Grape Skin Polysaccharides Alleviate Type 2 Diabetic Rats via Gut Microbiota and Nontargeted Metabolism Alterations
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Animals and Experimental Design
2.3. Collection of Samples
2.4. Body Weights, FBG, HOMA-IR, HOMA-β, InS, and OGTT
2.5. Assessment of Hepatic Oxidative Stress and Glycogen Levels
2.6. Serum Biochemistry
2.7. Histopathological Analysis of Kidney, Liver, and Intestine
2.8. Gut Microbiota Analysis
2.9. SCFAs Analysis
2.10. Cecal Content Metabolites (Untargeted Metabolomics Analysis)
2.11. Statistical Analysis
3. Results
3.1. Influence of GSP on Diabetes 2-Associated Indicators
3.2. Influence of GSP on Serum Lipids in Rats with Type 2 Diabetes
3.3. Influence of GSP on Hepatic Oxidative Stress and Glycogen in T2D Rats
3.4. Microscopic Examination of Tissue Structures
3.5. Influence of GSP on the Intestinal Microbiota of Diabetes 2-Associated
3.6. Influence of GSP on Diabetes 2-Associated SCFAs
3.7. Influence of GSP on Diabetes 2-Associated Metabolic Products
3.8. Spearman’s Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, W.; Xu, H.; Zhan, L.; Lu, X.; Zhang, L. Dynamic development of fecal microbiome during the progression of diabetes mellitus in zucker diabetic fatty rats. Front. Microbiol. 2019, 10, 232. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. PR 2018, 138, 271–281. [Google Scholar] [CrossRef]
- Czech, M.P. Insulin action and resistance in obesity and type 2 diabetes. Nat. Med. 2017, 23, 804–814. [Google Scholar] [CrossRef]
- Lopes, A.; Roque, F.; Morgado, S.; Dinis, C.; Herdeiro, M.T.; Morgado, M. Behavioral sciences in the optimization of pharmacological and non-pharmacological therapy for type 2 diabetes. Behav. Sci. 2021, 11, 153. [Google Scholar] [CrossRef]
- Padhi, S.; Nayak, A.K.; Behera, A. Type II diabetes mellitus: A review on recent drug based therapeutics. Biomed. Pharmacother. 2020, 131, 110708. [Google Scholar] [CrossRef]
- Bo, S.; Dan, M.; Li, W.; Chen, C. The regulatory mechanism of natural polysaccharides in type 2 diabetes mellitus treatment. Drug Discov. Today 2024, 29, 104182. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Chen, G.; Chen, D.; Ye, H.; Zeng, X. The antidiabetic effect and potential mechanisms of natural polysaccharides based on the regulation of gut microbiota. J. Funct. Foods 2020, 75, 104222. [Google Scholar] [CrossRef]
- Wang, W.; Liu, X.; Wang, L.; Song, G.; Jiang, W.; Mu, L.; Li, J. Ficus carica polysaccharide extraction via ultrasound-assisted technique: Structure characterization, antioxidant, hypoglycemic and immunomodulatory activities. Ultrason. Sonochem. 2023, 101, 14. [Google Scholar] [CrossRef]
- Wang, W.; Li, X.; Chen, K.; Yang, H.; Jialengbieke, B.; Hu, X. Extraction optimization, characterization and the antioxidant activities in vitro and in vivo of polysaccharide from Pleurotus ferulae. Int. J. Biol. Macromol. 2020, 160, 380–389. [Google Scholar] [CrossRef]
- Feng, Y.; Qiu, Y.; Duan, Y.; He, Y.; Xiang, H.; Sun, W.; Zhang, H.; Ma, H. Characterization, antioxidant, antineoplastic and immune activities of selenium modified Sagittaria sagittifolia L. polysaccharides. Food Res. Int. 2022, 153, 110913. [Google Scholar] [CrossRef]
