Development and Consumer Acceptability of Functional Bread Formulations Enriched with Extruded Avocado Seed Flour: Nutritional and Technological Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
Preparation of Avocado Seed Flour
2.2. Avocado Seed Flour Extrusion
2.3. Enzyme-Assisted Wet-Milling
2.4. Proximate Composition
2.5. Acetogenins Content
2.6. Antioxidant Activity
2.7. Water Absorption Index (WAI) and Oil Absorption Index (OAI)
2.8. Bread Making Procedure
- Ingredients were mixed and kneaded until a homogeneous dough was obtained (KitchenAid, 5K45SS, Elkgrove Village, St. Joseph, MO, USA).
- The dough was fermented at 30 °C and 85% relative humidity for 60 min in a fermentation cabinet (National Manufacturing Co., Lincoln, NE, USA).
- Moulded loaves were proofed under the same conditions for 40 min.
- Baking was carried out at 180 °C for 20 min in a convection oven (Electrolux, Stockholm, Sweden).
- Baked loaves were cooled at 25 ± 2 °C for 1 h.
- Samples were packaged in new resealable plastic bags made of food-grade polyethylene to prevent moisture loss and microbial contamination.
- Packaged breads were stored at ambient temperature (25 ± 2 °C) until further analyses.
2.9. Bread Characterization
2.9.1. Mixolab Analysis
2.9.2. Specific Volume and Density
2.9.3. pH and Total Titratable Acidity (TTA)
2.9.4. Water Activity (Aw)
2.9.5. Texture Profile Analysis (TPA)
2.9.6. Consumer Sensory Evaluation
2.10. Statistical Analysis
3. Results
3.1. Avocado Seed Flour Characterization
3.1.1. Yields of Avocado Seed Enzyme-Assisted Wet-Milling Fractions
3.1.2. Proximate Composition of Avocado Seed Flour
3.1.3. Acetogenin Content
3.1.4. Antioxidant Activity
3.1.5. WAI and OAI
3.2. Bread Characterization
3.2.1. Mixolab Analysis
3.2.2. Physicochemical Properties
3.2.3. Proximate Composition of Bread
3.2.4. Textural Parameters of Bread
3.2.5. Consumer Sensory Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodríguez-Martínez, B.; Romaní, A.; Eibes, G.; Garrote, G.; Gullón, B.; Del Río, P.G. Potential and prospects for utilization of avocado by-products in integrated biorefineries. Bioresour. Technol. 2022, 364, 128034. [Google Scholar] [CrossRef]
- Féliz-Jiménez, A.; Sanchez-Rosario, R. Bioactive compounds, composition and potential applications of avocado agro-industrial residues: A review. Appl. Sci. 2024, 14, 10070. [Google Scholar] [CrossRef]
- Tzintzun-Camacho, O.; Sánchez-Segura, L.; Minchaca-Acosta, A.Z.; Rosales-Colunga, L.M.; Hernández-Orihuela, A.; Martínez-Antonio, A. Development of bacterial culture medium from avocado seed waste. Rev. Mex. Ing. Quím. 2016, 15, 831–842. [Google Scholar] [CrossRef]
- Nascimento, A.P.S.; Duarte, M.E.M.; Rocha, A.P.T.; Barros, A.N. Valorization of avocado (Persea americana) peel and seed: Functional potential for food and health applications. Antioxidants 2025, 14, 1032. [Google Scholar] [CrossRef]
- Salas-Millán, J.Á.; Aguayo, E. Fermentation for revalorisation of fruit and vegetable by-products: A sustainable approach towards minimising food loss and waste. Foods 2024, 13, 3680. [Google Scholar] [CrossRef]
- Marcelli, A.; Osimani, A.; Aquilanti, L. Vegetable by-products from industrial processing: From waste to functional ingredient through fermentation. Foods 2025, 14, 2704. [Google Scholar] [CrossRef]
- Torbica, A.; Škrobot, D.; Janić Hajnal, E.; Belović, M.; Zhang, N. Sensory and physico-chemical properties of wholegrain wheat bread prepared with selected food by-products. LWT 2019, 114, 108414. [Google Scholar] [CrossRef]
- Villasante, J.; Espinosa-Ramírez, J.; Pérez-Carrillo, E.; Heredia-Olea, E.; Metón, I.; Almajano, M.P. Evaluation of non-extruded and extruded pecan (Carya illinoinensis) shell powder as functional ingredient in bread and wheat tortilla. LWT 2022, 160, 113299. [Google Scholar] [CrossRef]
- Zarzycki, P.; Wirkijowska, A.; Teterycz, D.; Łysakowska, P. Innovations in wheat bread: Using food industry by-products for better quality and nutrition. Appl. Sci. 2024, 14, 3976. [Google Scholar] [CrossRef]
