie, G. Symposium on ‘Nutrition: Getting the balance right in 2010’. Session 3: Influences of food constituents on gut health Plant secondary metabolites and gut health: The case for phenolic acids. Proc. Nutr Soc. 2011, 70, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Loo, Y.T.; Howell, K.; Chain, M.; Zhang, P.; Ng, K. Modulation of the human gut microbiota by phenolics and phenolic fiber-rich foods. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1268–1298. [Google Scholar] [CrossRef]
- Domínguez, A.J.A.; Villa, R.J.A.; Montiel Herrera, M.; Pacheco Ordaz, R.; Roopchand, D.E.; Venema, K.; González Aguilar, G.A. Phenolic Compounds Promote Diversity of Gut Microbiota and Maintain Colonic Health. Dig. Dis. Sci. 2020, 66, 3270–3289. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.C.B.; da Silva Lima, L.R.; Nascimento, F.R.; Nascimento, T.P.; Cameron, L.C.; Ferreira, M.S.L. Metabolomic approach for characterization of phenolic compounds in different wheat genotypes during grain development. Food Res. J. 2018, 124, 118–128. [Google Scholar] [CrossRef] [PubMed]
- World Reference Base. World Reference Database for Soil Resources 2014. Available online: http://www.fao.org/3/ai3794e.pdf (accessed on 8 November 2023).
- Mpofu, A.; Sapirstein, H.D.; Beta, T. Genotype and environmental variation in phenolic content.phenolic acid composition. and antioxidant activity of hard spring wheat. J. Agric. Food Chem. 2006, 54, 1265–1270. [Google Scholar] [CrossRef] [PubMed]
- Żuchowski, J.; Kapusta, I.; Szajwaj, B.; Jończyk, K.; Oleszek, W. Phenolic acid content of organic and conventionally grown winter wheat. Cereal Res. Commun. 2009, 37, 189–197. [Google Scholar] [CrossRef]
- Kaszuba, J.; Kapusta, I.; Posadzka, Z. Content of Phenolic Acids in the Grain of Selected Polish Triticale Cultivars and Its Products. Molecules 2021, 26, 562. [Google Scholar] [CrossRef] [PubMed]
- Laddomada, B.; Durante, M.; Mangini, G.; D’Amico, L.; Salvatore Lenucci, M.; Simeone, R.; Piarulli, L.; Mita, G.; Blanco, A. Genetic variation for phenolic acids concentration and composition in a tetraploid wheat (Triticum turgidum L.) collection. Genet. Resour. Crop. Evol. 2017, 64, 587–597. [Google Scholar] [CrossRef]
- Martini, D.; Taddei, F.; Ciccoritti, R.; Pasquini, M.; Nicoletti, I.; Corradini, D.; D’Egidio, M.G. Variation of total antioxidant activity and of phenolic acid. total phenolics and yellow coloured pigments in durum wheat (Triticum turgidum L. var. durum) as a function of genotype. crop year and growing area. J. Cereal Sci. 2015, 65, 175–185. [Google Scholar] [CrossRef]
