Flavor Evolution and Quality Changes in Hot-Pressed Peanut Oil: Impact of Roasting Temperature and Storage Time
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Seed Roasting and Oil Extraction
2.3. Sensory Evaluation
2.4. Headspace Solid-Phase Microextraction
2.4.1. HS-SPME/GC-MS Analysis
2.4.2. Relative Odor Activity Value (ROAV)
2.4.3. GC-IMS
2.5. Physical and Chemical Property Analysis
2.5.1. Peroxide Value
2.5.2. Acid Value
2.5.3. Analysis of Phytosterol Content
2.5.4. Vitamin E Content Detection
2.6. Statistical Analysis
3. Results and Discussion
3.1. GC-MS Analysis
3.1.1. Identification of Volatile Components
3.1.2. ROAV Analysis
3.2. GC-IMS Analysis
3.2.1. Volatile Compounds Identification in OPO and RPO
3.2.2. Comparison of Fingerprints of Volatile Compounds
3.2.3. PCA and VIP Analysis
3.3. Sensory Evaluation Analysis
3.4. Physical and Chemical Property Analysis
3.5. Correlation Analysis of Flavor Compounds with the Physicochemical Properties and Sensory Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Guo, Y.; Zhu, X.; Xie, D.; Wang, Z. Effects of the Roasting-Assisted Aqueous Ethanol Extraction of Peanut Oil on the Structure and Functional Properties of Dreg Proteins. Foods 2024, 13, 758. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Lai, C.; Xu, C.; Zhang, K.; Liu, Y.; Cao, Y.; Zhao, L. Novel Low-Temperature Continuous Phase-Transition Extraction Process for Efficient Peanut Oil Production. J. Food Meas. Charact. 2024, 18, 6721–6735. [Google Scholar] [CrossRef]
- Akram, N.A.; Shafiq, F.; Ashraf, M. Peanut (Arachis hypogaea L.): A Prospective Legume Crop to Offer Multiple Health Benefits Under Changing Climate. Comp. Rev. Food Sci. Food Safe 2018, 17, 1325–1338. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, K.; Xu, C.; Lai, C.; Liu, Y.; Cao, Y.; Zhao, L. Contribution of Lipid to the Formation of Characteristic Volatile Flavor of Peanut Oil. Food Chem. 2024, 442, 138496. [Google Scholar] [CrossRef]
- Suri, K.; Singh, B.; Kaur, A.; Yadav, M.P.; Singh, N. Impact of Infrared and Dry Air Roasting on the Oxidative Stability, Fatty Acid Composition, Maillard Reaction Products and Other Chemical Properties of Black Cumin (Nigella sativa L.) Seed Oil. Food Chem. 2019, 295, 537–547. [Google Scholar] [CrossRef]
- Hu, B.; Zhang, C.; Chu, B.; Gu, P.; Zhu, B.; Qian, W.; Chang, X.; Yu, M.; Zhang, Y.; Wang, X. Unraveling the Relationship between Key Aroma Components and Sensory Properties of Fragrant Peanut Oils Based on Flavoromics and Machine Learning. Food Chem. X 2023, 20, 100880. [Google Scholar] [CrossRef]