- Dahdah, P.; Cabizza, R.; Farbo, M.G.; Fadda, C.; Del Caro, A.; Montanari, L.; Hassoun, G.; Piga, A. Effect of partial substitution of wheat flour with freeze-dried olive pomace on the technological, nutritional, and sensory properties of bread. Front. Sustain. Food Syst. 2024, 8, 1400339. [Google Scholar] [CrossRef]
- Fufa, D.D.; Bekele, T.; Bultosa, G.; Tamene, A. Avocado seeds valorization for sustainable food ingredient use: Quality attributes evaluation in the traditional fermented teff injera. Discov. Sustain. 2025, 6, 288. [Google Scholar] [CrossRef]
- Permal, R.; Chia, T.; Arena, G.; Fleming, C.; Chen, J.; Chen, T.; Chang, W.L.; Seale, B.; Hamid, N.; Kam, R. Converting avocado seeds into a ready-to-eat snack and analysing for persin and amygdalin. Food Chem. 2023, 399, 134011. [Google Scholar] [CrossRef] [PubMed]
- Thin, T.; Myat, L.; Ryu, G.-H. The effects of CO2 injection and barrel temperatures on the physiochemical and antioxidant properties of extruded cereals. Prev. Nutr. Food Sci. 2016, 21, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Dalbhagat, C.G.; Mahato, D.K.; Mishra, H.N. Effect of extrusion processing on physicochemical, functional and nutritional characteristics of rice and rice-based products: A review. Trends Food Sci. Technol. 2019, 85, 226–240. [Google Scholar] [CrossRef]
- He, W.; Tang, J.; Chen, Y.; Liu, G.; Li, Z.; Tu, J.; Li, Y. Effects of extrusion treatment on the physicochemical and baking quality of Japonica rice batters and rice breads. Gels 2025, 11, 86. [Google Scholar] [CrossRef]
- Silvestre-De-León, R.; Espinosa-Ramírez, J.; Pérez-Carrillo, E.; Serna-Saldívar, S.O. Extruded chickpea flour sequentially treated with Alcalase and α-amylase produces dry instant beverage powders with enhanced yield and nutritional properties. Int. J. Food Sci. Technol. 2021, 56, 5178–5189. [Google Scholar] [CrossRef]
- Burbano, J.J.; Di Pierro, J.P.; Camacho, C.; Vidaurre-Ruiz, J.; Repo-Carrasco-Valencia, R.; Iglesias, F.A.; Sánchez, M.; Moscoso Ospina, Y.A.; Igartúa, D.E.; Correa, M.J.; et al. Extruded quinoa flour applied for the development of gluten-free breads: A technological, sensory and microstructural approach. Plant Foods Hum. Nutr. 2025, 80, 33. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Q.; Zhao, S.; Guo, L.; Zhuang, X.; Chen, X.; Tao, T.; Ding, C. Effect of extrusion processing on the structural, functional, and physicochemical properties of wheat and wheat-based products: A review. Food Phys. 2025, 2, 100050. [Google Scholar] [CrossRef]
- Sun, H.; Ju, Q.; Ma, J.; Chen, J.; Li, Y.; Yuan, Y.; Hu, Y.; Fujita, K.; Luan, G. The effects of extruded corn flour on rheological properties of wheat-based composite dough and bread quality. Food Sci. Nutr. 2019, 7, 2977–2985. [Google Scholar] [CrossRef]
- Garcia-Amezquita, L.E.; Tejada-Ortigoza, V.; Ramírez-Aguirre, M.D.; Cantu-Cantu, A.; Pérez-Carrillo, E.; Welti-Chanes, J. Substitution of wheat flour by extrudate orange peel dietary fiber concentrate in biscuits: Changes in Mixolab thermomechanical behavior, flour technofunctionality, and water sorption isotherm properties. Int. J. Food Sci. 2025, 2025, 1657293. [Google Scholar] [CrossRef]
- Gumul, D.; Korus, A.; Ziobro, R. Extruded preparations with sour cherry pomace influence quality and increase the level of bioactive components in gluten-free breads. Int. J. Food Sci. 2020, 2020, 8024398. [Google Scholar] [CrossRef] [PubMed]
- Kairė, A.; Jagelavičiūtė, J.; Bašinskienė, L.; Syrpas, M.; Čižeikienė, D. Influence of enzymatic hydrolysis on composition and technological properties of black currant (Ribes nigrum) pomace. Appl. Sci. 2025, 15, 6207. [Google Scholar] [CrossRef]
- Sui, W.; Wang, S.; Chen, Y.; Li, X.; Zhuang, X.; Yan, X.; Song, Y. Insights into the structural and nutritional variations in soluble dietary fibers in fruits and vegetables influenced by food processing techniques. Foods 2025, 14, 1861. [Google Scholar] [CrossRef]
