Nature’s Cardioprotective Sweetness: A Review of Dates as Functional Food in Hypertension
Abstract
1. Introduction
1.1. Background
1.2. Method
2. Botanical and Nutritional Profile of Dates
2.1. Phytochemical Composition
2.2. Bioactive Components
| Component Category | Specific Constituents | Representative Concentrations (Approx.) | Primary Physiological Functions | Antihypertensive Mechanisms | Key References |
|---|---|---|---|---|---|
| Minerals | Potassium, Magnesium, Iron, Copper, Selenium, Zinc, Manganese, Boron | K ≥ 600 mg/100 g; Mg~50–60 mg/100 g | Electrolyte balance; vascular smooth muscle relaxation; antioxidant enzyme cofactors | Natriuresis; improved arterial compliance; enhanced NO synthesis; reduced oxidative stress | [10,11,13,14] |
| Dietary Fiber | Insoluble and soluble fiber; β-glucan; fructans; cellulose | Flesh~8%; Seeds up to 70% | Improves glycemic control; enhances satiety; modulates lipid absorption | LDL-C reduction; stable postprandial glucose; improved metabolic function | [10,13,15,16,20,21] |
| Phenolic Compounds and Flavonoids | Naringenin, Rutin, Catechic tannins, Pyrogallol derivatives, Phenolic acids | Up to 1000 mg/kg; seeds richer | Antioxidant and anti-inflammatory activity | Scavenges ROS; inhibits lipid peroxidation; enhances eNOS activation; reduces IL-6 and TNF-α | [10,11,15,18,19,28] |
| Vitamins | Vit B-complex, Vit C, Vit E (α-tocotrienol, tocopherols) | Seeds up to 34 mg/100 g α-tocotrienol | Redox regulation; metabolic function | Boosts antioxidant enzymes (SOD, catalase, GPx); protects endothelium | [10,11,13,31,32] |
| Sugars (Carbohydrates) | Fructose, Glucose, Sucrose | 70–79% | Energy supply; moderate GI response | Prevents acute glycemic spikes; stabilizes vascular tone | [10,12,13] |
| Fatty Acids | Linoleic acid, Oleic acid (mainly in seeds) | Seeds show a higher fat fraction | Anti-inflammatory activity | Reduces vascular inflammation; supports membrane and microvascular stability | [10,13,18] |
| Seed Bioactives | High phenolic content; tannins; flavonoid-rich extract | TPC up to 12,128 mg GAE/100 g | Antioxidant and LDL-protective profile | ACE inhibition; reduced oxidized LDL; improved endothelial reactivity | [15,18] |
2.3. Date Seeds—Processing, Availability, and Consumption
3. Mechanisms of Blood Pressure Regulation
3.1. Antioxidant and Anti-Inflammatory Effects
3.2. Vascular Function Modulation
4. Clinical Evidence and Safety
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ACE | Angiotensin-Converting Enzyme |
| ACEi | ACE Inhibitor |
| BMI | Body Mass Index |
| BHT | Butylated Hydroxytoluene |
| CRP | C-Reactive Protein |
| DRI | Dietary Reference Intake |
| eNOS | Endothelial Nitric Oxide Synthase |
| GAE | Gallic Acid Equivalent |
| HDL-C | High-Density Lipoprotein Cholesterol |
| IL-6 | Interleukin-6 |
| LDL | Low-Density Lipoprotein |
| LDL-C | Low-Density Lipoprotein Cholesterol |
| MDA | Malondialdehyde |
| NO | Nitric Oxide |
| NOx | Nitric Oxide Species |
| ROS | Reactive Oxygen Species |
| SOD | Superoxide Dismutase |
| TNF-α | Tumor Necrosis Factor-Alpha |