- Dun, Q.; Yao, L.; Deng, Z.; Li, H.; Li, J.; Fan, Y.; Zhang, B. Effects of Hot and Cold-Pressed Processes on Volatile Compounds of Peanut Oil and Corresponding Analysis of Characteristic Flavor Components. LWT 2019, 112, 107648. [Google Scholar] [CrossRef]
- Zheng, L.; Ren, J.; Su, G.; Yang, B.; Zhao, M. Comparison of in Vitro Digestion Characteristics and Antioxidant Activity of Hot- and Cold-Pressed Peanut Meals. Food Chem. 2013, 141, 4246–4252. [Google Scholar] [CrossRef]
- Gao, H.; Liu, M.; Zheng, L.; Zhang, T.; Chang, X.; Liu, H.; Zhou, S.; Zhang, Z.; Li, S.; Sun, J. Comparative Analysis of Key Odorants and Aroma Characteristics in Hot-Pressed Yellow Horn (Xanthoceras sorbifolia bunge) Seed Oil Via Gas Chromatography–Ion Mobility Spectrometry and Gas Chromatography–Olfactory-Mass Spectrometry. Foods 2023, 12, 3174. [Google Scholar] [CrossRef]
- Han, Y.; Gao, P.; Chen, Z.; Luo, X.; Zhong, W.; Hu, C.; He, D.; Wang, X. Multifaceted analysis of the effects of roasting conditions on the flavor of fragrant Camellia oleifera Abel. seed oil. Food Chem. 2024, 446, 138779. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Shi, P.; Sun, J.; Xie, M.; Wang, H.; Shi, T.; Yu, M. Analysis of Roasted Peanuts Based on GC–MS Combined with GC–IMS. Food Sci. Nutr. 2024, 12, 1888–1901. [Google Scholar] [CrossRef]
- Qiu, Z.; Zhang, M.; Li, L.; Zhang, B.; Qiao, Y.; Zheng, Z. Effect of Blend Oil on the Volatile Aroma Profile and Storage Quality of Garlic Paste. Food Chem. 2022, 371, 131160. [Google Scholar] [CrossRef]
- Ma, S.; Ding, C.; Zhou, C.; Shi, H.; Bi, Y.; Zhang, H.; Xu, X. Peanut Oils from Roasting Operations: An Overview of Production Technologies, Flavor Compounds, Formation Mechanisms, and Affecting Factors. Heliyon 2024, 10, e34678. [Google Scholar] [CrossRef]
- Shahidi, F.; Pinaffi-Langley, A.C.C.; Fuentes, J.; Speisky, H.; De Camargo, A.C. Vitamin E as an Essential Micronutrient for Human Health: Common, Novel, and Unexplored Dietary Sources. Free Radic. Biol. Med. 2021, 176, 312–321. [Google Scholar] [CrossRef]
- Ciou, J.-Y.; Chen, H.-C.; Chen, C.-W.; Yang, K.-M. Relationship between Antioxidant Components and Oxidative Stability of Peanut Oils as Affected by Roasting Temperatures. Agriculture 2021, 11, 300. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, J.; Zhao, X.; Wang, Y.; Yu, X. Influence of Roasting on the Thermal Degradation Pathway in the Glucosinolates of Fragrant Rapeseed Oil: Implications to Flavour Profiles. Food Chem. X 2022, 16, 100503. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Ma, X.; Li, S.; Wang, X.; Liu, H.; Shi, R. Comparison of Key Aroma-Active Compounds between Roasted and Cold-Pressed Sesame Oils. Food Res. Int. 2021, 150, 110794. [Google Scholar] [CrossRef]