- Menga, V.; Fares, C.; Troccoli, A.; Cattivelli, L.; Baiano, A. Effects of genotype. location and baking on the phenolic content and some antioxidant properties of cereal species. Int. J. Food Sci. Technol. 2010, 45, 7–16. [Google Scholar] [CrossRef]
- Barański, M.; Lacko-Bartošová, M.; Rembiałkowska, E.; Lacko-Bartošová, L. The Effect of Species and Cultivation Year on Phenolic Acids Content in Ancient Wheat. Agronomy 2020, 10, 673. [Google Scholar] [CrossRef]
- Mattila, P.; Pihlava, J.M.; Hellström, J. Contents of phenolic acids. alkyl- and alkenylresorcinols. and avenanthramides in commercial grain products. J. Agric. Food Chem. 2005, 53, 8290–8295. [Google Scholar] [CrossRef] [PubMed]
- Zuchowski, J.; Jończyk, K.; Pecio, Ł.; Oleszek, W. Phenolic acid concentrations in organically and conventionally cultiva-ted spring and winter wheat. J. Sci. Food Agric. 2011, 91, 1089–1095. [Google Scholar] [CrossRef]
- Hefni, M.H.; Amann, L.S.; Witthöft, C.M. A HPLC-UV Method for the Quantification of Phenolic Acids in Cereals. Food Anal. Methods 2019, 12, 2802–2812. [Google Scholar] [CrossRef]
- Stuper-Szablewska, K.; Kurasiak-Popowska, D.; Nawracała, J.; Perkowski, J. Quantitative profile of phenolic acids and antioxidant activity of wheat grain exposed to stress. Eur. Food Res. Technol. 2019, 245, 1595–1603. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Świeca, M.; Dziki, D. Comparison of Phenolic Acids Profile and Antioxidant Potential of Six Varieties of Spelt (Triticum spelta L.). J. Agric. Food Chem. 2012, 60, 4603–4612. [Google Scholar] [CrossRef] [PubMed]
- Stumpf, B.; Yan, F.; Honermeier, B. Influence of nitrogen fertilization on yield and phenolic compounds in wheat grains (Triticum aestivum L. ssp. aestivum). J. Plant Nutr. Soil Sci. 2019, 182, 111–118. [Google Scholar] [CrossRef]
- Tian, W.; Wang, F.; Xu, K.; Zhang, Z.; Yan, J.; Yan, J.; Tian, Y.; Liu, J.; Zhang, Y.; Zhang, Y.; et al. Accumulation of Wheat Phenolic Acids under Different Nitrogen Rates and Growing Environments. Plants 2022, 11, 2237. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.S.; El-Basyoni, I.; Baenziger, P.S.; Singh, S.; Royo, C.; Ozbek, K.; Aktas, H.; Ozer, E.; Ozdemir, F.; Manickavelu, A.; et al. Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J. Exp. Bot. 2015, 66, 3477–3486. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, A.; Amos, C.D.; Dinelli, G.; Sferrazza, E.R.; Accorsi, G.; Negri, L.; Bosi, S. Performance and Nutritional Properties of Einkorn. Emmer and Rivet Wheat in Response to Different Rotational Position and Soil Tillage. Sustainability 2019, 11, 6304. [Google Scholar] [CrossRef]