- Rodríguez-Sánchez, D.G.; Pacheco, A.; Villarreal-Lara, R.; Ramos-González, M.R.; Ramos-Parra, P.A.; Granados-Principal, S.; Díaz De La Garza, R.I.; García-Rivas, G.; Hernández-Brenes, C. Chemical profile and safety assessment of a food-grade acetogenin-enriched antimicrobial extract from avocado seed. Molecules 2019, 24, 2354. [Google Scholar] [CrossRef]
- Cortés-Ceballos, E.; Pérez-Carrillo, E.; Serna-Saldívar, S.O. Addition of sodium stearoyl lactylate to corn and sorghum starch extrudates enhances the performance of pregelatinized beer adjuncts. Cereal Chem. 2015, 92, 88–92. [Google Scholar] [CrossRef]
- Umoh, E.O.; Iwe, M.O. Influence of extrusion process conditions on bulk density, water absorption capacity and oil absorption capacity of extruded aerial yam–soybean flour mixture. Afr. J. Food Sci. 2023, 17, 111–121. [Google Scholar]
- Xiao, W.; He, H.; Dong, Q.; Huang, Q.; An, F.; Song, H. Effects of high-speed shear and double-enzymatic hydrolysis on the structural and physicochemical properties of rice porous starch. Int. J. Biol. Macromol. 2023, 234, 123692. [Google Scholar] [CrossRef]
- AACC International. Approved Methods of Analysis, 11th ed.; Methods 10-05.01, 32-05.01, 32-07.01, and 74-10.02; AACC International: St. Paul, MN, USA, 2010. [Google Scholar]
- AOAC International. Official Methods of Analysis of AOAC International, 17th ed.; Methods 923.03, 920.85, and 978.02; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Adebiyi, J.A.; Obadina, A.O.; Adebo, O.A.; Kayitesi, E. Comparison of nutritional quality and sensory acceptability of biscuits obtained from native, fermented, and malted pearl millet (Pennisetum glaucum) flour. Food Chem. 2017, 232, 210–217. [Google Scholar] [CrossRef]
- Rodríguez-López, C.E.; Hernández-Brenes, C.; Díaz De La Garza, R.I. A targeted metabolomics approach to characterize acetogenin profiles in avocado fruit (Persea americana Mill.). RSC Adv. 2015, 5, 106019–106029. [Google Scholar] [CrossRef]
- Villasante, J.; Pérez-Carrillo, E.; Heredia-Olea, E.; Metón, I.; Almajano, M.P. In vitro antioxidant activity optimization of nut shell (Carya illinoinensis) by extrusion using response surface methods. Biomolecules 2019, 9, 883. [Google Scholar] [CrossRef] [PubMed]
- Serna-Saldívar, S.O. Cereal Grains: Laboratory Reference and Procedures Manual; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Acosta-Estrada, B.A.; Lazo-Vélez, M.A.; Nava-Valdez, Y.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Improvement of dietary fiber, ferulic acid and calcium contents in pan bread enriched with nejayote food additive from white maize (Zea mays). J. Cereal Sci. 2014, 60, 264–269. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, M.; Huang, S.; Zhang, Z. Optimisation of the extrusion process through a response surface methodology for improvement of the physical properties and nutritional components of whole black-grained wheat flour. Foods 2021, 10, 437. [Google Scholar] [CrossRef]
- Rivera-González, G.; Amaya-Guerra, C.A.; De La Rosa-Millán, J. Physicochemical characterisation and in vitro starch digestion of avocado seed flour (Persea americana V. Hass) and its starch and fibrous fractions. Int. J. Food Sci. Technol. 2019, 54, 2447–2457. [Google Scholar] [CrossRef]
- Bangar, S.P.; Sandhu, K.S.; Rusu, A.; Trif, M.; Purewal, S.S. Evaluating the effects of wheat cultivar and extrusion processing on nutritional, health-promoting, and antioxidant properties of flour. Front. Nutr. 2022, 9, 872589. [Google Scholar] [CrossRef] [PubMed]
- Yadav, U.; Singh, R.R.B.; Arora, S. Evaluation of quality changes in nutritionally enriched extruded snacks during storage. J. Food Sci. Technol. 2018, 55, 3939–3948. [Google Scholar] [CrossRef] [PubMed]
- Sartika, M.; Lubis, M.; Harahap, M.B.; Afrida, E.; Ginting, M.H.S. Production of bioplastic from avocado seed starch as matrix and microcrystalline cellulose from sugar palm fibers with Schweizer’s reagent as solvent. Asian J. Chem. 2018, 30, 1051–1056. [Google Scholar] [CrossRef]