- Zhai, H.; Dong, W.; Tang, Y.; Hu, R.; Yu, X.; Chen, X. Characterization of the Volatile Flavour Compounds in Yunnan Arabica Coffee Prepared by Different Primary Processing Methods Using HS-SPME/GC-MS and HS-GC-IMS. LWT 2024, 192, 115717. [Google Scholar] [CrossRef]
- Liu, G.; Wu, M.; Li, Y.; Qayyum, N.; Li, X.; Zhang, J.; Wang, C. The Effect of Different Pretreatment Methods on Jujube Juice and Lactic Acid Bacteria-Fermented Jujube Juice. LWT 2023, 181, 114692. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Z.; Qiao, Z.; Wang, X.; Tang, H.; Yang, C.; Huang, F. Encapsulation of Functional Plant Oil by Spray Drying: Physicochemical Characterization and Enhanced Anti-Colitis Activity. Foods 2022, 11, 2993. [Google Scholar] [CrossRef] [PubMed]
- Ghohestani, E.; Tashkhourian, J.; Hemmateenejad, B. Colorimetric Determination of Peroxide Value in Vegetable Oils Using a Paper Based Analytical Device. Food Chem. 2023, 403, 134345. [Google Scholar] [CrossRef]
- Başyiğit, B.; Yücetepe, M.; Karaaslan, A.; Karaaslan, M. High Efficiency Microencapsulation of Extra Virgin Olive Oil (EVOO) with Novel Carrier Agents: Fruit Proteins. Mater. Today Commun. 2021, 28, 102618. [Google Scholar] [CrossRef]
- Liang, Q.; Wang, W.; Yuan, F.; Liu, X.; Li, D.; Yang, K.Q. Characterization of Yuanbaofeng (Acer truncatum bunge) Samaras: Oil, Fatty Acid, and Phytosterol Content. Ind. Crops Prod. 2019, 135, 344–351. [Google Scholar] [CrossRef]
- Martakos, I.; Kostakis, M.; Dasenaki, M.; Pentogennis, M.; Thomaidis, N. Simultaneous Determination of Pigments, Tocopherols, and Squalene in Greek Olive Oils: A Study of the Influence of Cultivation and Oil-Production Parameters. Foods 2019, 9, 31. [Google Scholar] [CrossRef]
- Ji, J.; Liu, Y.; Ma, Y. Variations of Polycyclic Aromatic Hydrocarbons in Vegetable Oils During Seed Roasting Pre-Treatment. Polycycl. Aromat. Compd. 2022, 42, 2447–2460. [Google Scholar] [CrossRef]
- Wei, F.; Yang, M.; Zhou, Q.; Zheng, C.; Peng, J.-H.; Liu, C.-S.; Huang, F.-H.; Chen, H. Varietal and Processing Effects on the Volatile Profile of Rapeseed Oils. LWT Food Sci. Technol. 2012, 48, 323–329. [Google Scholar] [CrossRef]
- Deng, J.; Zhao, H.; Qi, B.; Wang, D.; Wu, Y.; Dai, S.; Xia, J.; Lu, M.; Yao, K.; Ma, A.; et al. Volatile Characterization of Crude and Refined Walnut Oils from Aqueous Enzymatic Extraction by GC-IMS and GC-MS. Arab. J. Chem. 2024, 17, 105404. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, M.; Ye, J.; Qian, M.; Li, X.; Zhao, W.; Bai, W. HS-SPME-GC-MS and OAV Analyses of Characteristic Volatile Flavour Compounds in Salt-Baked Drumstick. LWT 2022, 170, 114041. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Chen, S.; Yang, B.; Zhang, H.; Wang, X.; Granvogl, M.; Jin, Q. Flavor of Rapeseed Oil: An Overview of Odorants, Analytical Techniques, and Impact of Treatment. Comp. Rev. Food Sci. Food Safe 2021, 20, 3983–4018. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Su, Q.; Zhu, Y.; Liu, J.; Zhang, X.; Zhang, Y.; Zhu, B. Sensory-Guided Establishment of Sensory Lexicon and Investigation of Key Flavor Components for Goji Berry Pulp. Plants 2024, 13, 173. [Google Scholar] [CrossRef]
