Research on Rapid and Non-Destructive Detection of Coffee Powder Adulteration Based on Portable Near-Infrared Spectroscopy Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Experimental Instruments
2.3. Spectral Data Collection
2.4. Data Processing Methods
2.4.1. Spectral Data Preprocessing
2.4.2. Spectral Data Dimensionality Reduction
2.4.3. Detection Model Construction
2.4.4. Model Evaluation Metric
3. Results and Analysis
3.1. Spectral Analysis of Samples
3.2. Data Preprocessing
3.3. Qualitative Detection of Coffee Adulteration
3.4. Qualitative and Quantitative Detection of Coffee Adulteration
3.4.1. Spectral Data Preprocessing and Modeling
3.4.2. Feature Wavelength Selection of Spectral Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reis, N.; Franca, A.S.; Oliveira, L.S. Performance of Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Chemometrics for Detection of Multiple Adulterants in Roasted and Ground Coffee. LWT Food Sci. Technol. 2013, 53, 395–401. [Google Scholar] [CrossRef]
- Chen, X.; Xi, X.; Pan, B.; Liang, R.; Shao, S.; Li, S.; He, J. Rapid Identification Method for Coffee Adulteration Based on Near Infrared Spectroscopy Technology. Mod. Food Sci. Technol. 2018, 34, 253–257, 290. [Google Scholar] [CrossRef]
- De Carvalho Couto, C.; Freitas-Silva, O.; Morais Oliveira, E.M.; Sousa, C.; Casal, S. Near-Infrared Spectroscopy Applied to the Detection of Multiple Adulterants in Roasted and Ground Arabica Coffee. Foods 2021, 11, 61. [Google Scholar] [CrossRef] [PubMed]
- Luo, C. 2024 China Imported Coffee Industry Report: The Number of Coffee Import Sources in China Grows to 75. China Food News, 18 November 2024; 7. [Google Scholar]
- Reis, N.; Franca, A.S.; Oliveira, L.S. Discrimination between Roasted Coffee, Roasted Corn and Coffee Husks by Diffuse Re flectance Infrared Fourier Transform Spectroscopy. LWT Food Sci. Technol. 2013, 50, 715–722. [Google Scholar] [CrossRef]
- Klikarová, J.; Česlová, L. Targeted and Non-Targeted HPLC Analysis of Coffee-Based Products as Effective Tools for Evaluat ing the Coffee Authenticity. Molecules 2022, 27, 7419. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira Costa, T.; Rangel Botelho, J.; Helena Cassago Nascimento, M.; Krause, M.; Tereza Weitzel Dias Carneiro, M.; Coe lho Ferreira, D.; Roberto Filgueiras, P.; De Oliveira Souza, M. A One-Class Classification Approach for Authentication of Specialty Coffees by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). Food Chem. 2024, 442, 138268. [Google Scholar] [CrossRef] [PubMed]
- Núñez, N.; Saurina, J.; Núñez, O. Non-Targeted HPLC-FLD Fingerprinting for the Detection and Quantitation of Adulterated Coffee Samples by Chemometrics. Food Control 2021, 124, 107912. [Google Scholar] [CrossRef]
- Combes, M.-C.; Joët, T.; Lashermes, P. Development of a Rapid and Efficient DNA-Based Method to Detect and Quantify Adulterations in Coffee (Arabica versus Robusta). Food Control 2018, 88, 198–206. [Google Scholar] [CrossRef]