- Zrcková, M.; Capouchová, I.; Paznocht, L.; Eliášová, M.; Dvořák, P.; Konvalina, P.; Janovská, D.; Orsák, M.; Bečková, L. Variation of the total content of polyphenols and phenolic acids in einkorn. emmer. spelt and common wheat grain as a function of genotype. wheat species and crop year. Plant Soil Environ. 2019, 65, 260–266. [Google Scholar] [CrossRef]
- Brandolini, A.; Castoldi, P.; Plizzari, L.; Hidalgo, A. Phenolic acids composition. total polyphenols content and antioxidant activity of Triticum monococcum, Triticum turgidum and Triticum aestivum: A two-years evaluation. J. Cereal Sci. 2013, 58, 123–131. [Google Scholar]
- Lachman, J.; Miholová, D.; Pivec, V.; Jírů, K.; Janovská, D. Content of phenolic antioxidants and selenium in grainof einkorn (Triticum monococcum). emmer (Triticum dicoccum) and spring wheat (Triticum aestivum) varieties. Plant Soil Environ. 2011, 57, 235–243. [Google Scholar] [CrossRef]
- Buczek, J.; Belcar, J.; Gawęda, D.; Gorzelany, J. Content of Phenolic Acid and Yielding of Hybrid Wheat in Response to Growing Year Under Integrated Management. Acta Univ. Cibiniensis Ser. E Food Technol. 2024, 27, 293–303. [Google Scholar] [CrossRef]
- Skrajda, M.N.; Konopka, I.Z. The relationship between profile of bioactive compounds and antioxidant potential of grain depending on the species of wheat and growing conditions. J. Educ. Health Sport. 2016, 6, 309–318. [Google Scholar] [CrossRef]
- Lacko-Bartošová, M.; Kaur, A.; Lacko-Bartošová, L.; Kobida, Ľ.; Hudec, M.; Moudrý, J. Concentration of Phenolic Compounds and Phenolic Acids of Various Spelt Cultivars in Response to Growing Years. Agriculture 2023, 13, 2024. [Google Scholar] [CrossRef]
- Li, L.; Shewry, P.R.; Ward, J.L. Phenolic acids in wheat varieties in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 2009, 56, 9732–9739. [Google Scholar] [CrossRef] [PubMed]
- Shewry, P.R.; Hawkesford, M.J.; Piironen, V.; Lampi, A.M.; Gebruers, K.; Boros, D.; Andersson, A.A.M.; Åman, P.; Rakszegi, M.; Bedo, Z.; et al. Natural Variation in grain composition of wheat and related cereals. J. Agric. Food Chem. 2013, 61, 8295–8303. [Google Scholar] [CrossRef] [PubMed]
- Belobrajdic, D.P.; Bird, A.R. The Potential Role of Phytochemicals in Wholegrain Cereals for the Prevention of Type-2 Diabetes. Nutr. J. 2013, 12, 62. [Google Scholar] [CrossRef] [PubMed]
Wheat Species | Latin Name | Cultivar |
---|---|---|
Common wheat | T. aestivum ssp. vulgare | ‘Tonacja’ |