- Hao, J.; Xu, X.-L.; Jin, F.; Regenstein, J.M.; Wang, F.-J. HS-SPME GC–MS Characterization of Volatiles in Processed Walnuts and Their Oxidative Stability. J. Food Sci. Technol. 2020, 57, 2693–2704. [Google Scholar] [CrossRef]
- Yin, W.; Maradza, W.; Xu, Y.; Ma, X.; Shi, R.; Zhao, R.; Wang, X. Comparison of Key Aroma-active Composition and Aroma Perception of Cold-pressed and Roasted Peanut Oils. Int. J. Food Sci. Technol. 2022, 57, 2968–2979. [Google Scholar] [CrossRef]
- Zhou, C.-Y.; Le, Y.; Zheng, Y.-Y.; Wang, J.-J.; Li, G.; Bai, Y.; Li, C.-B.; Xu, X.-L.; Zhou, G.-H.; Cao, J.-X. Characterizing the Effect of Free Amino Acids and Volatile Compounds on Excessive Bitterness and Sourness in Defective Dry-Cured Ham. LWT 2020, 123, 109071. [Google Scholar] [CrossRef]
- Cuicui, L.I.; Lixia, H.O.U. Review on Volatile Flavor Components of Roasted Oilseeds and Their Products. Grain Oil Sci. Technol. 2018, 1, 151–156. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, C.; Song, Y.; Chu, B.; Wang, M.; Zhang, Z.; Wang, X. Characterization of Key Aroma Compounds and Main Contributing Amino Acids in Hot-Pressed Oil Prepared from Various Peanut Varieties. Molecules 2024, 29, 1947. [Google Scholar] [CrossRef]
- Yang, K.-M.; Chao, L.K.; Wu, C.-S.; Ye, Z.-S.; Chen, H.-C. Headspace Solid-Phase Microextraction Analysis of Volatile Components in Peanut Oil. Molecules 2021, 26, 3306. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Zhu, W.; Jiang, B.; Chen, J.; Zhou, L.; Zhong, F. Volatile Compounds Analysis and Biodegradation Strategy of Beany Flavor in Pea Protein. Food Chem. 2023, 402, 134275. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yang, X.; Ye, Z.; Li, Y.; Liu, Y.; Cao, P. Extraction Technology Can Impose Influences on Peanut Oil Functional Quality: A Study to Investigate the Lipid Metabolism by Sprague-Dawley Rat Model. J. Food Sci. 2019, 84, 911–919. [Google Scholar] [CrossRef]
- Rodríguez-Bencomo, J.J.; Kelebek, H.; Sonmezdag, A.S.; Rodríguez-Alcalá, L.M.; Fontecha, J.; Selli, S. Characterization of the Aroma-Active, Phenolic, and Lipid Profiles of the Pistachio (Pistacia vera L.) Nut as Affected by the Single and Double Roasting Process. J. Agric. Food Chem. 2015, 63, 7830–7839. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Yang, S.; Zhang, G.; Xu, L.; Li, H.; Sun, J.; Huang, M.; Zheng, F.; Sun, B. Exploration of Key Aroma Active Compounds in Strong Flavor Baijiu during the Distillation by Modern Instrument Detection Technology Combined with Multivariate Statistical Analysis Methods. J. Food Compos. Anal. 2022, 110, 104577. [Google Scholar] [CrossRef]
