Headspace Volatile Profile of Fresh-Cut Broccoli Raab in PET Packaging as Affected by Microperforation
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Broccoli Raab Minimally Processed and Storage
2.3. Gas Composition in the Packaging and Weight Loss
2.4. Visual Appearance and Odour Evaluation
2.5. Volatile Organic Compounds Extraction and GC-MS Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Gas Composition in the Packaging and Weight Loss
3.2. Organoleptic Evaluation
3.3. VOC Fingerprint of Fresh-like Broccoli Raab
3.4. Evolution of Broccoli Raab VOCs During Storage as Affected by Packaging Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| PET | Polyethylene terephthalate |
| VOCs | Volatile organic compounds |
| MP | Microperforated |
| NMP | Non-microperforated |
| PP/PA | Polypropylene/Polyamide |
| PP/PET | Polypropylene/Polyethylene terephthalate |
| DMDS | Dimethyl disulphide |
| DMTS | Dimethyl trisulphide |
| WL | Weight loss |
| SPME | Solid phase micro-extraction |
| OTR | Oxygen Transmission Rate |
References
- Conversa, G.; Bonasia, A.; Lazzizera, C.; Elia, A. Bio-physical, physiological, and nutritional aspects of ready-to-use cima di rapa (Brassica rapa L. subsp. sylvestris L. Janch. var. esculenta Hort.) as affected by conventional and organic growing systems and storage time. Sci. Hortic. 2016, 213, 76–86. [Google Scholar] [CrossRef]
- Renna, M.; Rinaldi, V.A.; Gonnella, M. The Mediterranean Diet between traditional foods and human health: The culinary example of Puglia (Southern Italy). Int. J. Gastr. Food Sci. 2015, 2, 63–71. [Google Scholar] [CrossRef]
- Podsedek, A. Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. LWT Food Sci. Technol. 2007, 40, 1–11. [Google Scholar] [CrossRef]
- Bones, A.M.; Rossiter, J.T. The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry 2006, 67, 1053–1067. [Google Scholar] [CrossRef]
- Lukić, I.; Išić, N.; Ban, D.; Salopek Sondi, B.; Goreta Ban, S. Comprehensive Volatilome Signature of Various Brassicaceae Species. Plants 2023, 12, 177. [Google Scholar] [CrossRef] [PubMed]
- Baik, H.Y.; Juvik, J.A.; Jeffery, E.H.; Wallig, M.A.; Kushad, M.; Klein, B.P. Relating glucosinolate content and flavor of broccoli cultivars. J. Food Sci. 2003, 68, 1043–1050. [Google Scholar] [CrossRef]
- Blažević, I.; Radonić, A.; Mastelić, J.; Zekić, M.; Skočibušić, M.; Maravić, A. Hedge mustard (Sisymbrium officinale): Chemical diversity of volatiles and their antimicrobial activity. Chem. Biodivers. 2010, 7, 2023–2034. [Google Scholar] [CrossRef]
- Szűcs, Z.; Plaszkó, T.; Bódor, E.; Csoma, H.; Ács-Szabó, L.; Kiss-Szikszai, A.; Vasas, G.; Gonda, S. Antifungal Activity of Glucosinolate-Derived Nitriles and Their Synergistic Activity with Glucosinolate-Derived Isothiocyanates Distinguishes Various Taxa of Brassicaceae Endophytes and Soil Fungi. Plants 2023, 12, 2741. [Google Scholar] [CrossRef]
- Page, T.; Griffiths, G.; Buchanan-Wollaston, V. Molecular and biochemical characterization of postharvest senescence in broccoli. Plant Physiol. 2001, 125, 718–727. [Google Scholar] [CrossRef]
- Conte, A.; Scrocco, C.; Brescia, I.; Mastromatteo, M.; Del Nobile, M.A. Shelf life of fresh-cut Cime di rapa (Brassica rapa L.) as affected by packaging. LWT Food Sci. Technol. 2011, 44, 1218–1225. [Google Scholar] [CrossRef]