Spelt | T. aestivum ssp. spelta | ‘Schwabenkorn’ |
Durum wheat | T. turgidum ssp. durum | ‘Komnata’ |
Einkorn | T. monococcum | PL 5003 |
Year | Month | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sep | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | |
Rainfall in mm | ||||||||||||
2011/2012 | 5.4 | 28.5 | 1.0 | 34.5 | 33.6 | 22.1 | 28.6 | 34.0 | 56.3 | 62.8 | 52.3 | 37.6 |
2012/2013 | 35.5 | 88.8 | 29.8 | 28.8 | 57.7 | 28.5 | 60.8 | 51.1 | 101.6 | 105.9 | 126.1 | 17.8 |
Mean for 1951–2010 | 53.7 | 40.1 | 38.2 | 31.4 | 23.4 | 25.8 | 28.0 | 39.0 | 60.7 | 65.9 | 82.0 | 70.7 |
Year | Air temperature in °C | |||||||||||
2011/2012 | 15.2 | 8.0 | 2.4 | 2.0 | −1.8 | −7.1 | 4.3 | 9.5 | 15.0 | 17.3 | 21.5 | 19.2 |
2012/2013 | 15.0 | 8.1 | 5.5 | −3.8 | −3.8 | −1.0 | −2.4 | 8.1 | 15.3 | 18.5 | 19.2 | 19.2 |
Mean for 1951–2010 | 12.6 | 7.6 | 2.6 | −1.6 | −3.7 | −2.8 | 1.0 | 7.4 | 13.0 | 16.3 | 18.0 | 17.2 |
No. | Retention Time | [M − H]~ | Fragment Ion | Λmax | Quality Transition | Collision Energy | Identification |
---|---|---|---|---|---|---|---|
[min] | [m/z] | [m/z] | [nm] | [m/z] | [eV] | ||
1. | 7.47 | 137 | 93 | 230 | 137→93 | 10 | 4-OH-Benzoic acid benzoic |
2. | 9.75 | 179 | 161, 135 | 320 | 179→163 | 20 | Caffeic acid |
3. | 10.22 | 137 | 93 | 223 | 137→93 | 20 | 3-OH-Benzoic acid |
4. | 10.58 | 197 | 179, 135 | 277 | 197→135 | 30 | Syringic acid |
5. | 11.24 | 163 | 119 | 312 | 163→119 | 30 | p-Coumaric acid |
6. | 11.92 | 163 | 119 | 312 | 163→119 | 30 | o-Coumaricacid |
7. | 12.2 | 193 | 149, 134 | 322 | 193→134 | 30 | Ferulic acid |
8. | 12.4 | 223 | 179, 149 | 320 | 223→179 | 30 | Sinapic acid |
9. | 12.93 | 385 | 297 | 323 | 385→297 | 30 | di-Ferulic acid (isomer I) |
10. | 13.25 | 385 | 245 | 320 | 385→245 | 30 | di-Ferulic acid (isomer II) |
11. | 14.47 | 385 | 319 | 322 | 385→193 | 30 | di-Ferulic acid (isomer III) |
12. | 15.25 | 385 | 193 | 325 | 385→193 | 30 | di-Ferulic acid (isomer IV) |
13. | 15.43 | 385 | 293 | 322 | 385→193 | 30 | di-Ferulic acid (isomer V) |
Cultivars | Crop Years | Cultivation Technology | 4-OH Benzoic Acid | Caffeic Acid | 3-OH-Benzoic Acid | Syringic Acid | p-Coumaric Acid | o-Cumaric Acid | Ferulic Acid | Sinapic Acid | di-Frulic Acid Isomer I | di-Ferulic Acid Isomer II | di-Ferulic Acid Isomer III | di-Ferulic Acid Isomer IV | di-Ferulic Acid Isomer V | Sum |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T. aestivum ssp. vulgare ‘Tonacja’ | 2012 | A | 63.88 ± 1.76 | 14.49 ± 0.84 b,c | 3.33 ± 0.09 b,c | 9.79 ± 0.4 b,c | 48.20 ± 2.98 b,c | 6.60 ± 0.24 b,c | 633.9 ± 2.4 b,c | 79.85 ± 0.83 b,c | 21.74 ± 1.32 a,c | 159.7 ± 8.76 b,c | 111.0 ± 8.28 b,c | 13.15 ± 0.43 b,c | 23.06 ± 0.76 b,c | 1188.69 |
