Bioactive Peptides from Milk Proteins with Antioxidant, Anti-Inflammatory, and Antihypertensive Activities
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Peptide Synthesis
2.3. Cell Culture
2.4. Cell Viability Assay
2.5. DPPH• Radical Scavenging Assay
2.6. FRAP Assay
2.7. ABTS•+ Radical Scavenging Assay
2.8. Intracellular Determination of Superoxide Production
2.9. Griess Assay
2.10. ACE-1 Inhibition Assay
2.11. Statistical Analysis
3. Results
3.1. In Vitro Characterization of LF-Derived Peptides Antioxidant Activity and Cytotoxicity
3.2. LF-Derived Peptides in Cellulo Assays
3.2.1. Results for Intracellular Determination of Superoxide Production
3.2.2. Results for the ABTS•+ Radical-Cation Scavenging Assay
3.2.3. Results for Griess Assay
3.3. Results for the ACE-1 Inhibition Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | Amino acid |
ABTS•+ | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation |
ACN | Acetonitrile |
bLF | Bovin Lactoferrins |
CC | Control cells |
cLF | Camel lactoferrin |
DMEM | Dulbecco’s modified Eagle’s medium |
DMF | Dimethylformamide |
DPPH | 2,2-diphenyl-1-picrylhydrazyl radical |
eLF | equine lactoferrin |
ESI-IT MS | electrospray ionization-ion trap mass spectrometry |
FBPs | Food-derived bioactive peptides |
FBS | Fetal bovine serum |
FRAP | ferric reducing antioxidant power |
hLF | Human Lactoferrins |
HPLC | High-performance liquid chromatography |
IC50 | inhibit 50% of cell viability |
LPS | Lipopolysaccharide |
MDBPs | Milk-derived bioactive peptides |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide |
NBT | Nitroblue tetrazolium |
nhLF | Native human Lactoferrin |
NMM | N-methylmorpholine |
RAAS | Role in the renin–angiotensin–aldosterone system |
rhLF | Recombinant human Lactoferrin |
RIC50 | Relative Concentration To Reduce 50% |
SD | Standard deviation |
SPPS | Solid-phase peptide synthesis |
TAS | Total antioxidant status |
TFA | Trifluoroacetic acid |
TIS | Triisopropylsilane |
References
- Duffuler, P.; Bhullar, K.; Zani, S.; Wu, J. Bioactive Peptides: From Basic Research to Clinical Trials and Commercialization. J. Agric. Food Chem. 2022, 70, 3585–3595. [Google Scholar] [CrossRef] [PubMed]
- Hajam, Y.; Rani, R.; Ganie, S.; Sheikh, T.; Javaid, D.; Qadri, S.; Pramodh, S.; Alsulimani, A.; Alkhanani, M.; Harakeh, S.; et al. Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives. Cells 2022, 11, 552. [Google Scholar] [CrossRef]
- Ye, H.; Tao, X.; Zhang, W.; Chen, Y.; Yu, Q.; Xie, J. Food-derived bioactive peptides: Production, biological activities, opportunities and challenges. J. Future Foods 2022, 2, 294–306. [Google Scholar] [CrossRef]
- Majura, J.; Cao, W.; Chen, Z.; Htwe, K.; Li, W.; Du, R.; Zhang, P.; Zheng, H.; Gao, J. The current research status and strategies employed to modify food-derived bioactive peptides. Front. Nutr. 2022, 9, 950823. [Google Scholar] [CrossRef] [PubMed]
- Murtaza, M.; Irfan, S.; Hafiz, I.; Ranjha, M.; Rahaman, A.; Murtaza, M.; Ibrahim, S.; Siddiqui, S. Conventional and Novel Technologies in the Production of Dairy Bioactive Peptides. Front. Nutr. 2022, 9, 780151. [Google Scholar] [CrossRef]
- Wang, W.W.; Yang, W.J.; Dai, Y.; Liu, J.H.; Chen, Z.Y. Production of Food-Derived Bioactive Peptides with Potential Application in the Management of Diabetes and Obesity: A Review. J. Agric. Food Chem. 2023, 71, 5917–5943. [Google Scholar] [CrossRef]