| RE | Retinol Equivalent |
| CKD | Chronic Kidney Disease |
| CF | Cardiovascular Function |
References
- Burnier, M.; Damianaki, A. Hypertension as Cardiovascular Risk Factor in Chronic Kidney Disease. Circ. Res. 2023, 132, 1050–1063. [Google Scholar] [CrossRef]
- Masenga, S.K.; Kirabo, A. Hypertensive Heart Disease: Risk Factors, Complications and Mechanisms. Front. Cardiovasc. Med. 2023, 10, 1205475. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Bu, X.; Wei, L.; Wang, X.; Lai, L.; Dong, C.; Ma, A.; Wang, T. Global Burden of Cardiovascular Diseases Attributable to Hypertension in Young Adults from 1990 to 2019. J. Hypertens. 2021, 39, 2488–2496. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.A.; Ayad, A.A.; Williams, L.L.; Ayivi, R.D.; Gyawali, R.; Krastanov, A.; Aljaloud, S.O. Date Fruit: A Review of the Chemical and Nutritional Compounds, Functional Effects and Food Application in Nutrition Bars for Athletes. Int. J. Food Sci. Technol. 2021, 56, 1503–1513. [Google Scholar] [CrossRef]
- Cifuentes, F.; Palacios, J.; Asunción-Alvarez, D.; de Albuquerque, R.D.G.; Simirgiotis, M.J.; Paredes, A.; Nwokocha, C.R.; Orfali, R.; Perveen, S. Chemical Characterization of Phoenix dactylifera L. Seeds and Their Beneficial Effects on the Vascular Response in Hypertensive Rats. Plant Foods Hum. Nutr. 2024, 79, 337–343. [Google Scholar] [CrossRef]
- Bouhlali, E.D.T.; Hmidani, A.; Bourkhis, B.; Khouya, T.; Ramchoun, M.; Filali-Zegzouti, Y.; Alem, C. Phenolic Profile and Anti-Inflammatory Activity of Four Moroccan Date (Phoenix dactylifera L.) Seed Varieties. Heliyon 2020, 6, e03436. [Google Scholar] [CrossRef]
- Al-Dashti, Y.A.; Holt, R.R.; Keen, C.L.; Hackman, R.M. Date Palm Fruit (Phoenix dactylifera): Effects on Vascular Health and Future Research Directions. Int. J. Mol. Sci. 2021, 22, 4665. [Google Scholar] [CrossRef]
- Alalwan, T.A.; Perna, S.; Mandeel, Q.A.; Abdulhadi, A.; Alsayyad, A.S.; D’Antona, G.; Negro, M.; Riva, A.; Petrangolini, G.; Allegrini, P.; et al. Effects of Daily Low-Dose Date Consumption on Glycemic Control, Lipid Profile, and Quality of Life in Adults with Pre- and Type 2 Diabetes: A Randomized Controlled Trial. Nutrients 2020, 12, 217. [Google Scholar] [CrossRef]
- Almatroodi, S.A.; Khan, A.A.; Aloliqi, A.A.; Ali Syed, M.; Rahmani, A.H. Therapeutic Potential of Ajwa Dates (Phoenix dactylifera) Extract in Prevention of Benzo(a)Pyrene-Induced Lung Injury through the Modulation of Oxidative Stress, Inflammation, and Cell Signalling Molecules. Appl. Sci. 2022, 12, 6784. [Google Scholar] [CrossRef]
- Al-Okbi, S.Y. Date Palm as Source of Nutraceuticals for Health Promotion: A Review. Curr. Nutr. Rep. 2022, 11, 574–591. [Google Scholar] [CrossRef]
- Al-Alawi, R.A.; Al-Mashiqri, J.H.; Al-Nadabi, J.S.M.; Al-Shihi, B.I.; Baqi, Y. Date Palm Tree (Phoenix dactylifera L.): Natural Products and Therapeutic Options. Front. Plant Sci. 2017, 8, 845. [Google Scholar] [CrossRef] [PubMed]
- Vayalil, P.K. Date Fruits (Phoenix dactylifera Linn): An Emerging Medicinal Food. Crit. Rev. Food Sci. Nutr. 2012, 52, 249–271. [Google Scholar] [CrossRef] [PubMed]