- Hou, C.; Chen, L.; Yang, L.; Ji, X. An insight into anti-inflammatory effects of natural polysaccharides. Int. J. Biol. Macromol. 2020, 213, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Ryu, D.H.; Cho, J.Y.; Sadiq, N.B.; Kim, J.; Lee, B.; Hamayun, M.; Lee, T.S.; Kim, H.S.; Park, S.H.; Nho, C.W.; et al. Optimization of antioxidant, anti-diabetic, and anti-inflammatory activities and ganoderic acid content of differentially dried Ganoderma lucidum using response surface methodology. Food Chem. 2020, 335, 127645. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, N.; Xu, T.; Du, Q.; Yang, R.; Ai, M.; Han, X.; Wang, W. Ultrasound-Assisted Polysaccharide Extraction from Grape Skin and Assessment of In Vitro Hypoglycemic Activity of Polysaccharides. Foods 2025, 14, 1801. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Bai, Z.; Wan, Y.; Shi, H.; Huang, X.; Nie, S. Antidiabetic effects of polysaccharide from azuki bean (Vigna angularis) in type 2 diabetic rats via insulin/PI3K/AKT signaling pathway. Food Hydrocoll. 2020, 101, 105456. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, C.; Lu, G.; Mu, Z.; Cui, W.; Gao, H.; Wang, Y. Anti-diabetic effect of mulberry leaf polysaccharide by inhibiting pancreatic islet cell apoptosis and ameliorating insulin secretory capacity in diabetic rats. Int. Immunopharmacol. 2014, 22, 248–257. [Google Scholar] [CrossRef]
- Zang, Y.; Du, C.; Ru, X.; Cao, Y.; Zuo, F. Anti-diabetic effect of modified “Guanximiyou” pummelo peel pectin on type 2 diabetic mice via gut microbiota. Int. J. Biol. Macromol. 2023, 242, 124865. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, C.; Li, J.; Li, T.; Zhang, Y.; Liang, Y.; Mei, Y. Phellinus linteus polysaccharide extract improves insulin resistance by regulating gut microbiota composition. FASEB J. 2020, 34, 1065–1078. [Google Scholar] [CrossRef]
- Ren, T.; Liu, F.; Wang, D.; Li, B.; Jiangv, P.; Li, J.; Li, H.; Chen, C.; Wu, W.; Jiao, L. Rhamnogalacturonan-I enriched pectin from steamed ginseng ameliorates lipid metabolism in type 2 diabetic rats via gut microbiota and AMPK pathway. J. Ethnopharmacol. 2023, 301, 115862. [Google Scholar] [CrossRef]
- Zhao, H.; Li, M.; Liu, L.; Li, D.; Zhao, L.; Wu, Z.; Zhou, M.; Jia, L.; Yang, F. Cordyceps militaris polysaccharide alleviates diabetic symptoms by regulating gut microbiota against TLR4/NF-KB pathway. Int. J. Biol. Macromol. 2023, 230, 123241. [Google Scholar] [CrossRef]
- Zhang, J.; Wen, C.; Zhang, H.; Duan, Y.; Ma, H. Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends Food Sci. Technol. 2020, 95, 183–195. [Google Scholar] [CrossRef]
- Sirohi, R.; Taradar, A.; Singh, S.; Negi, T.; Gaur, V.K.; Gnansounou, E.; Bharathiraja, B. Green processing and biotechnological potential of grape pomace: Current trends and opportunities for sustainable biorefinery. Bioresour. Technol. 2020, 317, 123771. [Google Scholar] [CrossRef]
- Crudele, L.; Gadaleta, R.M.; Cariello, M.; Moschetta, A. Gut microbiota in the pathogenesis and therapeutic approaches of diabetes. BioMed 2023, 97, 104821. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, J.; Li, S.; Liu, M.; Han, R.; Wang, Y.; Wang, Z.; Wang, D. Efficacy of fecal microbiota transplantation in type 2 diabetes mellitus: A systematic review and meta-analysis. Endocrine 2024, 84, 48–62. [Google Scholar] [CrossRef]
- Su, M.; Tang, T.; Tang, W.; Long, Y.; Wang, L.; Liu, M. Astragalus improves intestinal barrier function and immunity by acting on intestinal microbiota to treat T2D: A research review. Front. Immunol. 2023, 14, 1243834. [Google Scholar] [CrossRef]