- Qin, D.; Bo, W.; Zheng, X.; Hao, Y.; Li, B.; Zheng, J.; Liang, G. DFBP: A comprehensive database of food-derived bioactive peptides for peptidomics research. Bioinformatics 2022, 38, 3275–3280. [Google Scholar] [CrossRef]
- Mohanty, D.; Mohapatra, S.; Misra, S.; Sahu, P. Milk derived bioactive peptides and their impact on human health—A review. Saudi J. Biol. Sci. 2016, 23, 577–583. [Google Scholar] [CrossRef]
- Marcone, S.; Belton, O.; Fitzgerald, D. Milk-derived bioactive peptides and their health promoting effects: A potential role in atherosclerosis. Br. J. Clin. Pharmacol. 2017, 83, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Koirala, P.; Dahal, M.; Rai, S.; Dhakal, M.; Nirmal, N.; Maqsood, S.; Al-Asmari, F.; Buranasompob, A. Dairy Milk Protein-Derived Bioactive Peptides: Avengers Against Metabolic Syndrome. Curr. Nutr. Rep. 2023, 12, 308–326. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Toalá, J.; Hernández-Mendoza, A.; González-Córdova, A.; Vallejo-Cordoba, B.; Liceaga, A. Potential role of natural bioactive peptides for development of cosmeceutical skin products. Peptides 2019, 122, 170170. [Google Scholar] [CrossRef] [PubMed]
- Kazimierska, K.; Kalinowska-Lis, U. Milk Proteins-Their Biological Activities and Use in Cosmetics and Dermatology. Molecules 2021, 26, 3253. [Google Scholar] [CrossRef] [PubMed]
- Augustyniak, A.; Gottardi, D.; Giordani, B.; Gaffey, J.; Mahon, H. Dairy bioactives and functional ingredients with skin health benefits. J. Funct. Foods 2023, 104, 105528. [Google Scholar] [CrossRef]
- Theolier, J.; Fliss, I.; Jean, J.; Hammami, R. MilkAMP: A comprehensive database of antimicrobial peptides of dairy origin. Dairy Sci. Technol. 2014, 94, 181–193. [Google Scholar] [CrossRef]
- Nielsen, S.; Beverly, R.; Qu, Y.; Dallas, D. Milk bioactive peptide database: A comprehensive database of milk protein-derived bioactive peptides and novel visualization. Food Chem. 2017, 232, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.; Liang, N.; Rathish, H.; Kim, B.; Lueangsakulthai, J.; Koh, J.; Qu, Y.; Schulz, H.; Dallas, D. Bioactive milk peptides: An updated comprehensive overview and database. Crit. Rev. Food Sci. Nutr. 2023, 64, 11510–11529. [Google Scholar] [CrossRef]
- Lin, T.; Meletharayil, G.; Kapoor, R.; Abbaspourrad, A. Bioactives in bovine milk: Chemistry, technology, and applications. Nutr. Rev. 2021, 79, 48–69. [Google Scholar] [CrossRef]
- Bellaver, E.; Redin, E.; da Costa, I.; Moroni, L.; Kempka, A. Food peptidomic analysis of bovine milk fermented by Lacticaseibacillus caseiLBC 237: In silico prediction of bioactive peptides and anticancer potential. Food Res. Int. 2024, 180, 114060. [Google Scholar] [CrossRef]
- Campanhon, I.; de Aguiar, P.; Bezerra, F.; Soares, M.; Torres, A. Human colostrum in vitro protein digestion: Peptidomics by liquid chromatography-Orbitrap-high-resolution MS and prospection for bioactive peptides via bioinformatics. Br. J. Nutr. 2024, 131, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; Lönnerdal, B. Bioactive peptides derived from human milk proteins: An update. Curr. Opin. Clin. Nutr. Metab. Care 2020, 23, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; Lönnerdal, B. Bioactive peptides derived from human milk proteins—Mechanisms of action. J. Nutr. Biochem. 2014, 25, 503–514. [Google Scholar] [CrossRef]