- Li, R.; Wang, C.; Wang, Y.; Xie, X.; Sui, W.; Liu, R.; Wu, T.; Zhang, M. Extrusion modification of wheat bran and its effects on structural and rheological properties of wheat flour dough. Foods 2023, 12, 1813. [Google Scholar] [CrossRef]
- Li, J.; Li, L. Effect of extrusion temperature on the structure and emulsifying properties of soy protein isolate–oat β-glucan conjugates formed during high moisture extrusion. Food Chem. 2023, 429, 136787. [Google Scholar] [CrossRef]
- Lewko, P.; Wójtowicz, A.; Rudaś, M. Effect of processing conditions of enzymatic, extrusion, and hybrid treatment methods on composition and selected technofunctional properties of developed wheat flour. Int. J. Food Sci. 2025, 2025, 3317924. [Google Scholar] [CrossRef]
- Schmid, V.; Steck, J.; Mayer-Miebach, E.; Behsnilian, D.; Bunzel, M.; Karbstein, H.P.; Emin, M.A. Extrusion processing of pure chokeberry (Aronia melanocarpa) pomace: Impact on dietary fiber profile and bioactive compounds. Foods 2021, 10, 518. [Google Scholar] [CrossRef]
- Ariyarathna, P.; Mizera, P.; Walkowiak, J.; Dziedzic, K. Physicochemical and functional properties of soluble and insoluble dietary fibers in whole grains and their health benefits. Foods 2025, 14, 2447. [Google Scholar] [CrossRef]
- Larrosa, A.P.Q.; Otero, D.M. Flour made from fruit by-products: Characteristics, processing conditions, and applications. J. Food Process. Preserv. 2021, 45, e15398. [Google Scholar] [CrossRef]
- Martín-Diana, A.B.; Blanco Espeso, B.; Jimenez Pulido, I.J.; Acebes Martínez, P.J.; Rico, D. Twin-screw extrusion as hydrothermal technology for the development of gluten-free teff flours: Effect on antioxidant, glycaemic index and techno-functional properties. Foods 2022, 11, 3610. [Google Scholar] [CrossRef]
- Pacheco, A.; Rodríguez-Sánchez, D.G.; Villarreal-Lara, R.; Navarro-Silva, J.M.; Senés-Guerrero, C.; Hernández-Brenes, C. Stability of the antimicrobial activity of acetogenins from avocado seed, under common food processing conditions, against Clostridium sporogenes vegetative cell growth and endospore germination. Int. J. Food Sci. Technol. 2017, 52, 2311–2323. [Google Scholar] [CrossRef]
- Rodríguez-Sánchez, D.; Silva-Platas, C.; Rojo, R.P.; García, N.; Cisneros-Zevallos, L.; García-Rivas, G.; Hernández-Brenes, C. Activity-guided identification of acetogenins as novel lipophilic antioxidants present in avocado pulp (Persea americana). J. Chromatogr. B 2013, 942–943, 37–45. [Google Scholar] [CrossRef]
- Degenhardt, A.G.; Hofmann, T. Bitter-tasting and kokumi-enhancing molecules in thermally processed avocado (Persea americana Mill.). J. Agric. Food Chem. 2010, 58, 12906–12915. [Google Scholar] [CrossRef]
- Kawagishi, H.; Fukumoto, Y.; Hatakeyama, M.; He, P.; Arimoto, H.; Matsuzawa, T.; Arimoto, Y.; Suganuma, H.; Inakuma, T.; Sugiyama, K. Liver injury suppressing compounds from avocado (Persea americana). J. Agric. Food Chem. 2001, 49, 2215–2221. [Google Scholar] [CrossRef]
- Oelrichs, P.B.; Ng, J.C.; Seawright, A.A.; Ward, A.; Schäffeler, L.; Macleod, J.K. Isolation and identification of a compound from avocado (Persea americana) leaves which causes necrosis of the acinar epithelium of the lactating mammary gland and the myocardium. Nat. Toxins 1995, 3, 344–349. [Google Scholar] [CrossRef]
- Tan, C.X.; Chin, R.; Tan, S.T.; Tan, S.S. Phytochemicals and antioxidant activity of ultrasound-assisted avocado seed extract. Malays. J. Anal. Sci. 2022, 26, 439–446. [Google Scholar]
- Weremfo, A.; Adulley, F.; Adarkwah-Yiadom, M. Simultaneous optimization of microwave-assisted extraction of phenolic compounds and antioxidant activity of avocado (Persea americana Mill.) seeds using response surface methodology. J. Anal. Methods Chem. 2020, 2020, 7541927. [Google Scholar] [CrossRef] [PubMed]
- Nayak, B.; Berrios, J.D.J.; Powers, J.R.; Tang, J. Effect of extrusion on the antioxidant capacity and color attributes of expanded extrudates prepared from purple potato and yellow pea flour mixes. J. Food Sci. 2011, 76, C874–C883. [Google Scholar] [CrossRef]