- Munyendo, L.; Njoroge, D.; Hitzmann, B. The Potential of Spectroscopic Techniques in Coffee Analysis—A Review. Processes 2021, 10, 71. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, Y.; Sun, W.; Pan, M.; Shen, Z.; Zhou, X.; Qian, J.; Wang, P. Nondestructive Moisture Detection of Seaweed Basedon Near Infrared Spectroscopy and Deep Learning. Food Ind. Technol. 2024, 45, 190–197. [Google Scholar] [CrossRef]
- Wu, Y. Application of Near Infrared Spectroscopy Analysis Technology in Food Detection. Grain Oil Feed Sci. Technol. 2024, 4, 207–209. [Google Scholar]
- Wang, Z.; Shen, Q.; Zhao, Q. Research Progress on the Application of Near Infrared Spectroscopy in Grain Detection. Food Sci. 2024, 46, 267–273. [Google Scholar] [CrossRef]
- Laborde, A.; Puig-Castellví, F.; Jouan-Rimbaud Bouveresse, D.; Eveleigh, L.; Cordella, C.; Jaillais, B. Detection of Chocolate Powder Adulteration with Peanut Using Near-Infrared Hyperspectral Imaging and Multivariate Curve Resolution. Food Control 2021, 119, 107454. [Google Scholar] [CrossRef]
- Khamsopha, D.; Woranitta, S.; Teerachaichayut, S. Utilizing near Infrared Hyperspectral Imaging for Quantitatively Predicting Adulteration in Tapioca Starch. Food Control 2021, 123, 107781. [Google Scholar] [CrossRef]
- Zhang, F.; Shi, L.; Li, L.; Zhou, Y.; Tian, L.; Cui, X.; Gao, Y. Nondestructive Detection for Adulteration of Panax Notoginseng Powder Based on Hyperspectral Imaging Combined with Arithmetic Optimization Algorithm-support Vector Regression. J. Food Process Eng. 2022, 45, e14096. [Google Scholar] [CrossRef]
- Guo, W.; Zhu, D.; Zhang, Q.; Rongyu, D. Detection of adulterated camellia seed oil based on near-infrared spectroscopy. Trans. Chin. Soc. Agric. Mach. 2020, 51, 350–357. [Google Scholar]
- Li, S.; Zhang, F.; Li, L.; Zhang, H.; Duan, X.; Shi, L.; Cui, X.; Li, X. Rapid Detection of Active Ingredient Content in Gastrodia Elata Based on Near Infrared Spectroscopy Combined with ARO-LSSVR. Food Sci. 2024, 45, 207–213. [Google Scholar]
- Wang, D.; Luan, Y.; Tan, Z.; Wei, W. Pesticide Residue Detection in Broccoli Based on Hyperspectral Imaging and Convolu tional Neural Networks. Food Ind. Technol. 2024. [Google Scholar] [CrossRef]
- Sheykhizadeh, S.; Naseri, A. An Efficient Swarm Intelligence Approach to Feature Selection Based on Invasive Weed Optimi zation: Application to Multivariate Calibration and Classification Using Spectroscopic Data. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 194, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Khishe, M.; Kaveh, M.; Mohammadi, H. Binary Chimp Optimization Algorithm (BChOA): A New Binary Meta-Heuristic for Solving Optimization Problems. Cogn. Comput. 2021, 13, 1297–1316. [Google Scholar] [CrossRef]
- Gu, C.; Chu, X.; Liu, H.; Wei, H.; Mou, Y.; Ma, Z. Nondestructive Detection of Polysaccharide and Flavonoid Content in Dendrobium Based on Hyperspectral Technology. Food Ind. Technol. 2024, 1–13. [Google Scholar] [CrossRef]