- Guha, S.; Sharma, H.; Deshwal, G.; Rao, P. A comprehensive review on bioactive peptides derived from milk and milk products of minor dairy species. Food Prod. Process. Nutr. 2021, 3, 1–21. [Google Scholar] [CrossRef]
- Silva, T.; Moreira, A.C.; Nazmi, K.; Moniz, T.; Vale, N.; Rangel, M.; Gomes, P.; Bolscher, J.G.M.; Rodrigues, P.N.; Bastos, M.; et al. Lactoferricin Peptides Increase Macrophages’ Capacity To Kill Mycobacterium avium. Msphere 2017, 2, 10–128. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.; Magalhaes, B.; Maia, S.; Gomes, P.; Nazmi, K.; Bolscher, J.G.M.; Rodrigues, P.N.; Bastos, M.; Gomes, M.S. Killing of Mycobacterium avium by Lactoferricin Peptides: Improved Activity of Arginine- and D-Amino-Acid-Containing Molecules. Antimicrob. Agents Chemother. 2014, 58, 3461–3467. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.; Maia, S.; Gomes, J.; Gomes, P.; Martins, M. Characterization of hLF1-11 immobilization onto chitosan ultrathin films, and its effects on antimicrobial activity. Acta Biomater. 2014, 10, 3513–3521. [Google Scholar] [CrossRef]
- Guzmán, F.; Aróstica, M.; Román, T.; Beltrán, D.; Gauna, A.; Albericio, F.; Cárdenas, C. Peptides, solid-phase synthesis and characterization: Tailor-made methodologies. Electron. J. Biotechnol. 2023, 64, 27–33. [Google Scholar] [CrossRef]
- Gallina, S.; Cunsolo, V.; Saletti, R.; Muccilli, V.; Di Francesco, A.; Foti, S.; Lorenzten, A.M.; Roepstorff, P. Sequence characterization and glycosylation sites identification of donkey milk lactoferrin by multiple enzyme digestions and mass spectrometry. Amino Acids 2016, 48, 1569–1580. [Google Scholar] [CrossRef]
- Wong, J.H.; Liu, Z.; Law, K.W.K.; Liu, F.; Xia, L.; Wan, D.C.C.; Ng, T.B. A study of effects of peptide fragments of bovine and human lactoferrins on activities of three key HIV-1 enzymes. Peptides 2014, 62, 183–188. [Google Scholar] [CrossRef]
- Centeno, J.M.; Burguete, M.C.; Castelló-Ruiz, M.; Enrique, M.; Vallés, S.; Salom, J.B.; Torregrosa, G.; Marcos, J.F.; Alborch, E.; Manzanares, P. Lactoferricin-related peptides with inhibitory effects on ACE-dependent vasoconstriction. J. Agric. Food Chem. 2006, 54, 5323–5329. [Google Scholar] [CrossRef]
- van der Kraan, M.I.A.; Nazmi, K.; van’t Hof, W.; Amerongen, A.V.N.; Veerman, E.C.I.; Bolscher, J.G.M. Distinct bactericidal activities of bovine lactoferrin peptides LFampin 268-284 and LFampin 265-284: Asp-Leu-Ile makes a difference. Biochem. Cell Biol. 2006, 84, 358–362. [Google Scholar] [CrossRef]
- Haney, E.F.; Nazmi, K.; Lau, F.; Bolscher, J.G.M.; Vogel, H.J. Novel lactoferrampin antimicrobial peptides derived from human lactoferrin. Biochimie 2009, 91, 141–154. [Google Scholar] [CrossRef]
- Dijkshoorn, L.; Brouwer, C.; Bogaards, S.J.P.; Nemec, A.; van den Broek, P.J.; Nibbering, P.H. The synthetic n-terminal peptide of human lactoferin, hLF(1-11), is highly effective against experimental infection caused by multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2004, 48, 4919–4921. [Google Scholar] [CrossRef]