- Morales, P.; Cebadera-Miranda, L.; Cámara, R.M.; Reis, F.S.; Barros, L.; Berrios, J.D.J.; Ferreira, I.C.F.R.; Cámara, M. Lentil flour formulations to develop new snack-type products by extrusion processing: Phytochemicals and antioxidant capacity. J. Funct. Foods 2015, 19, 537–544. [Google Scholar] [CrossRef]
- Luithui, Y.; Baghya Nisha, R.; Meera, M.S. Cereal by-products as an important functional ingredient: Effect of processing. J. Food Sci. Technol. 2019, 56, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Siol, M.; Sadowska, A. Chemical composition, physicochemical and bioactive properties of avocado (Persea americana) seed and its potential use in functional food design. Agriculture 2023, 13, 316. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Segura-Carretero, A. Comprehensive characterization of phenolic and other polar compounds in the seed and seed coat of avocado by HPLC-DAD-ESI-QTOF-MS. Food Res. Int. 2018, 105, 752–763. [Google Scholar] [CrossRef]
- Kesselly, S.R.; Mugabi, R.; Byaruhanga, Y. Effect of extrusion on the functional and pasting properties of high-quality cassava flour (HQCF). J. Food Res. 2022, 11, 1–12. [Google Scholar] [CrossRef]
- Xu, J.-W.; Tian, T.-T.; Zhao, Y. Effect of extrusion processing on physicochemical and functional properties of water-soluble dietary fiber and water-insoluble dietary fiber of whole grain highland barley. Food Med. Homol. 2025, 2, 9420032. [Google Scholar] [CrossRef]
- Bhise, S.; Kaur, A. The effect of extrusion conditions on the functional properties of defatted cake of sunflower–maize-based expanded snacks. Int. J. Food Ferment. Technol. 2015, 5, 247–252. [Google Scholar] [CrossRef]
- Kunyanee, K.; Ngo, T.V.; Kusumawardani, S.; Luangsakul, N. Enhancing banana flour quality through physical modifications and its application in gluten-free chips product. Foods 2024, 13, 593. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Su, W.; Mu, Y.C. Modification of bamboo shoot dietary fiber by extrusion-cellulase technology and its properties. Int. J. Food Prop. 2018, 21, 1219–1232. [Google Scholar] [CrossRef]
- Sergeev, A.; Mettu, S.; Zaborova, V. The influence of extruded flour on water content and retrogradation process in muffins during storage: NMR relaxation study. J. Food Sci. Technol. 2021, 58, 2028–2033. [Google Scholar] [CrossRef]
- Codină, G.G.; Istrate, A.M.; Gontariu, I.; Mironeasa, S. Rheological properties of wheat–flaxseed composite flours assessed by Mixolab and their relation to quality features. Foods 2019, 8, 333. [Google Scholar] [CrossRef]
- Moza, J.; Gujral, H.S. Mixolab, retrogradation and digestibility behavior of chapatti made from hulless barley flours. J. Cereal Sci. 2018, 79, 383–389. [Google Scholar] [CrossRef]
- Pérez-Carrillo, E.; Chew-Guevara, A.A.; Heredia-Olea, E.; Velázquez-Reyes, H.H.; Serna-Saldívar, S.O. Mixolab profile of wheat flour and their correlation with textural properties of hot-press tortilla. Agric. Food Sci. Res. 2015, 2, 12–18. [Google Scholar]
- Almoumen, A.; Mohamed, H.; Sobti, B.; Ayyash, M.; Kamleh, R.; Al-Marzouqi, A.H.; Kamal-Eldin, A. Quality of bread rolls fortified with date fruit pomace: Structure, proximate composition, staling, and sensory evaluation. NFS J. 2025, 38, 100214. [Google Scholar] [CrossRef]
- Wirkijowska, A.; Zarzycki, P.; Sobota, A.; Nawrocka, A.; Blicharz-Kania, A.; Andrejko, D. The possibility of using by-products from the flaxseed industry for functional bread production. LWT 2020, 118, 108860. [Google Scholar] [CrossRef]
- El Kaourat, A.; Choukri, H.; Kartah, B.E.; Snoussi, A.; Zeppa, G.; Benali, A.; Taghouti, M.; El Monfalouti, H. Pre-treatment effects on chemico-physical characteristics of argan press cake used for bread production. Foods 2025, 14, 1315. [Google Scholar] [CrossRef]
- Rahman, M.; Islam, R.; Hasan, S.; Zzaman, W.; Rana, M.R.; Ahmed, S.; Roy, M.; Sayem, A.; Matin, A.; Raposo, A.; et al. A comprehensive review on bio-preservation of bread: An approach to adopt wholesome strategies. Foods 2022, 11, 319. [Google Scholar] [CrossRef] [PubMed]