- Xu, L.; Wang, J.; Tian, A.; Wang, S.; Zhao, K.; Zhang, R.; Wu, X.; Liu, Y.; Liu, X.; Chen, K.; et al. Characteristic Volatiles Fingerprints in Olive Vegetable Stored at Different Conditions by HS-GC-IMS. Food Chem. X 2023, 18, 100707. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, Y.; Zhang, Z.; Ren, Q.; Ji, Z.; Xu, X.; Xu, Y.; Mao, J. Case Study on the Influence of Serving Temperature on the Aroma Release and Perception of Huangjiu, a Fermented Alcoholic Beverage. Food Res. Int. 2024, 178, 113948. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, J.; Chen, J.; Jing, B.; Zhang, L.; Yu, X. Characterization of Differences in Flavor in Virgin Rapeseed Oils by Using Gas Chromatography–Mass Spectrometry, Electronic Nose, and Sensory Analysis. Eur. J. Lipid Sci. Technol. 2020, 122, 1900205. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, J.; Zhao, X.; Chen, W.; Du, S.; Yu, X. Key Volatile Compound Formation of Rapeseed Oil Induced via the Maillard Reaction during Seed Roasting. Food Chem. 2022, 388, 132992. [Google Scholar] [CrossRef] [PubMed]
- Yost, M.; Abu-Ali, J.M.; Barringer, S.A. Kinetics of Potato Color and Texture Development during Baking, Frying, and Microwaving with the Addition of Liquid Smoke. J. Food Sci. 2006, 71, E364–E369. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, M.; Adhikari, B.; Wang, M. Microencapsulation of Sichuan Pepper Essential Oil in Soybean Protein Isolate-Sichuan Pepper Seed Soluble Dietary Fiber Complex Coacervates. Food Hydrocoll. 2022, 125, 107421. [Google Scholar] [CrossRef]
- Lee, K.-Y.; Rahman, M.S.; Kim, A.-N.; Son, Y.; Gu, S.; Lee, M.-H.; Kim, J.I.; Ha, T.J.; Kwak, D.; Kim, H.-J.; et al. Effect of Freeze-Thaw Pretreatment on Yield and Quality of Perilla Seed Oil. LWT 2020, 122, 109026. [Google Scholar] [CrossRef]
- Zhang, D.; Li, X.; Cao, Y.; Wang, C.; Xue, Y. Effect of Roasting on the Chemical Components of Peanut Oil. LWT 2020, 125, 109249. [Google Scholar] [CrossRef]
- Dong, Q.; Lu, L.; Gu, T.; Tian, Y.; Zong, Y.; Sun, J.; Huang, Y.; Fu, Q.; He, J.; Zeng, T. Influence of Fermented Feed on Lipid Composition and Volatile Flavor Profile of Duck Eggs: Insights from Multi-Omics Analysis. Food Chem. X 2025, 28, 102553. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, C.; Hadiatullah, H.; Yao, Y.; Lu, F. Effect of Hericium Erinaceus on Bacterial Diversity and Volatile Flavor Changes of Soy Sauce. LWT 2021, 139, 110543. [Google Scholar] [CrossRef]