- Taciak, B.; Bialasek, M.; Braniewska, A.; Sas, Z.; Sawicka, P.; Kiraga, L.; Rygiel, T.; Król, M. Evaluation of phenotypic and functional stability of RAW 264.7 cell line through serial passages. PLoS ONE 2018, 13, e0198943. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid Colorimetric Assay For Cellular Growth And Survival—Application To Proliferation And Cyto-Toxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Oliveira, A.I.; Pinho, C.; Fonte, P.; Sarmento, B.; Dias, A.C.P. Development, characterization, antioxidant and hepatoprotective properties of poly(ε-caprolactone) nanoparticles loaded with a neuroprotective fraction of Hypericum perforatum. Int. J. Biol. Macromol. 2018, 110, 185–196. [Google Scholar] [CrossRef] [PubMed]
- De Menezes, B.B.; Frescura, L.M.; Duarte, R.; Villetti, M.A.; Da Rosa, M.B. A critical examination of the DPPH method: Mistakes and inconsistencies in stoichiometry and IC50 determination by UV-Vis spectroscopy. Anal. Chim. Acta 2021, 1157, 338398. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Kar, S.; Surajlata, K.; Banerjee, E. Screening of novel natural product derived compounds for drug discovery in inflammation. J. Plant Biochem. Physiol 2016, 3, 159. [Google Scholar] [CrossRef]
- Schaich, K.M.; Tian, X.; Xie, J. Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. J. Funct. Foods 2015, 14, 111–125. [Google Scholar] [CrossRef]
- Jin, Y.; Baek, N.; Back, S.; Myung, C.-S.; Heo, K.-S. Inhibitory Effect of Ginsenosides Rh1 and Rg2 on Oxidative Stress in LPS-Stimulated RAW 264.7 Cells. J. Bacteriol. Virol. 2018, 48, 156–165. [Google Scholar] [CrossRef]
- Muniandy, K.; Gothai, S.; Badran, K.M.H.; Kumar, S.S.; Esa, N.M.; Arulselvan, P. Suppression of Proinflammatory Cytokines and Mediators in LPS-Induced RAW 264.7 Macrophages by Stem Extract of Alternanthera sessilis via the Inhibition of the NF-κB Pathway. J. Immunol. Res. 2018, 2018, 3430684. [Google Scholar] [CrossRef]
- Liu, X.; Yin, S.; Chen, Y.; Wu, Y.; Zheng, W.; Dong, H.; Bai, Y.; Qin, Y.; Li, J.; Feng, S.; et al. LPS-induced proinflammatory cytokine expression in human airway epithelial cells and macrophages via NF-B, STAT3 or AP-1 activation. Mol. Med. Rep. 2018, 17, 5484–5491. [Google Scholar] [CrossRef]
- Choi, J.S.; Islam, M.N.; Ali, M.Y.; Kim, Y.M.; Park, H.J.; Sohn, H.S.; Jung, H.A. The effects of C-glycosylation of luteolin on its antioxidant, anti-Alzheimer’s disease, anti-diabetic, and anti-inflammatory activities. Arch. Pharmacal Res. 2014, 37, 1354–1363. [Google Scholar] [CrossRef]
- Biswas, S.K. Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxidative Med. Cell. Longev. 2016, 2016, 5698931. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, L.; Liu, Y.; Lin, L.; Lu, R.; Zhu, J.; He, L.; Lu, Z. Methods for the detection and determination of nitrite and nitrate: A review. Talanta 2017, 165, 709–720. [Google Scholar] [CrossRef]
- Vermeirssen, V.; Van Camp, J.; Verstraete, W. Bioavailability of angiotensin I converting enzyme inhibitory peptides. Br. J. Nutr. 2004, 92, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Bastin, A.; Teimouri, M.; Faramarz, S.; Shabani, M.; Doustimotlagh, A.H.; Sadeghi, A. In vitro and Molecular Docking Analysis of Quercetin as an Anti-inflammatory and Antioxidant. Curr. Pharm. Des. 2023, 29, 883–891. [Google Scholar] [CrossRef]
- Lönnerdal, B.; Suzuki, Y.A. Lactoferrin. In Advanced Dairy Chemistry: Volume 1A: Proteins: Basic Aspects, 4th ed.; McSweeney, P.L.H., Fox, P.F., Eds.; Springer US: Boston, MA, USA, 2013; pp. 295–315. [Google Scholar]
- Kruzel, M.L.; Zimecki, M.; Actor, J.K. Lactoferrin in a Context of Inflammation-Induced Pathology. Front. Immunol. 2017, 8, 1438. [Google Scholar] [CrossRef]
