Therapeutic Potential of White Kidney Beans (Phaseolus vulgaris) for Weight Management
Abstract
1. Introduction
2. Methodology
2.1. Study Design
2.2. Literature Search Strategy
3. Nutritional Profile and Functional Properties of Pulses
4. Chemical Composition of White Kidney Beans
4.1. Macronutrients
4.1.1. Proteins
4.1.2. Carbohydrates
4.1.3. Lipids
4.2. Micronutrients
4.2.1. Minerals
4.2.2. Vitamins
4.2.3. Bioactive Compounds
5. Mechanism of Weight Loss
5.1. α-Amylase Inhibition and Glycemic Control
5.2. Gut Microbiota and Gastrointestinal Effects
5.3. Appetite Suppression and Satiety
5.4. Fat Metabolism and Lipid Profile
6. Clinical Efficacy and Evidence Synthesis
7. Transformative Processing and Bioactivity Enhancement
7.1. Enzymatic Hydrolysis
7.2. Chemical Hydrolysis
7.3. Protein Functionalization and Modification Techniques
7.4. Applications for Ingredient Formulation
8. Functional Aspects, Processing, and Consumer Aspects of WKB
8.1. Correlation Between Processing, Functional Aspects, and Consumer Acceptability of WKB
8.2. Correlation Between Functional and Consumer Aspects
9. Comparative Analysis of Other Protein Sources
9.1. Comparison with Animal-Based Proteins
9.2. Comparison with Other Plant-Based Proteins
| Category | Protein Source | Nutritional Composition | Health Benefits | Limitations | Ref |
|---|---|---|---|---|---|
| Legume Protein | White kidney bean | Phaseolus vulgaris contains around 22–27% protein. It also contains starch resistance, dietary fiber, minerals (K, Mg, Fe), and bioactive compounds like polyphenols, saponins, and α-amylase inhibitors. | WKB shows its potential role for anti-obesity, anti-diabetic, anti-inflammatory, antioxidant, cardio-protective, and hypolipidemic effects. | WKB contains some anti-nutritional components such as phytates, lectins, and trypsin inhibitors when insufficiently processed. | [116,117,118] |
| Animal-based Proteins | Fish, Beef, and dietary | It contains Protein, critical amino acids, heme iron, and B12. | It supplies essential nutrients, improves muscle growth, and whey and casein enhance satiety and lean mass. | It shows some serious adverse effects on human health. Red meat is connected to an increased cardiovascular risk and cancer, due to its high saturated fat content. | [119,120] |
| Plant-based Protein | Soy Protein | It includes 40% which is rich in essential amino acids and isoflavones. | It reduces cholesterol levels. Improves bone strength, cardio-protective, and helps weight management. | It contains phytoestrogen, the causative factor of allergy. | [121,122] |
| Pea Protein (Pisum sativum L.) | It contains 20–25% protein, rich in tryptophan and lysine, and is less efficient than a trypsin inhibitor. | It enhances blood pressure and controls glucose level, boosts muscle protein synthesis, and increases satiety. | Pea protein shows low digestibility as compared to animal-based protein and low methionine. | [123,124,125] | |
| Other Legumes, including (Red Kidney, Navy, and adzuki Beans | Red kidney beans contain a high amount of carbohydrates, while navy beans have more fiber, and adzuki beans show strong trypsin-inhibitory activity. | Exhibits anti-carcinogenic properties, antioxidants, anti-hypertensive, and supports gastrointestinal health. | With the presence of tannins and trypsin inhibitors, their protein solubility is a challenge. | [125,126,127,128] |
10. Safety and Side Effects
10.1. Allergenic Potential
10.2. Digestive Issues
11. Formulations and Delivery Methods
11.1. Supplements
11.2. Fortification
11.3. Recipes
11.4. Cooking Methods
11.4.1. Boiling
11.4.2. Roasting
11.4.3. Microwave
12. Regulatory Considerations
12.1. FDA and Other Regulatory Standards
12.2. Safety and GRAS Status
12.3. Recommended Dosage Ranges
13. Conclusions and Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Overweight and obese adults. In Health at a Glance: Latin America and the Caribbean 2023; OECD Publishing: Paris, France, 2023.