B | 21.91 ± 1.21 | 11.64 ± 0.33 a | 9.29 ± 0.26 a,d | 3.22 ± 0.08 | 23.13 ± 2.83 a,d | 10.70 ± 0.88 a,d | 505.6 ± 2.05 a,d | 74.37 ± 0.51 a,d | 14.17 ± 0.73 a,d | 142.2 ± 5.3 a,d | 86.7 ± 4.63 a,d | 3.72 ± 0.24 a,d | 9.55 ± 0.28 a,d | 916.21 | ||
2013 | A | 75.33 ± 1.12 a,d | 43.23 ± 0.58 a,d | 10.98 ± 0.34 a,d | 6.40 ± 0.31 a,d | 55.69 ± 2.2 a,d | 5.55 ± 0.54 a,d | 704.2 ± 2.6 a,d | 103.7 ± 1.45 a,d | 33.10 ± 1.28 a,d | 191.9 ± 4.17 a,d | 146.4 ± 3.8 a,d | 9.28 ± 0.39 a,d | 30.75 ± 0.33 a,d | 1416.51 | |
B | 64.63 ± 1.36 b,c | 11.77 ± 0.43 a | 7.81 ± 0.42 b,c | 5.38 ± 0.31 b,c | 52.98 ± 2.34 b,c | 3.88 ± 0.63 b,c | 618.4 ± 2.3 b,c | 108.7 ± 1.7 b,c | 6.23 ± 0.23 b,c | 158.3 ± 1.65 b,c | 100.9 ± 1.26 b,c | 4.80 ± 0.52 b,c | 14.32 ± 0.68 b,c | 1158.1 | ||
T. aestivum ssp. spelta ‘Schwabenkorn’ | 2012 | A | 60.34 ± 1.08 b,c | 23.79 ± 1.26 c | 8.30 ± 0.17 c | 10.61 ± 0.60 c | 34.20 ± 2.02 b,c | 3.30 ± 0.23 b,c | 529.2 ± 2.6 c | 95.28 ± 1.03 b,c | 18.81 ± 0.27 | 108.8 ± 1.21 b,c | 45.8 ± 1.3 b,c | 5.30 ± 0.21 b,c | 14.51 ± 0.64 b,c | 998.74 |
B | 62.48 ± 1.17 a,d | 23.49 ± 1.35 d | 8.97 ± 0.44 d | 10.60 ± 0.60 d | 49.68 ± 1.36 a,d | 4.38 ± 0.46 a | 529.8 ± 1.47 d | 108.0 ± 1.3 a,d | 1.93 ± 0.16 a,d | 106.3 ± 1.67 a,d | 50.9 ± 0.86 a,d | 4.33 ± 0.15 a,d | 17.85 ± 0.53 a | 978.71 | ||
2013 | A | 68.33 ± 1.5 a,d | 44.13 ± 0.77 a,d | 10.14 ± 0.31 a,d | 7.93 ± 0.33 a | 63.50 ± 2.36 a,d | 6.32 ± 0.37 a,d | 744.2 ± 2.5 a,d | 82.27 ± 1.86 a,d | 14.04 ± 0.93 a,d | 176.9 ± 1.7 a,d | 120.7 ± 1.8 a,d | 14.48 ± 0.28 a,d | 20.40 ± 0.48 a,d | 1373.34 | |
B | 60.52 ± 0.88 b,c | 30.06 ± 0.45 b,c | 8.60 ± 0.12 c | 8.24 ± 0.83 b | 53.63 ± 0.8 b,c | 4.65 ± 0.23 c | 718.8 ± 2.7 b,c | 91.09 ± 0.76 b,c | 8.36 ± 0.85 b,c | 159.4 ± 1.58 b.c | 102.2 ± 0.94 b,c | 5.96 ± 0.17 b,c | 17.44 ± 0.31 c | 1268.95 | ||
T. turgidum ssp. durum ‘Komnata’ | 2012 | A | 44.02 ± 0.74 | 13.75 ± 0.68 b | 14.06 ± 0.36 b,c | 3.96 ± 0.23 | 46.27 ± 0.79 b,c | 14.38 ± 0.64 b,c | 465.2 ± 1.7 b,c | 56.52 ± 0.8 b,c | 19.67 ± 0.48 b,c | 151.9 ± 1.6 b,c | 139.5 ± 1.65 c | 37.42 ± 0.78 b,c | 19.99 ± 0.25 b,c | 1026.64 |
B | 45.65 ± 1.45 | 11.39 ± 0.65 a,d | 8.40 ± 0.26 a,d | 4.02 ± 0.47 | 35.48 ± 0.34 a,d | 3.10 ± 0.28 a,d | 731.5 ± 2.4 a,d | 119.3 ± 1.4 a,d | 21.41 ± 0.31 a,d | 212.0 ± 1.65 a,d | 140.2 ± 1.7 d | 7.14 ± 0.37 a,d | 33.10 ± 0.36 a,d | 1372.69 | ||