- Caro, I.; Portales, S.; Gómez, M. Microbial characterization of discarded breads. LWT 2023, 173, 114291. [Google Scholar] [CrossRef]
- Valerio, F.; Di Biase, M.; Cifarelli, V.; Lonigro, S.L.; Maalej, A.; Plazzotta, S.; Manzocco, L.; Calligaris, S.; Maalej, H. Okra (Abelmoschus esculentus L.) flour integration in wheat-based sourdough: Effect on nutritional and technological quality of bread. Foods 2024, 13, 3238. [Google Scholar] [CrossRef]
- Šoronja-Simović, D.; Zahorec, J.; Šereš, Z.; Griz, A.; Sterniša, M.; Smole Možina, S. The food industry by-products in bread making: Single and combined effect of carob pod flour, sugar beet fibers and molasses on dough rheology, quality and food safety. J. Food Sci. Technol. 2022, 59, 1429–1439. [Google Scholar] [CrossRef]
- Hasan, M.M.; Islam, R.; Haque, A.R.; Kabir, R.; Hasan, S.M.K. Fortification of bread with mango peel and pulp as a source of bioactive compounds: A comparison with plain bread. Food Chem. Adv. 2024, 5, 100783. [Google Scholar] [CrossRef]
- Alija, D.; Olędzki, R.; Nikolovska Nedelkoska, D.; Pejcz, E.; Wojciechowicz-Budzisz, A.; Stamatovska, V.; Harasym, J. Cucurbita maxima plomo peel as a valuable ingredient for bread-making. Foods 2025, 14, 597. [Google Scholar] [CrossRef]
- Montemayor-Mora, G.; Hernández-Reyes, K.E.; Heredia-Olea, E.; Pérez-Carrillo, E.; Chew-Guevara, A.A.; Serna-Saldívar, S.O. Rheology, acceptability and texture of wheat flour tortillas supplemented with soybean residue. J. Food Sci. Technol. 2018, 55, 4964–4972. [Google Scholar] [CrossRef]
- Bartkiene, E.; Jomantaite, I.; Mockus, E.; Ruibys, R.; Baltusnikiene, A.; Santini, A.; Zokaityte, E. The contribution of extruded and fermented wheat bran to the quality parameters of wheat bread, including the profile of volatile compounds and their relationship with emotions induced for consumers. Foods 2021, 10, 2501. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.; Peterson, D.G. Identification of aroma differences in refined and whole grain extruded maize puffs. Molecules 2020, 25, 2261. [Google Scholar] [CrossRef]
- Tyl, C.; Bresciani, A.; Marti, A. Recent progress on improving the quality of bran-enriched extruded snacks. Foods 2021, 10, 2024. [Google Scholar] [CrossRef]
- Liu, H.; Ainiwan, D.; Liu, Y.; Dong, X.; Fan, H.; Sun, T.; Huang, P.; Zhang, S.; Wang, D.; Liu, T.; et al. Adsorption and controlled release performances of flavor compounds by rice bran insoluble dietary fiber improved through steam explosion method. Curr. Res. Food Sci. 2023, 7, 100550. [Google Scholar] [CrossRef]
- Yu, Q.; Qin, X.; Zheng, B.; Xie, M. Dietary fiber in food industry: Extraction, preparation and component interaction. Agric. Prod. Process. Storage 2025, 1, 25. [Google Scholar] [CrossRef]

| Ingredients | Sample | ||
|---|---|---|---|
| CNB | NEB | EB | |
| All-purpose wheat flour | 100 | 95 | 95 |
| NEF2 | 0 | 5 | 0 |
| EF2 | 0 | 0 | 5 |
| Refined cane sugar | 6 | 6 | 6 |
| Vegetable shortening | 3 | 3 | 3 |
| Dry yeast | 2 | 2 | 2 |
| Salt | 2 | 2 | 2 |
| Water | 62 | 62 | 62 |
| Sample | Fraction 1 | Fraction 2 | Fraction 3 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| NEF | 40.24 | ± | 0.67 | a | 44.73 | ± | 1.16 | a | 15.03 | ± | 0.74 | b |
| EF | 28.05 | ± | 1.88 | b | 42.97 | ± | 2.73 | a | 28.98 | ± | 0.35 | a |
| Sample | Parameters | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Protein (%) | Fat (Q1–Q3) | Ash (Q1–Q3) | Dietary Fiber (%) | Carbohydrates (Q1–Q3) | |||||||||||||
| Non-extruded and fractionated samples | |||||||||||||||||
| NEF | 4.51 | ± | 0.11 | c | 1.18 | (1.1061–1.2516) | ns | 2.47 | (2.43637–2.53683) | ns | 25.54 | ± | 0.66 | a | 66.31 | (65.86–66.76) | ns |
| NEF1 | 4.77 | ± | 0.11 | bc | 1.50 | (1.4472–1.5429) | ns | 1.76 | (1.75750–1.76283) | ns | ND | 92.01 | (91.87–92.15) | ns | |||
| NEF2 | 4.18 | ± | 0.00 | d | 2.57 | (1.6142–3.5191) | ns | 1.04 | (0.95691–1.18625) | ns | ND | 92.15 | (91.27–93.02) | ns | |||