- Cefola, M.; Amodio, M.L.; Rinaldi, R.; Vanadia, S.; Colelli, G. Exposure to 1-methylcyclopropene (1-MCP) delays the effects of ethylene on fresh-cut broccoli raab (Brassica rapa L.). Postharvest Biol. Technol. 2010, 58, 29–35. [Google Scholar] [CrossRef]
- Watada, A.E.; Qi, L. Quality of fresh-cut produce. Postharvest Biol. Technol. 1999, 15, 201–205. [Google Scholar] [CrossRef]
- Cefola, M.; Amodio, M.L.; Cornacchia, R.; Rinaldi, R.; Vanadia, S.; Colelli, G. Effect of atmosphere composition on the quality of ready-to-use broccoli raab (Brassica rapa L.). J. Sci. Food Agric. 2010, 90, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Hussein, Z.; Caleb, O.J.; Opara, U.L. Perforation-mediated modified atmosphere packaging of fresh and minimally processed produce—A review. Food Packag. Shelf Life 2015, 6, 7–20. [Google Scholar]
- Caleb, O.J.; Ilte, K.; Fröhling, A.; Geyer, M.; Mahajan, P.V. Integrated modified atmosphere and humidity package design for minimally processed Broccoli (Brassica oleracea L. var. italica). Postharvest Biol. Technol. 2016, 121, 87–100. [Google Scholar] [CrossRef]
- Erika Paulsen, E.; Moreno, D.A.; Martínez-Romero, D.; García-Viguera, C. Bioactive Compounds of Broccoli Florets as Affected by Packing Micro-Perforations and Storage Temperature. Coatings 2023, 13, 568. [Google Scholar] [CrossRef]
- Cefola, M.; Amodio, M.L.; Colelli, G. Design of the correct modified atmosphere packaging for fresh-cut broccoli raab. Acta Hortic. 2016, 1141, 117–122. [Google Scholar] [CrossRef]
- de Chiara, M.L.V.; Cefola, M.; Pace, B.; Palumbo, M.; Amodio, M.L.; Colelli, G. Ready-to-use broccoli raab (Brassica rapa L. subsp. sylvestris) quality and volatilome as affected by packaging. Postharvest Biol. Technol. 2024, 213, 112961. [Google Scholar] [CrossRef]
- Hansen, M.; Cantwell, M.I.; Buttery, R.G.; Stern, D.J.; Ling, L.C. Broccoli Storage Under Low-Oxygen Atmosphere: Identification of Higher Boiling Volatiles. J. Agric. Food Chem. 1992, 40, 850–852. [Google Scholar] [CrossRef]
- Lv, J.; Wu, J.; Zuo, J.; Fan, L.; Shi, J.; Gao, L.; Li, M.; Wang, Q. Effect of Se treatment on the volatile compounds in broccoli. Food Chem. 2017, 216, 225–233. [Google Scholar] [CrossRef]
- Metsalu, T.; Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015, 43, W566–W570. [Google Scholar] [CrossRef]
- Derbali, E.; Makhlouf, J.; Vezina, L.P. Biosynthesis of sulfur volatile compounds in broccoli seedlings stored under anaerobic conditions. Postharvest Biol. Technol. 1998, 13, 191–204. [Google Scholar] [CrossRef]
- Zhao, D.; Tang, J.; Ding, X. Analysis of volatile components during potherb mustard (Brassica juncea, Coss.) pickle fermentation using SPME-GC-MS. LWT Food Sci. Technol. 2007, 40, 439–447. [Google Scholar] [CrossRef]
- Wieczorek, M.N.; Jelen, H.H. Volatile compounds of selected raw and cooked Brassica vegetables. Molecules 2019, 24, 391. [Google Scholar] [CrossRef]
- Guo, Q.; Guo, L.; Wang, Z.; Zhuang, Y.; Gu, Z. Response surface optimization and identification of isothiocyanates produced from broccoli sprouts. Food Chem. 2013, 141, 1580–1586. [Google Scholar] [CrossRef]