- Han, Y.; Quan, H.; Ji, W.; Tian, Q.; Liu, X.; Liu, W. Moderate-intensity continuous training and high-intensity interval training alleviate glycolipid metabolism through modulation of gut microbiota and their metabolite SCFAs in diabetic rats. Biochem. Biophys. Res. Commun. 2024, 735, 150831. [Google Scholar] [CrossRef] [PubMed]
- Ye, D.; Zhao, Q.; Ding, D.; Ma, B. Preclinical pharmacokinetics-related pharmacological effects of orally administered polysaccharides from traditional Chinese medicines: A review. Int. J. Biol. Macromol. 2023, 252, 126484. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Jin, R.; Ma, F.; Zhao, P.; Su, Y.; Wang, J.; Zhang, Y.; Wang, R.; Zhu, J.; Liu, X. Effects of Dioscorea opposita polysaccharides on insulin resistance and gut microbiota in high-fat-diet induced type 2 diabetic rats. Int. J. Biol. Macromol. 2025, 304, 141004. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Dong, L.; Huang, L.; Shi, Z.; Dong, J.; Yao, Y.; Shen, R. Effects of oat β-glucan, oat resistant starch, and the whole oat flour on insulin resistance, inflammation, and gut microbiota in high-fat-diet-induced type 2 diabetic rats. J. Funct. Foods 2020, 69, 103939. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Wang, Y.; Pi, J.; Yao, Y.; Peng, X.; Li, W.; Xie, M. Hypoglycemic effects of white hyacinth bean polysaccharide on type 2 diabetes mellitus rats involvement with entero-insular axis and GLP-1 via metabolomics study. Int. J. Biol. Macromol. 2024, 281, 136489. [Google Scholar] [CrossRef] [PubMed]
- Kuate, D.; Kengne, A.P.N.; Biapa, C.P.N.; Azantsa, B.G.K.; Muda, W. Tetrapleura tetraptera spice attenuates high-carbohydrate, high-fat diet-induced obese and type 2 diabetic rats with metabolic syndrome features. Lipids Health Dis. 2015, 50, 28. [Google Scholar] [CrossRef] [PubMed]
- Athyros, V.G.; Doumas, M.; Imprialos, K.P.; Stavropoulos, K.; Georgianou, E.; Katsimardou, A.; Karagiannis, A. Diabetes and lipid metabolism. Horm. Int. J. Endocrinol. Metab. 2018, 17, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Li, N.; Shi, J.; Li, H.; Yue, Y.; Jiao, W.; Wang, N.; Song, Y.; Huo, G.; Li, B. Lactobacillus acidophilus alleviates type 2 diabetes by regulating hepatic glucose, lipid metabolism and gut microbiota in mice. Food Func. 2019, 10, 5804–5815. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Fang, Q.; Nie, Q.; Hu, J.; Yang, C.; Huang, T.; Li, H.; Nie, S. Hypoglycemic and Hypolipidemic Mechanism of Tea Polysaccharides on Type 2 Diabetic Rats via Gut Microbiota and Metabolism Alteration. J. Agric. Food Chem. 2020, 68, 10015–10028. [Google Scholar] [CrossRef]
- Li, R.; Song, J.; Wu, W.; Wu, X.; Su, M. Puerarin exerts the protective effect against chemical induced dysmetabolism in rats. Gene 2016, 595, 168–174. [Google Scholar] [CrossRef]
- Maryam, G.; Hossein, A.; Zahra, L.; Mahmoud, R. Oxidative stress and antioxidants in diabetes mellitus. Asian Pac. J. Trop. Med. 2020, 13, 431–438. [Google Scholar] [CrossRef]
- Kihara, N.; De La Fuente, S.G.; Fujino, K.; Takahashi, T.; Pappas, T.N.; Mantyh, C.R. Vanilloid receptor-1 containing primary sensory neurones mediate dextran sulphate sodium induced colitis in rats. Gut 2003, 52, 713–719. [Google Scholar] [CrossRef]
- Tang, H.L.; Wang, Z.G.; Li, Q. Experimental study on ultrasound-irradiated microbubbles promoting bone marrow mesenchymal stem cell repair of acute kidney injury in rats. Chin. J. Med. Ultrasound Electron. Ed. 2015, 12, 652–656. [Google Scholar]