- Janić, M.; Janež, A.; El-Tanani, M.; Rizzo, M. Obesity: Recent Advances and Future Perspectives. Biomedicines 2025, 13, 368. [Google Scholar] [CrossRef] [PubMed]
- Dudašova-Petrovičova, O.; Đuričić, I.; Ivanović, N.; Dabetić, N.; Dodevska, M.; Ilić, T. Dietary interventions in obesity: A narrative review. Arh. Za Farm. 2024, 74, 281–297. [Google Scholar] [CrossRef]
- Welsh, A.; Hammad, M.; Piña, I.L.; Kulinski, J. Obesity and cardiovascular health. Eur. J. Prev. Cardiol. 2024, 31, 1026–1035. [Google Scholar] [CrossRef] [PubMed]
- Alrayes, M.S.; Altawili, M.A.; Alsuabie, S.M.; Sindi, A.W.; Alharbi, K.M.; Alsalhi, K.M.; Al Alawi, R.M.; Ali, I.D.; Nasser, A.N.; Alabdulrahim, J.M.; et al. Surgical Interventions for the Management of Obesity-Related Joint Pain: A Narrative Review. Cureus 2024, 16, e59082. [Google Scholar] [CrossRef]
- Abdelfattah, D.S.E.; Fouad, M.A.; Elmeshad, A.N.; El-Nabarawi, M.A.; Elhabal, S.F. Anti-Obesity Effect of Combining White Kidney Bean Extract, Propolis Ethanolic Extract and CrPi3 on Sprague-Dawley Rats Fed a High-Fat Diet. Nutrients 2024, 16, 310. [Google Scholar] [CrossRef]
- Misra, S.; Khunti, K.; Goyal, A.; Gable, D.; Armocida, B.; Tandon, N.; Sachdev, P.; Wild, S.H.; Hivert, M.-F.; Beran, D. Managing early-onset type 2 diabetes in the individual and at the population level. Lancet 2025, 405, 2341–2354. [Google Scholar] [CrossRef]
- Schnurr, T.M.; Jakupović, H.; Carrasquilla, G.D.; Ängquist, L.; Grarup, N.; Sørensen, T.I.A.; Tjønneland, A.; Overvad, K.; Pedersen, O.; Hansen, T.; et al. Obesity, unfavourable lifestyle and genetic risk of type 2 diabetes: A case-cohort study. Diabetologia 2020, 63, 1324–1332. [Google Scholar] [CrossRef]
- Seyedjavadi, S.S.; Bagheri, P.; Nasiri, M.J.; Razzaghi-Abyaneh, M.; Goudarzi, M. Fungal Infection in Co-infected Patients With COVID-19: An Overview of Case Reports/Case Series and Systematic Review. Front. Microbiol. 2022, 13, 888452. [Google Scholar] [CrossRef]
- Zhang, Y. Impact of dietary habit changes on college students physical health insights from a comprehensive study. Sci. Rep. 2025, 15, 9953. [Google Scholar] [CrossRef]
- Chandrakanth, M.; Kumar, N.; Sura, C.; Tung, S.; Bilde, T.; Bleu, J. Context-dependent effects of developmental and adult diet on life-history traits in Drosophila melanogaster. J. Evol. Biol. 2025, 38, 1396–1409. [Google Scholar] [CrossRef]
- Popiolek-Kalisz, J. The role of nutrition in cardiovascular protection—Personalized versus universal dietary strategies. Trends Cardiovasc. Med. 2025, 35, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Volek, J.S.; Yancy, W.S.; Gower, B.A.; Phinney, S.D.; Slavin, J.; Koutnik, A.P.; Hurn, M.; Spinner, J.; Cucuzzella, M.; Hecht, F.M. Expert consensus on nutrition and lower-carbohydrate diets: An evidence- and equity-based approach to dietary guidance. Front. Nutr. 2024, 11, 1376098. [Google Scholar] [CrossRef] [PubMed]
- Bhujle, R.R.; Nayak, N.; Gowda, N.A.N.; Pandiselvam, R.; Sunil, C.K. A comprehensive review on influence of millet processing on carbohydrate-digesting enzyme inhibitors and implications for diabetes management. Crit. Rev. Biotechnol. 2024, 45, 743–765. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Li, S.; Su, H.; Zhou, N.; Yao, Y. Kidney Bean Protein Prevents High-Fat and High-Fructose Diet-Induced Obesity, Cognitive Impairment, and Disruption of Gut Microbiota Composition. Foods 2024, 13, 1718. [Google Scholar] [CrossRef]