- Widyaningrum; Purwanto, Y.A.; Widodo, S.; Supijatno; Iriani, E.S. Rapid Assessment of Vanilla (Vanilla Planifolia) Quality Parameters Using Portable near-Infrared Spectroscopy Combined with Random Forest. J. Food Compos. Anal. 2024, 133, 106346. [Google Scholar] [CrossRef]
- Zhu, Y.; Lu, C.; Zhang, Y.; Jiang, W. Quantitative Method for Near Infrared Spectroscopy Based on Wavelength Attention and Multi-Feature Fusion Convolutional Neural Networks. Spectrosc. Spectr. Anal. 2024, 44, 2607–2612. [Google Scholar]
- Guo, L. Research on the Formation Mechanism and Metabolic Regulation of Major Quality Traits in Fresh Soybean. Master’s Thesis, Jiangsu University, Zhenjiang, China, 2023. [Google Scholar]
- Alimire, M.; Wumaerjiang, Y.; Chen, L.; Ma, X.; Yao, G. Research Progress on Active Components of Chicory. China Ethn. Folk. Med. 2023, 32, 65–69. [Google Scholar]
- Cheng, K.; Dong, W.; Zhao, J.; Chu, Z.; Hu, R.; Zong, Y. Research Progress on the Application of Spectral Fingerprint Technology in Coffee Quality Control. Trop. Crops. 2017, 38, 2400–2406. [Google Scholar]
- Sun, J.; Yao, K.; Cheng, J.; Xu, M.; Zhou, X. Nondestructive Detection of Saponin Content in Panax Notoginseng Powder Based on Hyperspectral Imaging. J. Pharm. Biomed. Anal. 2024, 242, 116015. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Fu, L.; Wang, X. Establishment and Evaluation of a Support Vector Machine Model for Adulteration Identification of Camellia Oil Based on Low-Field NMR Relaxation Characteristics. Food Sci. 2024, 45, 19–27. [Google Scholar] [CrossRef]
- Correia, R.M.; Tosato, F.; Domingos, E.; Rodrigues, R.R.T.; Aquino, L.F.M.; Filgueiras, P.R.; Lacerda, V.; Romão, W. Portable near Infrared Spectroscopy Applied to Quality Control of Brazilian Coffee. Talanta 2018, 176, 59–68. [Google Scholar] [CrossRef]
- Gan, Y. Study on Infrared and Raman Spectroscopic Identification of Small Coffee Beans. Master’s Thesis, Yunnan Normal University, Kunming, China, 2024. [Google Scholar]
- Barbin, D.F.; Felicio, A.L.D.S.M.; Sun, D.-W.; Nixdorf, S.L.; Hirooka, E.Y. Application of Infrared Spectral Techniques on Qual ity and Compositional Attributes of Coffee: An Overview. Food Res. Int. 2014, 61, 23–32. [Google Scholar] [CrossRef]
- Shi, L.; Li, L.; Zhang, F.; Lin, Y. Nondestructive Detection of Panax Notoginseng Saponins by Using Hyperspectral Imaging. Int. J. Food Sci. Tech. 2022, 57, 4537–4546. [Google Scholar] [CrossRef]
Adulterants | Origin | Price (CNY/kg) | Temperature (°C) | Time (min) |
---|---|---|---|---|
Soybean | Harbin, Heilongjiang Province, China | 11 | 190 | 45 |
Barley | Harbin, Heilongjiang Province, China | 9 | 180 | 40 |
Chicory | Changchun, Jilin Province, China | 35 | 170 | 35 |
Corn | Handan, Hebei Province, China | 7.92 | 180 | 45 |
Preprocessing Method | Training Set | Prediction Set | ||||
---|---|---|---|---|---|---|
Accuracy/% | Precision | Specificity | Accuracy/% | Precision | Specificity | |
RAW | 98.13 | 98.13 | 99.38 | 93.75 | 93.78 | 97.92 |