- Al-Farsi, M.A.; Lee, C.Y. Nutritional and Functional Properties of Dates: A Review. Crit. Rev. Food Sci. Nutr. 2008, 48, 877–887. [Google Scholar] [CrossRef] [PubMed]
- Abo-El-Saad, M.; Shawir, S. Nutritional and Medicinal Value of Mineral Elements in Dates. Egypt. Sci. Mag. 2024, 11, 43–51. [Google Scholar] [CrossRef]
- Bentrad, N.; Gaceb-Terrak, R. Evaluation of the Level of Biomolecules Isolated from Date Palm Seeds (Phoenix dactylifera) and in Vitro Antioxidant Property. BioMedicine 2020, 10, 23–29. [Google Scholar] [CrossRef]
- Surampudi, P.; Enkhmaa, B.; Anuurad, E.; Berglund, L. Lipid Lowering with Soluble Dietary Fiber. Curr. Atheroscler. Rep. 2016, 18, 75. [Google Scholar] [CrossRef]
- Alhaider, I.A.; Mohamed, M.E.; Ahmed, K.K.M.; Kumar, A.H.S. Date Palm (Phoenix dactylifera) Fruits as a Potential Cardioprotective Agent: The Role of Circulating Progenitor Cells. Front. Pharmacol. 2017, 8, 592. [Google Scholar] [CrossRef]
- Fatima, G.; Wiehle, M.; Khan, I.A.; Khan, A.A.; Buerkert, A. Effects of Soil Characteristics and Date Palm Morphological Diversity on Nutritional Composition of Pakistani Dates. Exp. Agric. 2017, 53, 321–338. [Google Scholar] [CrossRef]
- Tassoult, M.; Kati, D.E.; Fernández-Prior, M.Á.; Bermúdez-Oria, A.; Fernandez-Bolanos, J.; Rodríguez-Gutiérrez, G. Antioxidant Capacity and Phenolic and Sugar Profiles of Date Fruits Extracts from Six Different Algerian Cultivars as Influenced by Ripening Stages and Extraction Systems. Foods 2021, 10, 503. [Google Scholar] [CrossRef]
- Toydemir, G.; Gultekin Subasi, B.; Hall, R.D.; Beekwilder, J.; Boyacioglu, D.; Capanoglu, E. Effect of Food Processing on Antioxidants, Their Bioavailability and Potential Relevance to Human Health. Food Chem. X 2022, 14, 100334. [Google Scholar] [CrossRef]
- Al-Nouri, D.M.; Al-Tamimi, D.; Osman, M.; Al-Khalifa, A.; Alqarni, M.; Shamlan, G.; Ahmed, I.A.M. Antioxidant, Antihyperlipidemic, and Anti-Inflammatory Effects of Saudi Date (Phoenix dactylifera L.) Pulp, Pits, and Juice Phenolic Extracts and Fiber in Hypercholesteromic Rats. Curr. Res. Nutr. Food Sci. 2025, 13, 193–208. [Google Scholar] [CrossRef]
- Martín-Sánchez, A.M.; Cherif, S.; Ben-Abda, J.; Barber-Vallés, X.; Pérez-Álvarez, J.Á.; Sayas-Barberá, E. Phytochemicals in Date Co-Products and Their Antioxidant Activity. Food Chem. 2014, 158, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Kalisz, G.; Popiolek-Kalisz, J. Polysaccharides: The Sweet and Bitter Impacts on Cardiovascular Risk. Polymers 2025, 17, 405. [Google Scholar] [CrossRef] [PubMed]
- Alvi, T.; Khan, M.K.I.; Maan, A.A.; Razzaq, Z.U. Date Fruit as a Promising Source of Functional Carbohydrates and Bioactive Compounds: A Review on Its Nutraceutical Potential. J. Food Biochem. 2022, 46, e14325. [Google Scholar] [CrossRef] [PubMed]
- Rocchetti, G.; Gregorio, R.P.; Lorenzo, J.M.; Barba, F.J.; Oliveira, P.G.; Prieto, M.A.; Simal-Gandara, J.; Mosele, J.I.; Motilva, M.-J.; Tomas, M.; et al. Functional Implications of Bound Phenolic Compounds and Phenolics-Food Interaction: A Review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 811–842. [Google Scholar] [CrossRef]