- Zaffar, A.; Shafi, S.; Fatima, S.; Riyaz, I.; Nabi, A.; Gani, S.; Zargar, S.M.; Mir, R.R.; Nabi, S.; Sofi, P.A. Unveiling Biochemical Dynamics in Common Bean-Pseudocercospora Pathosystem Under Angular Leaf Spot Pressure in Western Himalayan Kashmir. J. Crop Health 2024, 76, 1343–1356. [Google Scholar] [CrossRef]
- Dimopoulou, M.; Vareltzis, P.; Gortzi, O. A Systematic Review of the Twelve Most Popular Bean Varieties, Highlighting Their Potential as Functional Foods Based on the Health Benefits Derived from Their Nutritional Profiles, Focused on Non-Communicable Diseases. Appl. Sci. 2024, 14, 10215. [Google Scholar] [CrossRef]
- Kasar, S.S.; Maheshwari, V.L.; Pawar, P.K. Bioactive α-Amylase Inhibitors: Sources, Mechanism of Action, Biochemical Characterization, and Applications. In Natural Products as Enzyme Inhibitors: An Industrial Perspective; Maheshwari, V.L., Patil, R.H., Eds.; Springer: Singapore, 2022; pp. 59–104. [Google Scholar]
- Golshany, H.; Helmy, S.A.; Morsy, N.F.S.; Kamal, A.; Yu, Q.; Fan, L. The gut microbiome across the lifespan: How diet modulates our microbial ecosystem from infancy to the elderly. Int. J. Food Sci. Nutr. 2024, 76, 95–121. [Google Scholar] [CrossRef]
- Ntalouka, F.; Tsirivakou, A. Morus alba: Natural and valuable effects in weight loss management. Front. Clin. Diabetes Healthc. 2024, 5, 1395688. [Google Scholar] [CrossRef]
- Sornek, P.; Izdebska, W.; Stanek, J.; Perkowska, K.; Kaźmierczak, A.; Mich, A.; Pawlak, I.; Borkowska, A.; Ciesielski, R.; Kiełb, A. Methods of lowering the glycemic index of food and their underlying mechanisms—A review. Qual. Sport 2024, 20, 54118. [Google Scholar] [CrossRef]
- Paoli, A. The Influence of Physical Exercise, Ketogenic Diet, and Time-Restricted Eating on De Novo Lipogenesis: A Narrative Review. Nutrients 2025, 17, 663. [Google Scholar] [CrossRef]
- Wang, S.; Guo, C.; Xing, Z.; Li, M.; Yang, H.; Zhang, Y.; Ren, F.; Chen, L.; Mi, S. Dietary Intervention With α-Amylase Inhibitor in White Kidney Beans Added Yogurt Modulated Gut Microbiota to Adjust Blood Glucose in Mice. Front. Nutr. 2021, 8, 664976. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-C.; Liao, Y.-C.; Lee, M.-C.; Cheng, Y.-C.; Chiou, S.-Y.; Lin, J.-S.; Huang, C.-C.; Watanabe, K. Different Impacts of Heat-Killed and Viable Lactiplantibacillus plantarum TWK10 on Exercise Performance, Fatigue, Body Composition, and Gut Microbiota in Humans. Microorganisms 2022, 10, 2181. [Google Scholar] [CrossRef]
- Cabello-Olmo, M.; Oneca, M.; Goñi, S.; Urtasun, R.; Pajares, M.J.; Yavorov-Dayliev, D.; Iturria, I.; Ayo, J.; Encío, I.J.; Barajas, M.; et al. Heat-Inactivated Pediococcus acidilactici pA1c®HI Maintains Glycemic Control and Prevents Body Weight Gain in High-Fat-Diet-Fed Mice. Int. J. Mol. Sci. 2025, 26, 6408. [Google Scholar] [CrossRef]
- Padhiyar, P.N.; Singh, B.P.; Sarkar, P.; Hati, S. Food-Derived Bioactive Peptides With Anti-Diabetic and Antimicrobial Potential: An Updated Review on Current Trends and Challenges. Sustain. Food Proteins 2025, 3, e70012. [Google Scholar] [CrossRef]
- Sannidhi, D.; Abeles, R.; Andrew, W.; Bonnet, J.P.; Vitale, K.; Niranjan, V.; Gulati, M.; Pauly, K.; Moran, R.; Alexander, L.; et al. Lifestyle Medicine for Obesity in the Era of Highly Effective Anti-Obesity Treatment. Nutrients 2025, 17, 2382. [Google Scholar] [CrossRef]