- Valdés García, A.; Sánchez Romero, R.; Juan Polo, A.; Prats Moya, S.; Maestre Pérez, S.E.; Beltrán Sanahuja, A. Volatile Profile of Nuts, Key Odorants and Analytical Methods for Quantification. Foods 2021, 10, 1611. [Google Scholar] [CrossRef] [PubMed]
- GB/T 15682-2008; Inspection of Grain and Oils—Method for Sensory Evaluation of Paddy or Rice Cooking and Eating Quality. China Standards Press: Beijing, China, 2008.






| Taste | Standard for Evaluation |
|---|---|
| nutty | 0–2 point: almost tasteless |
| rancidity | 3–4 point: the taste is weak and dissipates easily |
| grease | 5–6 point: the taste is medium and easy to detect |
| burnt | 7–8 point: the flavor is intense for a short time |
| fragrance | 9–10 point: the flavor is strong and lasts for a long time |
| Name | Threshold Value | ROAV | |||||
|---|---|---|---|---|---|---|---|
| OPO-0 | OPO-6 | OPO-12 | RPO-0 | RPO-6 | RPO-12 | ||
| Pentane | 340 | ND | ND | ND | 0.002 ± 0.0001 b | 0.0025 ± 0.0003 c | 0.0024 ± 0.0005 c |
| Heptane | 2.70 | 0.07 ± 0.01 ab | 0.07 ± 0.00 a | 0.06 ± 0.00 a | 0.11 ± 0.01 c | 0.12 ± 0.01 c | 0.10 ± 0.02 bc |
| Octane | 8.00 | 0.03 ± 0.00 a | 0.03 ± 0.00 a | 0.03 ± 0.00 a | 0.07 ± 0.00 b | 0.07 ± 0.01 b | 0.08 ± 0.00 b |
| Acetonitrile | 22.0 | 0.18 ± 0.01 c | 0.18 ± 0.01 c | 0.17 ± 0.01 c | 0.12 ± 0.01 b | 0.12 ± 0.01 b | ND |
| Acetic acid, methyl ester | 5.10 | 0.04 ± 0.0005 a | 0.04 ± 0.00 a | 0.04 ± 0.00 a | 0.17 ± 0.01 b | 0.21 ± 0.01 d | 0.20 ± 0.00 c |
| Dibutyl phthalate | 0.26 | 0.67 ± 0.02 d | 0.55 ± 0.05 c | 0.45 ± 0.04 b | ND | ND | ND |
| Acetamide | 140.00 | 0.0011 ± 0.00 a | 0.0013 ± 0.00 a | 0.0014 ± 0.00 a | 0.0037 ± 0.00 b | 0.0039 ± 0.00 b | 0.0042 ± 0.00 c |
| Butanal, 2-methyl- | 0.140 | 7.35 ± 0.49 ab | 7.63 ± 0.11 ab | 6.99 ± 0.60 a | 8.15 ± 0.60 bc | 10.16 ± 0.41 d | 8.65 ± 0.34 c |
| Butanal, 3-methyl- | 0.0004 | 2464.08 ± 121.39 b | 2350.86 ± 177.34 ab | 2169.8 ± 175.17 a | 3069.41 ± 121.14 c | 3109.29 ± 113.45 c | 2946.55 ± 97.89 c |
| Pentanal | 0.850 | 0.18 ± 0.03 a | 0.20 ± 0.01 a | 0.19 ± 0.01 a | 0.58 ± 0.05 b | 0.57 ± 0.02 b | 0.60 ± 0.02 b |
| Hexanal | 0.001 | 899.64 ± 63.31 a | 1007.05 ± 35.83 a | 997.03 ± 59.06 a | 2679.51 ± 212.85 c | 2770.91 ± 207.39 c | 2166.10 ± 119.99 b |
| Heptanal | 0.001 | 235.61 ± 19.99 a | 275.80 ± 12.58 a | 271.31 ± 23.68 a | 706.94 ± 30.38 d | 521.62 ± 27.08 b | 611.04 ± 26.68 c |
| Octanal | 0.0009 | 353.99 ± 34.72 c | 329.22 ± 29.99 c | 241.71 ± 14.17 b | ND | ND | ND |
| 2-Octenal, (E)- | 0.003 | ND | ND | ND | 102.83 ± 3.89 b | 118.86 ± 1.92 c | 119.22 ± 5.40 c |