- Wang, T.L.; Liu, X.; Zhou, Y.P. Scoring system for inflammatory activity and fibrosis degree in chronic hepatitis. Chin. J. Hepatol. 1998, 6, 195–197. [Google Scholar]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology—Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Holleman, C.L.; Ptacek, T.; Morrow, C.D.; Habegger, K.M. Duodenal endoluminal barrier sleeve alters gut microbiota of ZDF rats. Int. J. Obes. 2017, 41, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Su, L.; Li, D.; Shuai, O.; Zhang, Y.; Liang, H.; Jiao, C.; Xu, Z.; Lai, Y.; Xie, Y. Antitumor activity of extract from the sporoderm-breaking spore of Ganoderma lucidum: Restoration on exhausted cytotoxic T cell with gut microbiota remodeling. Front. Immunol. 2018, 9, 1765. [Google Scholar] [CrossRef] [PubMed]
- Mo, Z.; Zhan, M.; Yang, X.; Xie, P.; Xiao, J.; Cao, Y.; Xiao, H.; Song, M. Fermented dietary fiber from soy sauce residue exerts antidiabetic effects through regulating the PI3K/AKT signaling pathway and gut microbiota-SCFAs-GPRs axis in type 2 diabetic mellitus mice. Int. J. Biol. Macromol. 2024, 270, 132251. [Google Scholar] [CrossRef]
- Arora, A.; Behl, T.; Sehgal, A.; Singh, S.; Sharma, N.; Bhatia, S.; Sobarzo-San, E. Unravelling the involvement of gut microbiota in type 2 diabetes mellitus. Life Sci. 2021, 273, 119311. [Google Scholar] [CrossRef]
- Shahisavandi, M.; Wang, K.; Ghanbari, M.; Ahmadizar, F. Exploring metabolomic patterns in type 2 diabetes mellitus and response to glucose-lowering medications—Review. Genes 2023, 14, 1464. [Google Scholar] [CrossRef]
- Wu, F.; Liang, P. Application of metabolomics in various types of diabetes. Diabetes Metab. Syndr. Obes. Targets Ther. 2022, 15, 2051–2059. [Google Scholar] [CrossRef]
- Chang, L.; Goff, H.D.; Ding, C.; Liu, Q.; Zhao, S.; Tao, T.; Lu, R.; Gao, Y.; Wu, H.; Guo, L. Enhanced hypoglycemic effects of konjac glucomannan combined with Polygonatum cyrtonema Hua polysaccharide in complete nutritional liquid diet fed type 2 diabetes mice. Int. J. Biol. Macromol. 2024, 266, 131121. [Google Scholar] [CrossRef]
- Lee, H.; Lim, Y. Tocotrienol-rich fraction supplementation reduces hyperglycemia-induced skeletal muscle damage through regulation of insulin signaling and oxidative stress in type 2 diabetic mice. J. Nutr. Biochem. 2018, 57, 77–85. [Google Scholar] [CrossRef]
- Yue, X.; Hao, W.; Wang, M.; Fu, Y. Astragalus polysaccharide ameliorates insulin resistance in HepG2 cells through activating the STAT5/IGF-1 pathway. Immun. Inflamm. Dis. 2023, 11, e1071. [Google Scholar] [CrossRef]
- Huang, X.; Wen, Y.; Chen, Y.; Liu, Y.; Zhao, C. Structural characterization of Euglena gracilis polysaccharide and its in vitro hypoglycemic effects by alleviating insulin resistance. Int. J. Biol. Macromol. 2023, 236, 123984. [Google Scholar] [CrossRef]
- Taylor, R.; Al-Mrabeh, A.; Zhyzhneuskaya, S.; Peters, C.; Barnes, A.C.; Aribisala, B.S.; Hollingsworth, K.G.; Mathers, J.C.; Sattar, N.; Lean, M.E.J. Remission of Human Type 2 Diabetes Requires Decrease in Liver and Pancreas Fat Content but Is Dependent upon Capacity for β Cell Recovery. Cell Metab. 2018, 28, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Cree-Green, M.; Gupta, A.; Coe, G.V.; Baumgartner, A.D.; Pyle, L.; Reusch, J.E.B.; Brown, M.S.; Newcomer, B.R.; Nadeau, K.J. Insulin resistance in type 2 diabetes youth relates to serum free fatty acids and muscle mitochondrial dysfunction. J. Diabetes Complicat. 2017, 31, 141–148. [Google Scholar] [CrossRef]