- Arora, R.R.; Arora, S.; Vig, A.P. Development of validated high-temperature reverse-phase UHPLC-PDA analytical method for simultaneous analysis of five natural isothiocyanates in cruciferous vegetables. Food Chem. 2018, 239, 1085–1089. [Google Scholar] [CrossRef]
- Wieczorek, M.N.; Walczak, M.; Skrzypczak-Zielińska, M.; Jeleń, H.H. Bitter taste of Brassica vegetables: The role of genetic factors, receptors, isothiocyanates, glucosinolates, and flavor context. Crit. Rev. Food Sci. Nutr. 2018, 58, 3130–3140. [Google Scholar] [CrossRef] [PubMed]
- Jirovetz, L.; Smith, D.; Buchbauer, G. Aroma compound analysis of Eruca sativa (Brassicaceae) SPME headspace leaf samples using GC, GC-MS, and olfactometry. J. Agric. Food Chem. 2002, 50, 4643–4646. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Yang, J.; Nie, Q. Engineering Escherichia coli to convert acetic acid to β-caryophyllene. Microb. Cell Fact. 2016, 15, 74. [Google Scholar] [CrossRef]
- Singh, S.; Das, S.S.; Singh, G.; Perroti, M.; Schuff, C.; Catalàn, C.A.N. Comparison of Chemical Composition, Antioxidant and Antimicrobial Potentials of Essential Oils and Oleoresins obtained from Seeds of Brassica Juncea and sinapis Alba. MOJ Food Process. Technol. 2017, 4, 113–120. [Google Scholar] [CrossRef]
- Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.K.; Ezzat, M.O.; Majid, A.S.A.; Majid, A.M.S.A. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef] [PubMed]
- Francomano, F.; Caruso, A.; Barbarossa, A.; Fazio, A.; La Torre, C.; Ceramella, J.; Mallamaci, R.; Saturnino, C.; Iacopetta, D.; Sinicropi, M.S. β-caryophyllene: A sesquiterpene with countless biological properties. Appl. Sci. 2019, 9, 5420. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Umashankar, S.; Liang, X.; Lee, H.W.; Swarup, S.; Ong, C.N. Characterization of plant volatiles reveals distinct metabolic profiles and pathways among 12 brassicaceae vegetables. Metabolites 2018, 8, 94. [Google Scholar] [CrossRef]
- Forney, C.F.; Mattheis, J.P.; Austin, R.K.J. Volatile compounds produced by Broccoli under anaerobic conditions. J. Agric. Food Chem. 1991, 39, 2257–2259. [Google Scholar] [CrossRef]
- Zhang, Y. Allyl isothiocyanate as a cancer chemopreventive phytochemical. Mol. Nutr. Food Res. 2010, 54, 127–135. [Google Scholar] [CrossRef]
- Rux, G.; Caleb, O.J.; Geyer, M.; Mahajan, P.V. Impact of water rinsing and perforation-mediated MAP on the quality and off-odour development for rucola. Food Packag. Shelf Life 2017, 11, 21–30. [Google Scholar] [CrossRef]






| Compound Number | RI | IUPAC Name | Common Name | d0-NMP (%) | d0-MP (%) | d4-NMP (%) | d4-MP (%) | d7-NMP (%) | d7-MP (%) | d10-NMP (%) | d10-MP (%) | Odour |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Sulphurous organic compounds | ||||||||||||
| 1 | 600 | Methanethiol | - | - | 3.0 ± 0.3 | - | - | - | - | - | Sulphurous | |
| 2 | 601 | Methylsulfanylmethane | Dimethyl sulphide | 4.4 ± 0.5 | - | 0.10 ± 0.6 | - | 14.7 ± 0.5 | 3.9 ± 0.4 | - | 1.5 ± 0.5 | Sulphurous |
| 4 | 1001 | (Methyldisulfanyl)methane | Dimethyl disulphide | 46.6 ± 0.6 | 8.2 ± 0.4 | 60.1 ± 0.4 | 5.6 ± 0.5 | 27.1 ± 0.4 | 12.3 ± 0.4 | 37.3 ± 0.5 | 27.0 ± 0.4 | Sulphurous |
| 6 | 1198 | 2-Isothiocyanatopropane | Isopropyl isothiocyanate | - | - | - | - | - | - | 0.4 ± 0.6 | - | Alliaceous |
| 8 | 1201 | 1-Isothiocyanatobutane | Butyl isothiocyanate | 2.8 ± 0.6 | 3.3 ± 0.5 | 2. 7 ± 0.3 | - | - | - | 15.3 ± 0.6 | - | Sulphurous |