| Furfural | 2.80 | 0.64 ± 0.03 b | 0.51 ± 0.02 a | 0.50 ± 0.05 a | 2.06 ± 0.09 d | 1.75 ± 0.09 c | 1.71 ± 0.07 c |
| Benzaldehyde | 0.085 | 6.26 ± 0.20 a | 7.44 ± 0.17 ab | 8.11 ± 0.49 b | 14.28 ± 0.91 c | 16.52 ± 0.90 d | 14.10 ± 0.97 c |
| Benzeneacetaldehyde | 0.002 | 154.06 ± 13.58 c | 148.03 ± 12.05 c | 112.69 ± 7.23 b | ND | ND | ND |
| 2,4-Decadienal, (E,E)- | 0.002 | ND | ND | ND | 267.38 ± 5.97 d | 244.89 ± 3.82 c | 174.77 ± 17.98 b |
| Disulfide, dimethyl | 0.001 | 153.21 ± 11.90 bc | 161.64 ± 7.85 c | 143.84 ± 15.33 b | ND | ND | ND |
| Pyrazine, methyl- | 2.00 | 3.20 ± 0.19 a | 3.21 ± 0.13 a | 2.76 ± 0.34 a | 10.69 ± 0.39 b | 11.17 ± 1.23 b | 10.98 ± 1.05 b |
| Pyrazine, 2,5-dimethyl- | 0.17 | 57.62 ± 5.26 a | 56.4 ± 1.18 a | 49.47 ± 4.89 a | 66.39 ± 1.19 b | 75.46 ± 4.96 c | 78.93 ± 4.71 c |
| Pyrazine, 2,6-dimethyl- | 1.72 | 1.79 ± 0.14 a | 1.41 ± 0.15 a | 1.37 ± 0.06 a | 6.16 ± 0.16 b | 6.78 ± 0.43 c | 6.55 ± 0.42 bc |
| Pyrazine, ethyl- | 2.00 | 0.78 ± 0.08 a | 0.61 ± 0.04 a | 0.62 ± 0.01 a | 1.70 ± 0.09 b | 1.99 ± 0.18 c | 1.73 ± 0.16 b |
| Pyrazine, 2,3-dimethyl- | 0.880 | 0.74 ± 0.09 a | 0.63 ± 0.01 a | 0.62 ± 0.05 a | 1.64 ± 0.21 b | 1.65 ± 0.16 b | 1.48 ± 0.07 b |
| Pyrazine, 2-ethyl-6-methyl- | 0.040 | 122.47 ± 5.08 bc | 112.03 ± 7.26 ab | 96.87 ± 7.17 a | 137.02 ± 1.96 cd | 153.81 ± 19.37 cd | 142.24 ± 5.05 d |
| Pyrazine, trimethyl- | 0.050 | 48.38 ± 1.22 b | 45.62 ± 3.97 ab | 41.72 ± 2.23 a | 43.21 ± 0.72 ab | 57.44 ± 3.12 c | 47.89 ± 2.15 b |
| Pyrazine, 3-ethyl-2,5-dimethyl- | 0.004 | 668.41 ± 49.79 c | 540.61 ± 2.53 b | 555.31 ± 44.12 b | ND | ND | ND |
| Acetylpyrazine | 0.001 | ND | ND | ND | 2071.32 ± 25.08 c | 3509.16 ± 180.12 d | 1341.50 ± 157.61 b |
| 2-Heptanone | 0.004 | ND | ND | ND | 118.63 ± 6.32 c | 92.25 ± 4.34 b | 87.07 ± 6.42 b |
| 2-Hydroxy-3-pentanone | 2.501 | 0.09 ± 0.01 c | 0.07 ± 0.00 b | 0.07 ± 0.01 b | ND | ND | ND |
| 1,2-Cyclopentanedione, 3-methyl- | 0.026 | 10.21 ± 1.23 a | 9.04 ± 0.48 a | 8.90 ± 0.71 a | 34.04 ± 0.51 b | 38.42 ± 1.91 c | 34.11 ± 1.23 b |
| Furan, 2-pentyl- | 0.019 | ND | ND | ND | 19.83 ± 1.35 b | 29.92 ± 2.19 c | 33.67 ± 0.19 d |
| Pyridine | 0.320 | ND | ND | ND | 2.88 ± 0.10 c | 3.06 ± 0.10 c | 2.24 ± 0.34 b |
| Pyridine, 2-propyl- | 0.011 | ND | ND | ND | 34.93 ± 2.03 b | 40.84 ± 1.56 c | 47.50 ± 2.71 d |
| 1-Pentanol | 0.153 | 0.88 ± 0.07 c | 0.86 ± 0.03 c | 0.69 ± 0.07 b | ND | ND | ND |
| 1-Hexanol | 0.034 | 6.77 ± 0.30 c | 5.05 ± 0.18 b | 5.06 ± 0.35 b | ND | ND | ND |
| 2-Furan methanol | 2.800 | 0.78 ± 0.04 a | 0.60 ± 0.04 a | 0.58 ± 0.03 a | 3.30 ± 0.08 c | 3.50 ± 0.20 c | 3.02 ± 0.16 b |
| Acetic acid | 0.013 | 338.38 ± 19.95 a | 334.46 ± 16.59 a | 330.63 ± 3.85 a | 2042.87 ± 93.93 b | 2847.40 ± 154.35 d | 2242.50 ± 97.75 c |