- Cimini, F.A.; Barchetta, I.; Ciccarelli, G.; Leonetti, F.; Silecchia, G.; Chiappetta, C.; Cristofano, C.D.; Capoccia, D.; Bertoccini, L.; Ceccarelli, V.; et al. Adipose tissue remodelling in obese subjects is a determinant of presence and severity of fatty liver disease. Diabetes Metab. Res. Rev. 2020, 37, 3358. [Google Scholar] [CrossRef]
- Perry, R.J.; Samuel, V.T.; Petersen, K.F.; Shulman, G.I. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 2014, 510, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Li, S.; Dong, Y.; Zhu, R.; Liu, Y. Antioxidant activity of penta-oligogalacturonide, isolated from haw pectin, suppresses triglyceride synthesis in mice fed with a high-fat diet. Food Chem. 2014, 145, 335–341. [Google Scholar] [CrossRef]
- Huang, L.; Yang, Z.; Yuan, J.; Zuo, S.; Li, Z.; Yang, K.; Wang, S.; Li, J.; Zhu, L.; Zhang, Y. Preparation and characteristics of pumpkin polysaccharides and their effects on abnormal glucose metabolism in diabetes mice. Food Biosci. 2023, 54, 102792. [Google Scholar] [CrossRef]
- Yadav, H.; Jain, S.; Sinha, P.R. Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition 2007, 23, 62–68. [Google Scholar] [CrossRef]
- Wang, K.; Wang, H.; Liu, Y.; Shui, W.; Wang, J.; Cao, P.; Wang, H.; You, R.; Zhang, Y. Dendrobiurn officinale polysaccharide attenuates type 2 diabetes mellitus via the regulation of PI3K/Akt-mediated glycogen synthesis and glucose metabolism. J. Funct. Foods 2018, 40, 261–271. [Google Scholar] [CrossRef]
- Byrne, C.D.; Targher, G. What’s new in NAFLD pathogenesis, biomarkers and treatment? Nat. Rev. Gastroenterol. Hepatol. 2019, 17, 70–71. [Google Scholar] [CrossRef] [PubMed]
- Kitada, M.; Ogura, Y.; Monno, I.; Koya, D. Sirtuins and Type 2 Diabetes: Role in inflammation, oxidative stress, and mitochondrial function. Front. Endocrinol. 2019, 10, 187. [Google Scholar] [CrossRef] [PubMed]
- Letchumanan, G.; Abdullah, N.; Marlini, M.; Baharom, N.; Lawley, B.; Rahman, M. Gut microbiota composition in prediabetes and newly diagnosed Type 2 Diabetes: A systematic review of observational studies. Front. Cell. Infect. Microbiol. 2022, 12, 943427. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Li, Q.; Piao, C.; Fan, Z.; Zhang, Y.; Yang, S.; Wu, X. Fecal metabolomics combined with 16S rRNA gene sequencing to analyze the effect of Jiaotai pill intervention in type 2 diabetes mellitus rats. Front. Nutr. 2023, 10, 1135343. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Xu, D. Short-chain fatty acids are potential goalkeepers of atherosclerosis. Front. Pharmacol. 2023, 14, 1271001. [Google Scholar] [CrossRef]
- Bang, S.; Kim, G.; Lim, M.Y.; Song, E.; Jung, D.; Kum, J.; Nam, Y.; Park, C.; Seo, D. The influence of in vitro pectin fermentation on the human fecal microbiome. AMB Express 2018, 8, 98. [Google Scholar] [CrossRef]
- Differding, M.K.; Benjamin-Neelon, S.E.; Hoyo, C.; Østbye, T.; Mueller, N.T. Timing of complementary feeding is associated with gut microbiota diversity and composition and short chain fatty acid concentrations over the first year of life. BMC Microbiol. 2020, 20, 56. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, B.; Zhang, X.; Akbar, M.T.; Wu, T.; Zhang, Y.; Zhi, L.; Shen, Q. Exploration of the Muribaculaceae Family in the Gut Microbiota: Diversity, Metabolism, and Function. Nutrients 2024, 16, 2660. [Google Scholar] [CrossRef]