- Jagdish, S.; Rajni, K.; Singh, N.P. Pulse Phytonutrients: Nutritional and Medicinal Importance. J. Pharm. Nutr. Sci. 2016, 6, 160–171. [Google Scholar] [CrossRef]
- Parveen, S.; Jamil, A.; Pasha, I.; Ahmad, F. Pulses: A Potential Source of Valuable Protein for Human Diet. In Legumes Research; InTech Open Access Publisher: Rijeka, Croatia, 2022; Volume 2, pp. 1–15. [Google Scholar]
- Langyan, S.; Yadava, P.; Khan, F.N.; Bhardwaj, R.; Tripathi, K.; Bhardwaj, V.; Bhardwaj, R.; Gautam, R.K.; Kumar, A. Nutritional and Food Composition Survey of Major Pulses Toward Healthy, Sustainable, and Biofortified Diets. Front. Sustain. Food Syst. 2022, 6, 878269. [Google Scholar] [CrossRef]
- Sinkovič, L.; Pipan, B.; Šibul, F.; Nemeš, I.; Tepić Horecki, A.; Meglič, V. Nutrients, Phytic Acid and Bioactive Compounds in Marketable Pulses. Plants 2022, 12, 170. [Google Scholar] [CrossRef]
- Didinger, C.; Thompson, H.J. The role of pulses in improving human health: A review. Legume Sci. 2022, 4, e147. [Google Scholar] [CrossRef]
- Singh, V.; Yousuf, O.; Prasad, S. Sustainability of Plant Protein. In The Future of Plant Protein: Innovations, Challenges, and Opportunities; Kaiser, Y., Yousuf, O., Eds.; Springer: Singapore, 2025; pp. 51–72. [Google Scholar]
- Sozer, N.; Holopainen-Mantila, U.; Poutanen, K. Traditional and New Food Uses of Pulses. Cereal Chem. 2016, 94, 66–73. [Google Scholar] [CrossRef]
- Ahmed, W.; Rashid, S. Functional and therapeutic potential of inulin: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2017, 59, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Uebersax, M.A.; Cichy, K.A.; Gomez, F.E.; Porch, T.G.; Heitholt, J.; Osorno, J.M.; Kamfwa, K.; Snapp, S.S.; Bales, S. Dry beans (Phaseolus vulgaris L.) as a vital component of sustainable agriculture and food security—A review. Legume Sci. 2022, 5, e155. [Google Scholar] [CrossRef]
- De Pilli, T.; Alessandrino, O. Effects of different cooking technologies on biopolymers modifications of cereal-based foods: Impact on nutritional and quality characteristics review. Crit. Rev. Food Sci. Nutr. 2018, 60, 556–565. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, A.; Thakur, K.; Parmar, V.; Sharma, S.; Sharma, R.; Kaur, G.; Singh, B.; Suhag, R. New insights into tailoring physicochemical and techno-functional properties of plant proteins using conventional and emerging technologies. J. Food Meas. Charact. 2023, 17, 3845–3873. [Google Scholar] [CrossRef]
- Mazumder, K.; Aktar, A.; Biswas, B.; Hossain, M.E. Proteins, Vitamins, Minerals, Cereal, Vegetables, and Beverages as Functional Foods. In Dietary Supplements and Nutraceuticals; Mukherjee, B., Ed.; Springer: Singapore, 2025; pp. 1–40. [Google Scholar]
- Abdalla, M.A.; Sumon, M.M.; Mühling, K.H. Improvement of cereal- and legume-derived protein quality with selenium and sulfur for plant food production. J. Sci. Food Agric. 2024, 105, 5611–5623. [Google Scholar] [CrossRef]
- Muñoz-Pina, S.; Khvostenko, K.; García-Hernández, J.; Heredia, A.; Andrés, A. Implications of Pleurotus ostreatus solid-state bioprocessing on the nutritional composition, protein structure, and anti-hypertensive and anti-inflammatory potential of local beans (Phaseolus vulgaris L.). Curr. Res. Food Sci. 2025, 11, 101167. [Google Scholar] [CrossRef]