- Echegaray, N.; Gullón, B.; Pateiro, M.; Amarowicz, R.; Misihairabgwi, J.M.; Lorenzo, J.M. Date Fruit and Its By-Products as Promising Source of Bioactive Components: A Review. Food Rev. Int. 2023, 39, 1411–1432. [Google Scholar] [CrossRef]
- Alu’datt, M.H.; Rababah, T.; Tranchant, C.C.; Al-U’datt, D.; Gammoh, S.; Alrosan, M.; Bani-Melhem, K.; Aldughpassi, A.; Alkandari, D.; AbuJalban, D. Date Palm (Phoenix dactylifera) Bioactive Constituents and Their Applications as Natural Multifunctional Ingredients in Health-Promoting Foods and Nutraceuticals: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70084. [Google Scholar] [CrossRef]
- Mirghani, H.O.; Alhowiti, A. Dates Fruit Effects on Dyslipidemia among Patients with Type-2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Trials. Pak. J. Med. Sci. 2025, 41, 331–337. [Google Scholar] [CrossRef]
- Grosso, G.; Godos, J.; Currenti, W.; Micek, A.; Falzone, L.; Libra, M.; Giampieri, F.; Forbes-Hernández, T.Y.; Quiles, J.L.; Battino, M.; et al. The Effect of Dietary Polyphenols on Vascular Health and Hypertension: Current Evidence and Mechanisms of Action. Nutrients 2022, 14, 545. [Google Scholar] [CrossRef]
- Kordafshari, G.; Kenari, H.M.; Esfahani, M.M.; Ardakani, M.R.S.; Keshavarz, M.; Nazem, E.; Moghimi, M.; Zargaran, A. Nutritional Aspects to Prevent Heart Diseases in Traditional Persian Medicine. J. Evid. Based Complement. Altern. Med. 2015, 20, 57–64. [Google Scholar] [CrossRef]
- Chung, D.-J.; Wu, Y.-L.; Yang, M.-Y.; Chan, K.-C.; Lee, H.-J.; Wang, C.-J. Nelumbo Nucifera Leaf Polyphenol Extract and Gallic Acid Inhibit TNF-α-Induced Vascular Smooth Muscle Cell Proliferation and Migration Involving the Regulation of MiR-21, MiR-143 and MiR-145. Food Funct. 2020, 11, 8602–8611. [Google Scholar] [CrossRef] [PubMed]
- Hasler, C.M.; Kundrat, S.; Wool, D. Functional Foods and Cardiovascular Disease. Curr. Atheroscler. Rep. 2000, 2, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Krzemińska, J.; Wronka, M.; Młynarska, E.; Franczyk, B.; Rysz, J. Arterial Hypertension-Oxidative Stress and Inflammation. Antioxidants 2022, 11, 172. [Google Scholar] [CrossRef] [PubMed]
- Asdaq, S.M.B.; Almutiri, A.A.; Alenzi, A.; Shaikh, M.; Shaik, M.A.; Alshehri, S.; Rabbani, S.I. Unveiling the Neuroprotective Potential of Date Palm (Phoenix dactylifera): A Systematic Review. Pharmaceuticals 2024, 17, 1221. [Google Scholar] [CrossRef]
- Ali, Z.; Li, J.; Zhang, Y.; Naeem, N.; Younas, S.; Javeed, F. Dates (Phoenix dactylifera) and Date Vinegar: Preventive Role against Various Diseases and Related in Vivo Mechanisms. Food Rev. Int. 2022, 38, 480–507. [Google Scholar] [CrossRef]
- Alqarni, M.M.M.; Osman, M.A.; Al-Tamimi, D.S.; Gassem, M.A.; Al-Khalifa, A.S.; Al-Juhaimi, F.; Mohamed Ahmed, I.A. Antioxidant and Antihyperlipidemic Effects of Ajwa Date (Phoenix dactylifera L.) Extracts in Rats Fed a Cholesterol-Rich Diet. J. Food Biochem. 2019, 43, e12933. [Google Scholar] [CrossRef]
- Iftikhar, A.M.; Arif, K.M.; Quddoos, A. Dates and Cardiovascular Health: Prophetic Guidance and Contemporary Scientific Evidence. Al-Aasar 2025, 2, 32–41. [Google Scholar]