- Jing, J.; Guo, J.; Dai, R.; Zhu, C.; Zhang, Z. Targeting gut microbiota and immune crosstalk: Potential mechanisms of natural products in the treatment of atherosclerosis. Front. Pharmacol. 2023, 14, 1252907. [Google Scholar] [CrossRef]
- Lan, Q.; Lian, Y.; Peng, P.; Yang, L.; Zhao, H.; Huang, P.; Ma, H.; Wei, H.; Yin, Y. Association of gut microbiota and SCFAs with finishing weight of Diannan small ear pigs. Front. Microbiol. 2023, 14, 1117965. [Google Scholar] [CrossRef]
- Tang, R.; Li, L. Modulation of Short-Chain Fatty Acids as Potential Therapy Method for Type 2 Diabetes Mellitus. Can. J. Infect. Dis. Med. Microbiol. 2021, 2021, 6632266. [Google Scholar] [CrossRef]
- Forzano, I.; Avvisato, R.; Varzideh, F.; Jankauskas, S.S.; Cioppa, A.; Mone, P.; Salemme, L.; Kansakar, U.; Tesorio, T.; Trimarco, V.; et al. Correction: L-Arginine in diabetes: Clinical and preclinical evidence. Cardiovasc. Diabetol. 2023, 22, 117. [Google Scholar] [CrossRef] [PubMed]









| Groups | InS(mU/L) | ISI | HOMA-IR | HOMA-β |
|---|---|---|---|---|
| NC | 24.228 ± 1.911 b | 0.210 ± 0.004 a | 5.277 ± 0.499 c | 356.609 ± 28.546 a |
| T2D | 55.218 ± 2.096 a | 0.149 ± 0.001 a | 35.090 ± 1.161 a | 103.541 ± 8.855 b |
| HD | 33.076 ± 3.245 b | 0.167 ± 0.002 b | 18.081 ± 1.745 b | 81.965 ± 17.488 b |
| LD | 44.393 ± 2.995 a | 0.160 ± 0.003 bc | 24.093 ± 3.523 b | 109.101 ± 11.485 b |
| MET | 32.720 ± 2.354 b | 0.159 ± 0.007 bc | 24.743 ± 2.965 b | 53.302 ± 8.559 b |
| Histopathological Scoring System for Liver Disease | ||||||
|---|---|---|---|---|---|---|
| Pathological Feature | Degree of Severity | Score | Group | Final Score = Score (Inflammatory Activity + Hepatocellular Injury + Sinusoidal Congestion + Portal Tract Lesion) | Final Practical Score | |
| Inflammatory Activity | None | None | 0 | NC | 0 | Nothing abnormal |
| Individual | Mild | 1 | ||||
| Most | Moderate | 2 | ||||
| Virtually all | Severe | 3 | ||||
| All | Complete necrosis | 4 | T2D | 4 | Mild | |
| Hepatocellular Injury | None | None | 0 | |||
| Individual (Hepatocellular Edema <5%) | Mild | 1 | ||||
| Most (Hepatocellular Edema 5–30%) | Moderate | 2 | ||||
| Virtually all (Hepatocellular Edema >30%) | Severe | 3 | HD | 2 | Mild | |
| All | Complete necrosis | 4 | ||||
| Sinusoidal Congestion | None | None | 0 | |||
| Individual (sinusoidal dilation <25%) | Mild | 1 | ||||
| Most (sinusoidal dilation 25–50%) | Moderate | 2 | LD | 3 | Mild | |
| Virtually all (sinusoidal dilation >50%) | Severe | 3 | ||||
| All | Complete necrosis | 4 | ||||
| Portal Tract Lesion | None | None | 0 | |||
| Individual | Mild | 1 | MET | 2 | Mild | |
| Most (inflammatory cell infiltration <1/3) | Moderate | 2 | ||||
| Virtually all (inflammatory cell infiltration >1/3) | Severe | 3 | ||||
| All | Complete necrosis | 4 | ||||
| Renal Pathological Scoring Criteria | ||||||
| Pathological Feature | Degree of Severity | Score | Group | Final Score = Score (Tubular Epithelial Cell Injury or Necrosis + Vacuolation of Renal Tubular Epithelial Cells + Swelling of Renal Tubular Epithelial Cells) | Final Practical Score | |
| Tubular Epithelial Cell Injury or Necrosis | None | None | 0 | NC | 0 | Nothing abnormal |
| Individual | Mild | 1 | ||||
| Most | Moderate | 2 | ||||
| Virtually all | Severe | 3 | T2D | 9 | Severe | |
| All | Complete necrosis | 4 | ||||