- Srenuja, D.; Hema, V.; Anand, M.T.; Mohan, R.J.; Vidyalakshmi, R. Kidney bean: Protein’s treasure trove and creates avenues for a healthy lifestyle. Legume Sci. 2023, 5, e193. [Google Scholar] [CrossRef]
- Veber, A.; Zaręba, D.; Ziarno, M. Functional Fermented Beverage Prepared from Germinated White Kidney Beans (Phaseolus vulgaris L.). In Milk Substitutes—Selected Aspects; IntechOpen: Rijeka, Croatia, 2021; pp. 100–125. [Google Scholar]
- Kan, L.; Nie, S.; Hu, J.; Wang, S.; Cui, S.W.; Li, Y.; Xu, S.; Wu, Y.; Wang, J.; Bai, Z.; et al. Nutrients, phytochemicals and antioxidant activities of 26 kidney bean cultivars. Food Chem. Toxicol. 2017, 108, 467–477. [Google Scholar] [CrossRef]
- Marinangeli, C. Methods for Processing Pulses to Optimize Nutritional Functionality and Maximize Amino Acid Availability in Foods and Feeds. Cereal Foods World 2020, 65, 10-1094. [Google Scholar] [CrossRef]
- Wu, X.; Wu, X.; Zhang, X.; Zhang, J.; Yan, X.; Zhang, Q.; Zhang, B. Structural, physicochemical and in vitro digestibility of white kidney bean protein-corn starch complexes under various heat treatments. Food Res. Int. 2025, 200, 115479. [Google Scholar] [CrossRef]
- Jonathan, C.A.; Misha, P.; Sofia Feng, G. Influence of Proprietary White Kidney Bean Protein on Human Postprandial Glucose Response. Int. J. Res. Med. Clin. Sci. 2024, 2, 83–89. [Google Scholar] [CrossRef]
- Meghrabi, S.; Yamani, M.I. Physicochemical and Sensory Characteristics of a New Milk Substitute from Dry White Kidney Bean. Food Sci. Technol. 2023, 11, 218–225. [Google Scholar] [CrossRef]
- Xu, S.; Qin, L.; Mazhar, M.; Zhu, Y. Functional components profile and glycemic index of kidney beans. Front. Nutr. 2022, 9, 1044427. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, L.; Yang, Z.; Wang, Y.; Huang, Y.; Zhang, B. Carbohydrate digestion and absorption in human digestive track. In Carbohydrate Nutrition; Zhang, B., Dhital, S., Eds.; Academic Press: Cambridge, MA, USA, 2025; pp. 25–46. [Google Scholar]
- Cai, M.; Tejpal, S.; Tashkova, M.; Ryden, P.; Perez-Moral, N.; Saha, S.; Garcia-Perez, I.; Serrano Contreras, J.I.; Wist, J.; Holmes, E.; et al. Upper-gastrointestinal tract metabolite profile regulates glycaemic and satiety responses to meals with contrasting structure: A pilot study. Nat. Metab. 2025, 7, 1459–1475. [Google Scholar] [CrossRef] [PubMed]
- Abera, S.; Yohannes, W.; Chandravanshi, B.S.; Roy, D. Effect of Processing Methods on Antinutritional Factors (Oxalate, Phytate, and Tannin) and Their Interaction with Minerals (Calcium, Iron, and Zinc) in Red, White, and Black Kidney Beans. Int. J. Anal. Chem. 2023, 2023, 1–11. [Google Scholar] [CrossRef]
- Guerrero-Martin, C.A.; Ortega-Ramírez, A.T.; Silva-Marrufo, Ó.; Casallas-Martín, B.D.; Cortés-Salazar, N.; Salinas-Silva, R.; Camacho-Galindo, S.; Da Silva Fernandes, F.A.; Guerrero-Martin, L.E.; Paulo de Freitas, P.; et al. Biofortification of Kidney Bean (Phaseolus vulgaris L.) Crops Applying Zinc Sulfate and Ferric Sulfate: Pilot Crop in Colombia. Molecules 2023, 28, 2004. [Google Scholar] [CrossRef]
- Cichy, K.; Chiu, C.; Isaacs, K.; Glahn, R. Dry Bean Biofortification with Iron and Zinc. In Biofortification of Staple Crops; Kumar, D., Mishra, G.P., Singh, A., Eds.; Springer: Singapore, 2022; pp. 225–270. [Google Scholar]