2013 | A | 43.29 ± 1.86 | 13.48 ± 0.34 d | 12.34 ± 0.25 a.d | 4.80 ± 0.48 | 38.47 ± 0.71 a,d | 7.69 ± 0.23 a,d | 579.7 ± 2.3 a,d | 94.3 ± 0.9 a,d | 8.19 ± 0.32 a,d | 161.7 ± 1.57 a,d | 118.6 ± 1.68 a,d | 3.40 ± 0.15 a,d | 26.24 ± 0.24 a,d | 1112.2 | |
B | 41.67 ± 1.03 | 21.80 ± 0.32 b,c | 13.99 ± 0.26 b,c | 4.35 ± 0.25 | 79.99 ± 3.28 b,c | 5.49 ± 0.24 b,c | 613.7 ± 2.6 b,c | 96.58 ± 0.45 b,c | 19.44 ± 0.35 b,c | 229.0 ± 1.8 b,c | 163.3 ± 1.66 b,c | 9.31 ± 0.13 b,c | 31.75 ± 0.26 b,c | 1330.37 | ||
T. monococcum ‘PL 5003′ | 2012 | A | 53.24 ± 1.22 | 36.08 ± 0.29 b,c | 4.14 ± 0.13 b,c | 4.81 ± 0.27 b,c | 130.1 ± 1.68 b,c | 6.60 ± 0.28 b,c | 482.2 ± 1.84 b,c | 73.50 ± 0.38 b,c | 19.49 ± 0.41 b,c | 70.48 ± 0.36 b,c | 3.45 ± 0.14 b,c | 3.38 ± 0.17 b | 15.53 ± 0.16 b.c | 903.21 |
B | 71.17 ± 1.43 | 23.08 ± 0.65 a,d | 11.07 ± 0.35 a,d | 11.19 ± 0.28 a,d | 40.7 ± 0.36 a,d | 10.70 ± 0.23 a,d | 621.4 ± 2.67 a,d | 108.73 ± 1.63 a,d | 29.89 ± 0.37 a,d | 126.7 ± 1.12 a,d | 148.4 ± 1.48 a,d | 27.19 ± 0.21 a,d | 23.91 ± 0.24 a,d | 1254.13 | ||
2013 | A | 66.07 ± 1.12 | 71.31 ± 1.05 a,d | 7.78 ± 0.35 a,d | 7.21 ± 0.43 a,d | 268.5 ± 1.87 a,d | 42.72 ± 0.68 a,d | 868.3 ± 2.86 a,d | 152.7 ± 1.43 a,d | 16.53 ± 0.26 a,d | 144.8 ± 1.17 a,d | 87.82 ± 1.11 a,d | 3.51 ± 0.14 d | 14.58 ± 0.18 a,d | 1751.83 | |
B | 59.64 ± 1.07 | 74.88 ± 1.15 b,c | 9.73 ± 0.45 b,c | 8.49 ± 0.35 b,c | 286.1 ± 1.43 b,c | 38.28 ± 0.36 b,c | 1017 ± 3.44 b,c | 185.2 ± 2.24 b,c | 9.79 ± 0.21 b,c | 178.3 ± 1.24 b,c | 111.5 ± 1.38 b,c | 111.5 ± 1.38 b,c | 15.65 ± 0.16 b,c | 2106.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rachoń, L.; Cebulak, T.; Krochmal-Marczak, B.; Kapusta, I.; Betlej, I.; Kiełtyka-Dadasiewicz, A. The Phenolic Acid Content in Wheat Depending on the Intensification of Cultivation Technology. Foods 2025, 14, 633. https://doi.org/10.3390/foods14040633
Rachoń L, Cebulak T, Krochmal-Marczak B, Kapusta I, Betlej I, Kiełtyka-Dadasiewicz A. The Phenolic Acid Content in Wheat Depending on the Intensification of Cultivation Technology. Foods. 2025; 14(4):633. https://doi.org/10.3390/foods14040633
Chicago/Turabian StyleRachoń, Leszek, Tomasz Cebulak, Barbara Krochmal-Marczak, Ireneusz Kapusta, Izabela Betlej, and Anna Kiełtyka-Dadasiewicz. 2025. "The Phenolic Acid Content in Wheat Depending on the Intensification of Cultivation Technology" Foods 14, no. 4: 633. https://doi.org/10.3390/foods14040633
APA StyleRachoń, L., Cebulak, T., Krochmal-Marczak, B., Kapusta, I., Betlej, I., & Kiełtyka-Dadasiewicz, A. (2025). The Phenolic Acid Content in Wheat Depending on the Intensification of Cultivation Technology. Foods, 14(4), 633. https://doi.org/10.3390/foods14040633