| Hexanoic acid | 0.005 | 49.09 ± 3.60 a | 50.60 ± 6.72 a | 52.48 ± 5.45 a | 379.27 ± 10.12 c | 302.01 ± 10.98 b | 313.46 ± 4.53 b |
| Nonanoic acid | 0.120 | 4.09 ± 0.47 c | 3.85 ± 0.15 bc | 3.14 ± 0.24 a | 3.48 ± 0.13 ab | 3.60 ± 0.24 abc | 3.95 ± 0.09 bc |
| Pentanoic acid | 0.0002 | ND | ND | ND | 867.17 ± 49.82 bc | 806.80 ± 23.58 b | 896.69 ± 68.51 c |
| 2-Methoxy-4-vinylphenol | 0.003 | 201.02 ± 17.55 a | 176.53 ± 9.63 a | 163.11 ± 23.34 a | 447.28 ± 54.54 c | 386.44 ± 23.9 b | 398.70 ± 17.97 bc |
| Name | L | a | b | ∆E |
|---|---|---|---|---|
| OPO-0 | 38.88 ± 1.05 a | 1.65 ± 0.15 b | 9.82 ± 1.50 e | 6.24 ± 2.12 f |
| OPO-6 | 35.30 ± 2.35 b | 2.03 ± 0.09 c | 8.67 ± 1.13 e | 6.77 ± 1.99 d |
| OPO-12 | 30.23 ± 1.89 b | 4.26 ± 0.12 cd | 7.34 ± 2.23 d | 8.96 ± 0.77 b |
| RPO-0 | 24.14 ± 2.18 b | 6.33 ± 0.05 d | 14.17 ± 2.87 c | 8.47 ± 1.50 e |
| RPO-6 | 20.94 ± 1.99 c | 7.20 ± 0.02 e | 13.01 ± 2.12 b | 10.40 ± 0.99 c |
| RPO-12 | 15.87 ± 1.45 d | 10.35 ± 0.56 a | 11.68 ± 3.45 a | 14.20 ± 3.12 a |
| Sample | AV mg KOH/g | PV mmol/kg | Phytosterol Content mg/kg | VE mg/kg |
|---|---|---|---|---|
| OPO-0 | 0.42 ± 0.10 a | 1.31 ± 0.02 a | 2057 ± 100.00 bc | 26.13 ± 2.50 e |
| OPO-6 | 0.46 ± 0.05 a | 1.92 ± 0.05 b | 2032 ± 121.00 b | 25.41 ± 1.80 d |
| OPO-12 | 0.48 ± 0.10 b | 2.57 ± 0.10 d | 2009 ± 102.00 a | 24.46 ± 2.00 b |
| RPO-0 | 0.72 ± 0.15 c | 2.39 ± 0.12 c | 2134 ± 120.52 d | 26.52 ± 3.12 f |
| RPO-6 | 0.77 ± 0.08 d | 2.76 ± 0.06 e | 2078 ± 210.00 cd | 25.24 ± 2.24 c |
| RPO-12 | 0.84 ± 0.03 e | 3.78 ± 0.06 f | 2047 ± 103.00 bc | 23.43 ± 1.50 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Zhang, Z.; Liu, M.; Zhang, Z.; Kong, G.; Zhou, S.; Li, S.; Sun, J. Flavor Evolution and Quality Changes in Hot-Pressed Peanut Oil: Impact of Roasting Temperature and Storage Time. Foods 2025, 14, 3945. https://doi.org/10.3390/foods14223945
Yang G, Zhang Z, Liu M, Zhang Z, Kong G, Zhou S, Li S, Sun J. Flavor Evolution and Quality Changes in Hot-Pressed Peanut Oil: Impact of Roasting Temperature and Storage Time. Foods. 2025; 14(22):3945. https://doi.org/10.3390/foods14223945
Chicago/Turabian StyleYang, Guang, Zhiran Zhang, Mengkai Liu, Ziyan Zhang, Gaoyuan Kong, Sen Zhou, Shengxin Li, and Jie Sun. 2025. "Flavor Evolution and Quality Changes in Hot-Pressed Peanut Oil: Impact of Roasting Temperature and Storage Time" Foods 14, no. 22: 3945. https://doi.org/10.3390/foods14223945
APA StyleYang, G., Zhang, Z., Liu, M., Zhang, Z., Kong, G., Zhou, S., Li, S., & Sun, J. (2025). Flavor Evolution and Quality Changes in Hot-Pressed Peanut Oil: Impact of Roasting Temperature and Storage Time. Foods, 14(22), 3945. https://doi.org/10.3390/foods14223945