| NEF3 | 3.07 | ± | 0.12 | e | 2.81 | (0.7255–4.8878) | ns | 12.01 | (11.54210–12.36370) | ns | ND | 82.14 | (80.37–83.91) | ns | |||
| Extruded and fractionated samples | |||||||||||||||||
| EF | 5.00 | ± | 0.11 | b | 0.78 | (0.7647–0.7935) | ns | 2.66 | (2.64737–2.68217) | ns | 23.07 | ± | 0.38 | a | 68.42 | (68.14–68.69) | ns |
| EF1 | 5.98 | ± | 0.11 | a | 0.77 | (0.6819–0.8485) | ns | 1.58 | (1.41844–1.74978) | ns | ND | 91.71 | (91.55–91.86) | ns | |||
| EF2 | 6.12 | ± | 0.11 | a | 0.64 | (0.6232–0.6658) | ns | 1.76 | (1.55311–1.96778) | ns | ND | 91.42 | (91.23–91.60) | ns | |||
| EF3 | 2.03 | ± | 0.11 | f | 0.12 | (0.1192–0.1261) | ns | 9.61 | (8.95317–10.2587) | ns | ND | 88.18 | (87.52–88.84) | ns | |||
| Acetogenin | Sample | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| NEF | EF | Acetogenin Reduction (%) | |||||||
| AcO-avocadenyne | 0.797 | ± | 0.094 | a | 0.059 | ± | 0.002 | b | 92.62 |
| AcO-avocadene | 2.939 | ± | 0.301 | a | 0.392 | ± | 0.010 | b | 86.64 |
| AcO-avocadiene B | 0.284 | ± | 0.107 | a | 0.016 | ± | 0.001 | b | 94.41 |
| Persediene | 0.247 | ± | 0.025 | a | 0.023 | ± | 0.002 | b | 90.53 |
| Persenone C | 0.733 | ± | 0.082 | a | 0.083 | ± | 0.002 | b | 88.68 |
| Persenone A | 3.109 | ± | 0.362 | a | 0.487 | ± | 0.014 | b | 84.35 |
| Persin | 2.561 | ± | 0.179 | a | 0.574 | ± | 0.039 | b | 77.59 |
| Persenone B | 1.324 | ± | 0.226 | a | 0.200 | ± | 0.026 | b | 84.88 |
| Total acetogenins | 11.994 | ± | 1.375 | a | 1.834 | ± | 0.094 | b | 84.71 |
| Sample | AA (%) | WAI (g/g) | OAI (g/g) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Non-extruded and fractionated samples | ||||||||||||
| NEF | 53.34 | ± | 1.63 | a | 2.87 | ± | 0.01 | d | 2.12 | ± | 0.01 | d |
| NEF1 | 35.32 | ± | 1.95 | ab | 3.57 | ± | 0.03 | c | 2.31 | ± | 0.06 | b |
| NEF2 | 30.30 | ± | 4.52 | ab | 2.55 | ± | 0.01 | e | 2.16 | ± | 0.01 | cd |
| NEF3 | 23.90 | ± | 8.99 | b | 0.50 | ± | 0.02 | g | 1.95 | ± | 0.02 | e |
| Extruded and fractionated samples | ||||||||||||
| EF | 14.55 | ± | 3.37 | b | 4.09 | ± | 0.03 | b | 1.70 | ± | 0.00 | f |
| EF1 | 22.78 | ± | 4.86 | b | 4.11 | ± | 0.02 | b | 2.27 | ± | 0.00 | bc |
| EF2 | 18.48 | ± | 2.33 | b | 4.62 | ± | 0.07 | a | 2.55 | ± | 0.03 | a |
| EF3 | 12.27 | ± | 0.15 | b | 1.80 | ± | 0.01 | f | 1.89 | ± | 0.00 | e |
| Parameter | Sample | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CNB | NEF | EF | ||||||||||
| Initial consistency (C1), N·m | 1.49 | ± | 0.02 | a | 1.35 | ± | 0.06 | b | 1.29 | ± | 0.06 | b |
| Peak torque during heating (C3), N·m | 2.89 | ± | 1.23 | a | 1.99 | ± | 0.06 | a | 2.32 | ± | 0.02 | a |
| Minimum torque during heating (C4), Nvm | 2.14 | ± | 0.10 | a | 1.94 | ± | 0.02 | b | 2.24 | ± | 0.06 | a |
| Stability time (tCs), min | 8.00 | ± | 0.01 | a | 8.00 | ± | 0.01 | a | 8.00 | ± | 0.01 | a |
| Initial pasting temperature (TC2), °C | 52.77 | ± | 0.68 | a | 53.17 | ± | 0.12 | a | 53.53 | ± | 0.84 | a |
| Gelatinization rate (β) | 0.22 | ± | 0.16 | a | 0.22 | ± | 0.02 | a | 0.29 | ± | 0.05 | a |
| Starch gelatinization range (C3–C2), N·m | 2.05 | ± | 1.24 | a | 1.28 | ± | 0.01 | a | 1.44 | ± | 0.06 | a |
| Cooking stability range (C3–C4), N·m | 0.75 | ± | 1.17 | a | 0.15 | ± | 0.01 | a | 0.07 | ± | 0.03 | a |
| Gelling (C5–C4), N·m | 1.94 | ± | 0.06 | a | 1.64 | ± | 0.06 | b | 2.06 | ± | 0.14 | a |
| Sample | Volume | Specific Volume | Density | Aw | pH | TTA | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| (cm3) | (cm3/g) | (g/cm3) | (mL NaOH) | |||||||||||||||||||||
| CNB | 876.43 | ± | 8.98 | a | 5.81 | ± | 0.05 | a | 0.17 | ± | 0.00 | c | 0.92 | ± | 0.01 | ab | 6.61 | ± | 0.01 | a | 2.90 | ± | 0.10 | a |
| NEB | 762.50 | ± | 2.50 | b | 5.00 | ± | 0.03 | b | 0.20 | ± | 0.00 | b | 0.91 | ± | 0.01 | b | 6.68 | ± | 0.09 | a | 2.95 | ± | 0.05 | a |
| EB | 715.00 | ± | 5.00 | b | 4.71 | ± | 0.04 | b | 0.21 | ± | 0.00 | a | 0.94 | ± | 0.00 | a | 6.61 | ± | 0.00 | a | 2.75 | ± | 0.05 | a |