MSC | 96.72 | 96.75 | 98.91 | 96.25 | 96.48 | 98.75 |
SG | 97.81 | 97.81 | 99.27 | 96.25 | 96.39 | 98.75 |
SNV | 96.09 | 96.08 | 98.70 | 95.63 | 95.79 | 98.54 |
SG-SNV | 98.75 | 98.75 | 99.58 | 95.01 | 95.07 | 98.33 |
SG-MSC | 97.03 | 97.03 | 99.01 | 96.88 | 96.86 | 98.96 |
Model | Preprocessing Method | Training Set | Prediction Set | ||||
---|---|---|---|---|---|---|---|
Accuracy/% | Precision | Specificity | Accuracy/% | Precision | Specificity | ||
SVM | RAW | 73.43 | 74.13 | 98.23 | 69.38 | 70.86 | 97.96 |
MSC | 67.68 | 69.53 | 97.85 | 65.42 | 67.30 | 97.69 | |
SG | 75 | 75.18 | 98.33 | 74.38 | 75.71 | 98.29 | |
SNV | 76.41 | 77.79 | 97.88 | 68.13 | 97.88 | 72.24 | |
SG-SNV | 83.44 | 84.36 | 98.90 | 77.5 | 78.10 | 98.5 | |
SG-MSC | 86.09 | 86.92 | 99.07 | 83.13 | 84.26 | 98.88 | |
BP | RAW | 72.03 | 63.83 | 97.17 | 72.5 | 58.33 | 96.67 |
MSC | 82.97 | 82.93 | 98.83 | 77.5 | 75 | 98 | |
SG | 70.94 | 56.86 | 96.33 | 71.88 | 58.82 | 95.33 | |
SNV | 78.91 | 63.64 | 96.67 | 77.5 | 55.56 | 94.67 | |
SG-SNV | 77.19 | 69.57 | 97.67 | 75.63 | 58.33 | 96.67 | |
SG-MSC | 85.31 | 88.37 | 99.17 | 81.25 | 66.67 | 96.67 | |
RF | RAW | 74.53 | 63.41 | 97.5 | 66.25 | 66.67 | 98 |
MSC | 84.38 | 86.37 | 99 | 78.13 | 63.64 | 97.33 | |
SG | 76.56 | 71.43 | 98 | 70.13 | 63.33 | 96 | |
SNV | 79.84 | 68.09 | 97.5 | 76.25 | 63.64 | 97.33 | |
SG-SNV | 81.41 | 75.56 | 98.17 | 76.88 | 72.73 | 98 | |
SG-MSC | 82.34 | 75.56 | 98.17 | 76.88 | 60 | 97.33 |
Feature Selection | Data Dimensions | Training Set | Prediction Set | ||||
---|---|---|---|---|---|---|---|
Accuracy/% | Precision | Specificity | Accuracy/% | Precision | Specificity | ||
FULL | 228 | 86.09 | 86.92 | 99.07 | 83.13 | 84.26 | 98.88 |
IWO | 40 | 96.88 | 96.93 | 99.80 | 92.25 | 92.61 | 99.42 |
BChOA | 20 | 89.06 | 89.29 | 99.27 | 87.5 | 88.78 | 99.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Yu, X.; Li, L.; Song, W.; Dong, D.; Yue, X.; Chen, S.; Zeng, Q. Research on Rapid and Non-Destructive Detection of Coffee Powder Adulteration Based on Portable Near-Infrared Spectroscopy Technology. Foods 2025, 14, 536. https://doi.org/10.3390/foods14030536
Zhang F, Yu X, Li L, Song W, Dong D, Yue X, Chen S, Zeng Q. Research on Rapid and Non-Destructive Detection of Coffee Powder Adulteration Based on Portable Near-Infrared Spectroscopy Technology. Foods. 2025; 14(3):536. https://doi.org/10.3390/foods14030536
Chicago/Turabian StyleZhang, Fujie, Xiaoning Yu, Lixia Li, Wanxia Song, Defeng Dong, Xiaoxian Yue, Shenao Chen, and Qingyu Zeng. 2025. "Research on Rapid and Non-Destructive Detection of Coffee Powder Adulteration Based on Portable Near-Infrared Spectroscopy Technology" Foods 14, no. 3: 536. https://doi.org/10.3390/foods14030536
APA StyleZhang, F., Yu, X., Li, L., Song, W., Dong, D., Yue, X., Chen, S., & Zeng, Q. (2025). Research on Rapid and Non-Destructive Detection of Coffee Powder Adulteration Based on Portable Near-Infrared Spectroscopy Technology. Foods, 14(3), 536. https://doi.org/10.3390/foods14030536