- Superti, F. Lactoferrin from Bovine Milk: A Protective Companion for Life. Nutrients 2020, 12, 2562. [Google Scholar] [CrossRef] [PubMed]
- Martini, M.; Altomonte, I.; Tricò, D.; Lapenta, R.; Salari, F. Current Knowledge on Functionality and Potential Therapeutic Uses of Donkey Milk. Animals 2021, 11, 1382. [Google Scholar] [CrossRef] [PubMed]
- Trinchese, G.; Cavaliere, G.; Canani, R.B.; Matamoros, S.; Bergamo, P.; De Filippo, C.; Aceto, S.; Gaita, M.; Cerino, P.; Negri, R.; et al. Human, donkey and cow milk differently affects energy efficiency and inflammatory state by modulating mitochondrial function and gut microbiota. J. Nutr. Biochem. 2015, 26, 1136–1146. [Google Scholar] [CrossRef] [PubMed]
- Balos, M.Z.; Pelic, D.L.; Jaksic, S.; Lazic, S. Donkey Milk: An Overview of its Chemical Composition and Main Nutritional Properties or Human Health Benefit Properties. J. Equine Vet. Sci. 2023, 121, 104225. [Google Scholar] [CrossRef]
- Belizi, S.; Nazarova, I.A.; Klimova, I.A.; Prokof'ev, V.N.; Pushkina, N.V. Antioxidant properties of lactoferrin from human milk. Bull. Exp. Biol. Med. 1999, 127, 471–473. [Google Scholar] [CrossRef]
- Conesa, C.; Calvo, M.; Sánchez, L. Recombinant human lactoferrin: A valuable protein for pharmaceutical products and functional foods. Biotechnol. Adv. 2010, 28, 831–838. [Google Scholar] [CrossRef]
- Kruzel, M.L.; Actor, J.K.; Zimecki, M.; Wise, J.; Ploszaj, P.; Mirza, S.; Kruzel, M.; Hwang, S.A.; Ba, X.Q.; Boldogh, I. Novel recombinant human lactoferrin: Differential activation of oxidative stress related gene expression. J. Biotechnol. 2013, 168, 666–675. [Google Scholar] [CrossRef]
- Narmuratova, Z.; Hentati, F.; Girardet, J.M.; Narmuratova, M.; Cakir-Kiefer, C. Equine lactoferrin: Antioxidant properties related to divalent metal chelation. Lwt-Food Sci. Technol. 2022, 161, 113426. [Google Scholar] [CrossRef]
- Habib, H.M.; Ibrahim, W.H.; Schneider-Stock, R.; Hassan, H.M. Camel milk lactoferrin reduces the proliferation of colorectal cancer cells and exerts antioxidant and DNA damage inhibitory activities. Food Chem. 2013, 141, 148–152. [Google Scholar] [CrossRef]
- Apostolopoulos, V.; Bojarska, J.; Chai, T.T.; Elnagdy, S.; Kaczmarek, K.; Matsoukas, J.; New, R.; Parang, K.; Lopez, O.P.; Parhiz, H.; et al. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021, 26, 430. [Google Scholar] [CrossRef] [PubMed]
- Mäde, V.; Els-Heindl, S.; Beck-Sickinger, A.G. Automated solid-phase peptide synthesis to obtain therapeutic peptides. Beilstein J. Org. Chem. 2014, 10, 1197–1212. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Jahandideh, F.; Wu, J.P. Food-Derived Bioactive Peptides on Inflammation and Oxidative Stress. Biomed Res. Int. 2014, 2014, 608979. [Google Scholar] [CrossRef]
- Yan, D.Y.; Chen, D.; Shen, J.; Xiao, G.Z.; Van Wijnen, A.J.; Im, H.J. Bovine lactoferricin is anti-inflammatory and anti-catabolic in human articular cartilage and synovium. J. Cell. Physiol. 2013, 228, 447–456. [Google Scholar] [CrossRef]
- Elass-Rochard, E.; Legrand, D.; Salmon, V.; Roseanu, A.; Trif, M.; Tobias, P.S.; Mazurier, J.; Spik, G. Lactoferrin inhibits the endotoxin interaction with CD14 by competition with the lipopolysaccharide-binding protein. Infect. Immun. 1998, 66, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Legrand, D.; Pierce, A.; Elass, E.; Carpentier, M.; Mariller, C.; Mazurier, J. Lactoferrin structure and functions. Bioact. Compon. Milk 2008, 606, 163–194. [Google Scholar]