| Vacuolation of Renal Tubular Epithelial Cells | None | None | 0 | |||
| Individual | Mild | 1 | HD | 2 | Mild | |
| Most | Moderate | 2 | ||||
| Virtually all | Severe | 3 | ||||
| All | Complete necrosis | 4 | LD | 4 | Mild | |
| Swelling of Renal Tubular Epithelial Cells | None | None | 0 | |||
| Individual | Mild | 1 | ||||
| Most | Moderate | 2 | MET | 2 | Mild | |
| Virtually all | Severe | 3 | ||||
| All | Complete necrosis | 4 | ||||
| Pathological Scoring Criteria for Appendicitis | ||||||
| Pathological Feature | Degree of Severity | Score | Group | Final Score = Score (Inflammation Severity + Inflammation Extent + Crypt Damage) | Final Practical Score | |
| Inflammation severity | None | None | 0 | NC | 0 | Nothing abnormal detected |
| Individual | Mild | 1 | ||||
| Most | Moderate | 2 | ||||
| Virtually all | Severe | 3 | LD MET NC | 6 | Moderate | |
| Inflammation extent | None | None | 0 | |||
| Mucosa involvement | Mild | 1 | T2D HD LD | 3 | Mild | |
| Submucosa propria involvement | Moderate | 2 | ||||
| Transmural involvement | Severe | 3 | ||||
| Crypt damage | None | None | 0 | LD | 5 | Moderate |
| Basal 1/3 damage | Mild | 1 | ||||
| Basal 2/3 damage | Moderate | 2 | MET | 3 | Mild | |
| Crypt lost; surface epithelium present | Severe | 3 | ||||
| Crypt and surface epithelium lost | Complete necrosis | 4 | ||||
| Group | Coverage | Chao1 | Observed | Shannon | Simpson |
|---|---|---|---|---|---|
| NC | 0.99982 | 657.05 ± 66.63 a | 653.40 ± 66.10 a | 4.68 ± 0.35 a | 0.05 ± 0.02 a |
| T2D | 0.99986 | 424.57 ± 45.75 b | 422.40 ± 45.24 b | 4.03 ± 0.25 a | 0.07 ± 0.02 a |
| HD | 0.99989 | 525.14 ± 36.80 ab | 523.40 ± 36.93 ab | 4.35 ± 0.21 a | 0.05 ± 0.02 a |
| LD | 0.99987 | 463.32 ± 28.34 ab | 461.20 ± 28.34 ab | 4.25 ± 0.12 a | 0.04 ± 0.00 a |
| MET | 0.99989 | 439.51 ± 45.70 b | 438.00 ± 45.50 b | 4.06 ± 0.12 a | 0.05 ± 0.00 a |
| SCFAs (μg/mL) | NC | T2D | HD | LD | MET |
|---|---|---|---|---|---|
| Acetic acid | 279.5675 ± 1.449 a | 206.930 ± 5.404 d | 271.848 ± 2.589 a | 248.92 ± 4.748 b | 226.375 ± 5.515 c |
| Propionic acid | 93.180 ± 1.406 c | 85.070 ± 1.819 c | 201.695 ± 3.228 a | 103.085 ± 1.674 b | 66.133 ± 1.524 d |
| Butyric acid | 64.438 ± 1.718 a | 48.618 ± 1.406 b | 68.690 ± 0.610 a | 51.300 ± 1.827 b | 53.253 ± 2.985 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Han, X.; Wang, W.; Huang, S.; Ai, M.; Sun, T.; Jiang, H.; Zeng, H.; Li, Y. Grape Skin Polysaccharides Alleviate Type 2 Diabetic Rats via Gut Microbiota and Nontargeted Metabolism Alterations. Foods 2025, 14, 4132. https://doi.org/10.3390/foods14234132
Li W, Han X, Wang W, Huang S, Ai M, Sun T, Jiang H, Zeng H, Li Y. Grape Skin Polysaccharides Alleviate Type 2 Diabetic Rats via Gut Microbiota and Nontargeted Metabolism Alterations. Foods. 2025; 14(23):4132. https://doi.org/10.3390/foods14234132
Chicago/Turabian StyleLi, Wei, Xinyao Han, Wei Wang, Shihao Huang, Mingxun Ai, Tongle Sun, Haoran Jiang, Hongji Zeng, and Yuhang Li. 2025. "Grape Skin Polysaccharides Alleviate Type 2 Diabetic Rats via Gut Microbiota and Nontargeted Metabolism Alterations" Foods 14, no. 23: 4132. https://doi.org/10.3390/foods14234132
APA StyleLi, W., Han, X., Wang, W., Huang, S., Ai, M., Sun, T., Jiang, H., Zeng, H., & Li, Y. (2025). Grape Skin Polysaccharides Alleviate Type 2 Diabetic Rats via Gut Microbiota and Nontargeted Metabolism Alterations. Foods, 14(23), 4132. https://doi.org/10.3390/foods14234132