- Al-Yahya, M.; Raish, M.; AlSaid, M.S.; Ahmad, A.; Mothana, R.A.; Al-Sohaibani, M.; Al-Dosari, M.S.; Parvez, M.K.; Rafatullah, S. “Ajwa” Dates (Phoenix dactylifera L.) Extract Ameliorates Isoproterenol-Induced Cardiomyopathy through Downregulation of Oxidative, Inflammatory and Apoptotic Molecules in Rodent Model. Phytomedicine 2016, 23, 1240–1248. [Google Scholar] [CrossRef]
- Habiba, S.U.H.; Putri, E.B.P. The Effect of Giving Dates towards Low-Density Lipoprotein on Experimental Test: A Systematic Literature Review. Indones. J. Nutr. Diet. 2021, 9, 1–10. [Google Scholar] [CrossRef]
- Temitope Idowu, A.; Osarumwense Igiehon, O.; Ezekiel Adekoya, A.; Idowu, S. Dates Palm Fruits: A Review of Their Nutritional Components, Bioactivities and Functional Food Applications. AIMS Agric. Food 2020, 5, 734–755. [Google Scholar] [CrossRef]
- Albishi, T.S. Date Palm: A Potential Nutraceutical and Phytomedicine in Most Frequent Aging Associated Diseases. J.Umm Al-Qura Univ. Appl. Sci. 2024, 11, 792–812. [Google Scholar] [CrossRef]
- Barakat, H.; Alfheeaid, H.A. Date Palm Fruit (Phoenix dactylifera) and Its Promising Potential in Developing Functional Energy Bars: Review of Chemical, Nutritional, Functional, and Sensory Attributes. Nutrients 2023, 15, 2134. [Google Scholar] [CrossRef] [PubMed]
- Ajeigbe, O.F.; Ademosun, A.O.; Oboh, G. Relieving the Tension in Hypertension: Food-Drug Interactions and Anti-Hypertensive Mechanisms of Food Bioactive Compounds. J. Food Biochem. 2021, 45, e13317. [Google Scholar] [CrossRef] [PubMed]
- Obode, O.C.; Adebayo, A.H.; Li, C. Gas Chromatography-Mass Spectrometry Analysis and in Vitro Inhibitory Effects of Phoenix dactylifera L. on Key Enzymes Implicated in Hypertension. J. Pharm. Pharmacogn. Res. 2020, 8, 475–490. [Google Scholar] [CrossRef]
- Di Pietro, N.; Baldassarre, M.P.A.; Cichelli, A.; Pandolfi, A.; Formoso, G.; Pipino, C. Role of Polyphenols and Carotenoids in Endothelial Dysfunction: An Overview from Classic to Innovative Biomarkers. Oxid. Med. Cell. Longev. 2020, 2020, 6381380. [Google Scholar] [CrossRef]
- Chen, Z.; Liang, W.; Liang, J.; Dou, J.; Guo, F.; Zhang, D.; Xu, Z.; Wang, T. Probiotics: Functional Food Ingredients with the Potential to Reduce Hypertension. Front. Cell. Infect. Microbiol. 2023, 13, 1220877. [Google Scholar] [CrossRef]
- Yan, D.; Sun, Y.; Zhou, X.; Si, W.; Liu, J.; Li, M.; Wu, M. Regulatory Effect of Gut Microbes on Blood Pressure. Anim. Model. Exp. Med. 2022, 5, 513–531. [Google Scholar] [CrossRef]
- Rock, W.; Rosenblat, M.; Borochov-Neori, H.; Volkova, N.; Judeinstein, S.; Elias, M.; Aviram, M. Effects of Date (Phoenix dactylifera L., Medjool or Hallawi Variety) Consumption by Healthy Subjects on Serum Glucose and Lipid Levels and on Serum Oxidative Status: A Pilot Study. J. Agric. Food Chem. 2009, 57, 8010–8017. [Google Scholar] [CrossRef]
- Al-Farsi, N.U. Role of Dates (Phoenix dactylifera Linn) in Cardiovascular Health Management. Int. J. Appl. Res. 2023, 9, 343–347. [Google Scholar]