| 12 | 1303 | 1-Isothiocyanato-2-methylepropane | Isobutyl isothiocyanate | - | - | - | - | - | - | - | Green | |
| 14 | 1305 | 3-Isothiocyanatoprop-1-ene − | Allyl Isothiocyanate | - | - | - | - | - | - | - | Sulphurous | |
| 16 | 1400 | (Methyltrisulfanyl)methane | Dimethyl trisulphide | - | - | 8.0 ± 0.5 | - | - | - | 34.2 ± 0.5 | - | Alliaceous |
| 18 | 1402 | 4-Isothiocyanatobut-1-ene | 3-Butenyl isothiocyanate | 2.4 ± 0.5 | 5.6 ± 0.5 | 9.7 ± 0.3 | - | - | - | 11.6 ± 0.5 | - | Aromatic Pungent |
| 19 | 1501 | Unknown—Allyl Isothiocyanate derivative | - | - | 14.7 ± 0.3 | - | - | - | - | - | Sulphurous | |
| 20 | 1600 | 1-Isothiocyanatohexane | Hexyl isothiocyanate | - | - | - | - | - | - | - | Sharp green | |
| Alcohols, acids, and esters | ||||||||||||
| 3 | 603 | Ethanol | - | - | 1.4 ± 0.4 | 9.7 ± 0.5 | 42.8 ± 0.4 | 58.5 ± 0.5 | 0.3 ± 0.5 | - | Alcoholic | |
| 11 | 1302 | [(Z)-2,5-Dimethylhex-3-enyl] acetate oppure (E) | cis-3-Hexenyl acetate | 3.0 ± 0.3 | 26.1 ± 0.5 | - | - | - | - | - | 14.5 ± 0.6 | Green fruity |
| 15 | 1398 | (Z)-Hex-3-en-1-ol | Leaf alcohol | 3.5 ± 0.3 | 15.2 ± 0.5 | - | - | - | - | - | 10.3 ± 0.4 | Green |
| 17 | 1401 | Acetic acid | Ethanoic acid | 8.4 ± 0.3 | 20.2 ± 0.4 | 0.08 ± 0.3 | 32.3 ± 0.4 | 2.2 ± 0.5 | 6.1 ± 0.4 | 4.7 ± 0.4 | Aacidic | |
| Terpenes | ||||||||||||
| 7 | 1200 | 1-Methyl-4-prop-1-en-2-cylcyclohexene | Limonene | 9.4 ± 0.4 | 14.1 ± 0.5 | - | 5.1 ± 0.5 | - | - | - | - | Citrus |
| 21 | 1600 | (1R,4E,9S)-4,11,11-Trimethyl-8 methylidenebicyclo [7.2.0]undec-4-ene | ß-Caryophyllene | 8.6 ± 0.4 | 2.4 ± 0.5 | - | 21.8 ± 0.5 | 8.0 ± 0.4 | 8.4 ± 0.5 | - | 26.7 ± 0.5 | Spicy |
| Nitriles | ||||||||||||
| 5 | 1100 | Cyclobutane-1-carbonitrile | 2-Methyl-butanenitrile | 6.1 ± 0.5 | - | - | 25.5 ± 0.5 | 5.2 ± 0.3 | 10.9 ± 0.3 | - | 12.3 ± 0.5 | Sweet, musty |
| 9 | 1202 | 3-Methylbut-3-enenitrile | Methallyl cyanide | 1.42 ± 0.6 | 1.3 ± 0.5 | - | - | - | - | - | 0.7 ± 0.5 | Fruity |
| 10 | 1300 | Methyl thiocyanate | Methyl sulfocyanate | - | 0.7 ± 0.4 | - | - | - | - | - | - | Sulphury onion |
| 13 | 1304 | Hex-5-enenitrile | 5-Cyano-1-pentene | 3.4 ± 0.3 | 2.8 ± 0.6 | 0.3 ± 0.3 | - | - | 0.9 ± 0.5 | 2.0 ± 0.5 | - | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleem, A.; Pati, S.; Rosiello, G.; Amodio, M.L.; Colelli, G. Headspace Volatile Profile of Fresh-Cut Broccoli Raab in PET Packaging as Affected by Microperforation. Foods 2025, 14, 4283. https://doi.org/10.3390/foods14244283
Saleem A, Pati S, Rosiello G, Amodio ML, Colelli G. Headspace Volatile Profile of Fresh-Cut Broccoli Raab in PET Packaging as Affected by Microperforation. Foods. 2025; 14(24):4283. https://doi.org/10.3390/foods14244283
Chicago/Turabian StyleSaleem, Aysha, Sandra Pati, Giuseppe Rosiello, Maria Luisa Amodio, and Giancarlo Colelli. 2025. "Headspace Volatile Profile of Fresh-Cut Broccoli Raab in PET Packaging as Affected by Microperforation" Foods 14, no. 24: 4283. https://doi.org/10.3390/foods14244283
APA StyleSaleem, A., Pati, S., Rosiello, G., Amodio, M. L., & Colelli, G. (2025). Headspace Volatile Profile of Fresh-Cut Broccoli Raab in PET Packaging as Affected by Microperforation. Foods, 14(24), 4283. https://doi.org/10.3390/foods14244283