| Sample | Protein (%) | Fat (%) | Ash (%) | Dietary Fiber (%) | Carbohydrates (%) | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CNB | 15.04 | ± | 0.37 | a | 3.25 | ± | 0.18 | a | 3.05 | ± | 0.35 | a | 26.68 | ± | 1.60 | a | 52.05 | ± | 0.60 | b |
| NEB | 14.10 | ± | 0.57 | a | 3.55 | ± | 0.22 | a | 2.45 | ± | 0.19 | b | 21.80 | ± | 0.80 | a | 58.11 | ± | 1.14 | ab |
| EB | 12.02 | ± | 0.98 | b | 3.83 | ± | 1.43 | a | 2.63 | ± | 0.25 | ab | 21.67 | ± | 1.09 | a | 59.85 | ± | 4.17 | b |
| Sample | Hardness (N) | Springiness (mm) | ||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Day 0 | Day 1 | Day 3 | Day 0 | Day 1 | Day 3 | |||||||||||||||||||
| CNB | 1.18 | ± | 0.26 | aB | 1.25 | ± | 0.32 | bB | 5.49 | ± | 0.95 | bA | 0.68 | ± | 0.09 | aA | 0.76 | ± | 0.09 | aA | 0.68 | ± | 0.07 | aA |
| NEB | 1.36 | ± | 0.25 | aB | 3.70 | ± | 0.59 | aAB | 6.04 | ± | 1.05 | bA | 0.74 | ± | 0.07 | aA | 0.82 | ± | 0.06 | aA | 0.68 | ± | 0.08 | aA |
| EB | 1.32 | ± | 0.25 | aC | 5.36 | ± | 0.44 | aB | 9.65 | ± | 0.59 | aA | 0.73 | ± | 0.12 | aA | 0.76 | ± | 0.09 | aA | 0.83 | ± | 0.03 | aA |
| Resilience (ratio) | Cohesiveness (ratio) | |||||||||||||||||||||||
| Day 0 | Day 1 | Day 3 | Day 0 | Day 1 | Day 3 | |||||||||||||||||||
| CNB | 0.52 | ± | 0.02 | aB | 0.66 | ± | 0.04 | aA | 0.47 | ± | 0.02 | aB | 0.88 | ± | 0.02 | aA | 0.84 | ± | 0.02 | aA | 0.78 | ± | 0.02 | aB |
| NEB | 0.50 | ± | 0.00 | aA | 0.52 | ± | 0.04 | bA | 0.48 | ± | 0.03 | aA | 0.88 | ± | 0.02 | aA | 0.86 | ± | 0.02 | aAB | 0.80 | ± | 0.00 | aB |
| EB | 0.53 | ± | 0.07 | aA | 0.52 | ± | 0.02 | bA | 0.43 | ± | 0.02 | aA | 0.80 | ± | 0.10 | aA | 0.84 | ± | 0.02 | aA | 0.75 | ± | 0.02 | aA |
| Chewiness (N) | ||||||||||||||||||||||||
| Day 0 | Day 1 | Day 3 | ||||||||||||||||||||||
| CNB | 0.79 | ± | 0.25 | aB | 0.82 | ± | 0.24 | bB | 2.90 | ± | 0.57 | bA | ||||||||||||
| NEB | 0.86 | ± | 0.17 | aA | 2.63 | ± | 0.47 | aAB | 3.46 | ± | 0.70 | bA | ||||||||||||
| EB | 0.77 | ± | 0.20 | aC | 3.42 | ± | 0.52 | aB | 6.06 | ± | 0.54 | aA | ||||||||||||
| Sample | Aroma (Q1–Q3) | Flavor (Q1–Q3) | Texture (Q1–Q3) | ||||||
|---|---|---|---|---|---|---|---|---|---|
| CNB | 6.00 | (4.00–7.00) | c | 8.00 | (6.00–9.00) | a | 8.00 | (6.75–9.00) | ns |
| NEB | 8.00 | (7.00–8.00) | a | 7.00 | (6.00–8.00) | b | 7.00 | (5.00–8.25) | ns |
| EB | 7.00 | (5.00–8.00) | b | 7.00 | (6.00–8.00) | a | 8.00 | (7.00–9.00) | ns |
| Color (Q1–Q3) | Appearance (Q1–Q3) | Overall acceptability (Q1–Q3) | |||||||
| CNB | 8.00 | (7.00–9.00) | ns | 8.00 | (7.00–9.00) | ns | 7.00 | (6.75–8.00) | ns |
| NEB | 8.00 | (7.00–9.00) | ns | 8.00 | (7.00–9.00) | ns | 7.00 | (6.00–8.00) | ns |
| EB | 8.00 | (6.00–9.00) | ns | 8.00 | (6.00–9.00) | ns | 7.00 | (7.00–8.00) | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaramillo-De la Garza, J.S.; Rodríguez-Sánchez, D.G.; Hernández-Brenes, C.; Heredia-Olea, E. Development and Consumer Acceptability of Functional Bread Formulations Enriched with Extruded Avocado Seed Flour: Nutritional and Technological Properties. Foods 2025, 14, 4282. https://doi.org/10.3390/foods14244282
Jaramillo-De la Garza JS, Rodríguez-Sánchez DG, Hernández-Brenes C, Heredia-Olea E. Development and Consumer Acceptability of Functional Bread Formulations Enriched with Extruded Avocado Seed Flour: Nutritional and Technological Properties. Foods. 2025; 14(24):4282. https://doi.org/10.3390/foods14244282
Chicago/Turabian StyleJaramillo-De la Garza, Jesús Salvador, Dariana Graciela Rodríguez-Sánchez, Carmen Hernández-Brenes, and Erick Heredia-Olea. 2025. "Development and Consumer Acceptability of Functional Bread Formulations Enriched with Extruded Avocado Seed Flour: Nutritional and Technological Properties" Foods 14, no. 24: 4282. https://doi.org/10.3390/foods14244282
APA StyleJaramillo-De la Garza, J. S., Rodríguez-Sánchez, D. G., Hernández-Brenes, C., & Heredia-Olea, E. (2025). Development and Consumer Acceptability of Functional Bread Formulations Enriched with Extruded Avocado Seed Flour: Nutritional and Technological Properties. Foods, 14(24), 4282. https://doi.org/10.3390/foods14244282