- Lee, N.Y.; Cheng, J.T.; Enomoto, T.; Nakamura, I. The antihypertensive activity of angiotensin-converting enzyme inhibitory peptide containing in bovine lactoferrin. Chin. J. Physiol. 2006, 49, 67–73. [Google Scholar]
- Oussaief, O.; Jrad, Z.; Adt, I.; Kaddes, K.; Khorchani, T.; Degraeve, P.; El Hatmi, H. Antioxidant, lipase and ACE-inhibitory properties of camel lactoferrin and its enzymatic hydrolysates. Int. J. Dairy Technol. 2023, 76, 126–137. [Google Scholar] [CrossRef]
Peptide | Origin | Amino Acid Sequence | Molecular Weight (g.mol−1) | Representative References |
---|---|---|---|---|
aLF-17-31 | Equus africanus asinus | AKCAKFQRNMKKVRG-NH2 | 1762.99 | [27] |
bLF-1-11 | Bos taurus | APRKNVRWCTI-NH2 | 1341.74 | [28] |
bLF-17-31 | Bos taurus | FKCRRWQWRMKKLGA-NH2 | 1992.09 | [29] |
bLF-268-284 | Bos taurus | WKLLSKAQEKFGKNKSR-NH2 | 2046.18 | [30] |
nhLF-268-284 | Homo sapiens | WNLLRQAQEKFGKDKSP-NH2 | 2043.10 | [31] |
rhLF-1-11 | Recombinant human LF | GRRRRSVQWCA-NH2 | 1372.74 | [32] |
Compound | DPPH Radical Scavenging Activity (RIC50 mol/mol DPPH) |
---|---|
aLF-17-31 | 6.14 ± 0.56 **** |
bLF-1-11 | 2.78 ± 0.83 ** |
bLF-17-31 | 1.74 ± 0.60 |
bLF-268-284 | 5.16 ± 0.49 **** |
nhLF-268-284 | 2.96 ± 0.91 ** |
rhLF-1-11 | 2.47 ± 0.20 * |
Quercetin | 0.09 ± 0.02 |
Compound | FRAP (mM Ferrous Equivalents) | |||
---|---|---|---|---|
0.05 µg/mL | 0.5 µg/mL | 5 µg/mL | 50 µg/mL | |
aLF-17-31 | 0.16 ± 0.02 | 0.17 ± 0.04 | 0.18 ± 0.04 | 0.19 ± 0.03 |
bLF-1-11 | 0.20 ± 0.07 | 0.20 ± 0.07 | 0.23 ± 0.07 | 0.46 ± 0.03 |
bLF-17-31 | 0.18 ± 0.04 | 0.19 ± 0.05 | 0.24 ± 0.06 | 0.35 ± 0.02 |
bLF-268-284 | 0.17 ± 0.04 | 0.18 ± 0.04 | 0.17 ± 0.02 | 0.29 ± 0.11 |
nhLF-268-284 | 0.18 ± 0.04 | 0.17 ± 0.03 | 0.19 ± 0.05 | 0.24 ± 0.02 |
rhLF-1-11 | 0.20 ± 0.05 | 0.21 ± 0.07 | 0.26 ± 0.07 | 0.45 ± 0.02 |
Quercetin | 0.85 ± 0.25 | 1.40 ± 0.23 | 8.02 ± 0.57 | 16.09 ± 0.87 |
Compound | IC50 /µg/mL |
---|---|
bLF-1-11 | 78.32 ± 8.31 |
bLF-17-31 | 44.07 ± 4.67 |
rhLF-1-11 | 108.58 ± 23.78 |
Compound | IC50 /µg/mL |
---|---|
aLF-17-31 | 55 ± 8 |
bLF-1-11 | <100 |
bLF-17-31 | 63 ± 5 |
bLF-268-284 | >100 |
nhLF-268-284 | 52.3 ± 0.8 |
rhLF-1-11 | 79 ± 9 |
Captopril | 0.0070 ± 0.0004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borges, T.; Coelho, P.; Prudêncio, C.; Gomes, A.; Gomes, P.; Ferraz, R. Bioactive Peptides from Milk Proteins with Antioxidant, Anti-Inflammatory, and Antihypertensive Activities. Foods 2025, 14, 535. https://doi.org/10.3390/foods14030535
Borges T, Coelho P, Prudêncio C, Gomes A, Gomes P, Ferraz R. Bioactive Peptides from Milk Proteins with Antioxidant, Anti-Inflammatory, and Antihypertensive Activities. Foods. 2025; 14(3):535. https://doi.org/10.3390/foods14030535
Chicago/Turabian StyleBorges, Thaís, Pedro Coelho, Cristina Prudêncio, Ana Gomes, Paula Gomes, and Ricardo Ferraz. 2025. "Bioactive Peptides from Milk Proteins with Antioxidant, Anti-Inflammatory, and Antihypertensive Activities" Foods 14, no. 3: 535. https://doi.org/10.3390/foods14030535
APA StyleBorges, T., Coelho, P., Prudêncio, C., Gomes, A., Gomes, P., & Ferraz, R. (2025). Bioactive Peptides from Milk Proteins with Antioxidant, Anti-Inflammatory, and Antihypertensive Activities. Foods, 14(3), 535. https://doi.org/10.3390/foods14030535