- Nabila, R.; Fithi, H. Traditional Medicine to Stabilize Blood Pressure in Hypertension Sufferers. Int. J. Appl. Adv. Multidiscip. Res. 2023, 1, 1–8. [Google Scholar]
- Boreddy Shivanandappa, T.; Alotaibi, G.; Chinnadhurai, M.; Dachani, S.R.; Ahmad, M.D.; Aldaajanii, K.A. Unveiling the Cardiovascular-Guarding Secrets of Phoenix dactylifera: A Systematic Review. J. Young Pharm. 2025, 17, 250–263. [Google Scholar] [CrossRef]
- Butler, A.E.; Obaid, J.; Wasif, P.; Varghese, J.V.; Abdulrahman, R.; Alromaihi, D.; Atkin, S.L.; Alamuddin, N. Effect of Date Fruit Consumption on the Glycemic Control of Patients with Type 2 Diabetes: A Randomized Clinical Trial. Nutrients 2022, 14, 3491. [Google Scholar] [CrossRef]




| Study Type | Model/Population | Date Form and Dose | Duration | Quantitative Outcomes | Reference |
|---|---|---|---|---|---|
| Human | Healthy adults (Medjool or Hallawi varieties) | ~100 g/day whole dates | 4 weeks | ↓ Total cholesterol by ~8%; ↓ triglycerides by ~15%; no significant rise in fasting glucose | [45] |
| Human | Adults with pre-diabetes/Type 2 diabetes | Low-dose date intake (~3 dates/day ≈ 24–30 g) | 12 weeks | Improved postprandial glycemic control; ↓ LDL-C by ~6–8%; stable HbA1c | [8] |
| Human | Older hypertensive participants | ~7 Ajwa dates/day (≈ 70–80 g) | 6 weeks | ↓ SBP by ~14 mmHg; ↓ DBP by ~8.5 mmHg | [47] |
| Human | Healthy overweight volunteers | 100 g/day Hallawi dates | 4 weeks | ↓ Total cholesterol by ~7%; improved antioxidant status (↓ MDA by ~10–12%) | [7,46] |
| Animal | Hypercholesterolemic rats | Polyphenol-rich date pulp and seed extract (50–200 mg/kg BW) | 4–6 weeks | ↓ LDL-C by 20–35%; ↓ CRP and TNF-α significantly; ↑ catalase and GPx activities | [18,33] |
| Animal | Cardiomyopathy rodent model | Ajwa date extract (300–600 mg/kg BW) | 21–30 days | ↓ oxidative stress markers (MDA); ↓ IL-6 and TNF-α; improved histological myocardial architecture | [35] |
| Animal | Hypertensive rats | Date seed extract (various cultivars) at 150–300 mg/kg BW | 4–8 weeks | Improved aortic blood flow; ↓ systolic pressure by ~10–20 mmHg; strong ACE-inhibitory activity | [5,39,41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jim, E.L.; Jim, E.L.; Wildan, A.; Santini, A.; Nurkolis, F. Nature’s Cardioprotective Sweetness: A Review of Dates as Functional Food in Hypertension. Foods 2025, 14, 4208. https://doi.org/10.3390/foods14244208
Jim EL, Jim EL, Wildan A, Santini A, Nurkolis F. Nature’s Cardioprotective Sweetness: A Review of Dates as Functional Food in Hypertension. Foods. 2025; 14(24):4208. https://doi.org/10.3390/foods14244208
Chicago/Turabian StyleJim, Edwin Leopold, Edmond Leonard Jim, Achmad Wildan, Antonello Santini, and Fahrul Nurkolis. 2025. "Nature’s Cardioprotective Sweetness: A Review of Dates as Functional Food in Hypertension" Foods 14, no. 24: 4208. https://doi.org/10.3390/foods14244208
APA StyleJim, E. L., Jim, E. L., Wildan, A., Santini, A., & Nurkolis, F. (2025). Nature’s Cardioprotective Sweetness: A Review of Dates as Functional Food in Hypertension. Foods, 14(24), 4208. https://doi.org/10.3390/foods14244208