- De la Cruz Lázaro, E.; Félix, J.W.; Sánchez-Chávez, E.; Tosquy-Valle, O.; Preciado-Rangel, P.; Márquez-Quiroz, C. Biofortificación de Frijol (Phaseolus vulgaris L.) Variedad Verdín con Quelato y Sulfato de Hierro. Rev. Terra Latinoam. 2024, 42, e1831. [Google Scholar] [CrossRef]
- Hoque, M. A Review on Different Dietary Sources of Important Vitamins and Electrolytes. Int. J. Res. Publ. Rev. 2023, 4, 731–736. [Google Scholar] [CrossRef]
- Vivar-Quintana, A.M.; Absi, Y.; Hernández-Jiménez, M.; Revilla, I. Nutritional Value, Mineral Composition, Fatty Acid Profile and Bioactive Compounds of Commercial Plant-Based Gluten-Free Flours. Appl. Sci. 2023, 13, 2309. [Google Scholar] [CrossRef]
- Lee, Y.H.; Hong, J.-H.; Park, K.H.; Kim, S.-H.; Kim, J.-C.; Kim, D.H.; Park, Y.H.; Lee, K.W.; Kim, J.K.; Kim, K.H. Phytochemical Investigation of Bioactive Compounds from White Kidney Beans (Fruits of Phaseolus multiflorus var. Albus): Identification of Denatonium with Osteogenesis-Inducing Effect. Plants 2021, 10, 2205. [Google Scholar] [CrossRef]
- Ebrahim, A.E.; Abd El-Aziz, N.K.; Elariny, E.Y.T.; Shindia, A.; Osman, A.; Hozzein, W.N.; Alkhalifah, D.H.M.; El-Hossary, D. Antibacterial activity of bioactive compounds extracted from red kidney bean (Phaseolus vulgaris L.) seeds against multidrug-resistant Enterobacterales. Front. Microbiol. 2022, 13, 1035586. [Google Scholar] [CrossRef] [PubMed]
- Alina, P.; Kiełb Ewa, P.; František, Z. Antimicrobial activity of saponin-containing plants: Review. J. Dairy Vet. Anim. Res. 2023, 12, 121–127. [Google Scholar] [CrossRef]
- Davkova, I.; Zhivikj, Z.; Kukić-Marković, J.; Cvetkovik-Karanfilova, I.; Stefkov, G.; Kulevanova, S.; Karapandzova, M. Natural products in the management of obesity. Arh. Za Farm. 2024, 74, 298–315. [Google Scholar] [CrossRef]
- Fischer, L. Enzymes in Food Production. In Introduction to Enzyme Technology; Jaeger, K.-E., Liese, A., Syldatk, C., Eds.; Learning Materials in Biosciences; Springer International Publishing: Cham, Switzerland, 2024; Volume 53, pp. 337–360. [Google Scholar]
- Losada-Garcia, N.; Simović, M.; Ćorović, M.; Milivojević, A.; Nikačević, N.; Mateo, C.; Bezbradica, D.; Palomo, J.M. Developing and improving enzyme-driven technologies to synthesise emerging prebiotics. Green Chem. 2025, 27, 8777–8803. [Google Scholar] [CrossRef]
- Rodríguez, L.; Mendez, D.; Montecino, H.; Carrasco, B.; Arevalo, B.; Palomo, I.; Fuentes, E. Role of Phaseolus vulgaris L. in the Prevention of Cardiovascular Diseases—Cardioprotective Potential of Bioactive Compounds. Plants 2022, 11, 186. [Google Scholar] [CrossRef]
- Kashtoh, H.; Baek, K.-H. New Insights into the Latest Advancement in α-Amylase Inhibitors of Plant Origin with Anti-Diabetic Effects. Plants 2023, 12, 2944. [Google Scholar] [CrossRef]
- Liu, T.; Gu, Y.; Waleed, A.-A.; Wang, L.; Li, Y.; Qian, H. Challenges and opportunities in developing low glycemic index foods with white kidney bean α-amylase inhibitor. Trends Food Sci. Technol. 2024, 147, 104397. [Google Scholar] [CrossRef]
- Shi, Z.; Zhu, Y.; Teng, C.; Yao, Y.; Ren, G.; Richel, A. Anti-obesity effects of α-amylase inhibitor enriched-extract from white common beans (Phaseolus vulgaris L.) associated with the modulation of gut microbiota composition in high-fat diet-induced obese rats. Food Funct. 2020, 11, 1624–1634. [Google Scholar] [CrossRef]
- Sagor, M.A.T.; Smita, R.M.; Shuvo, A.P.R.; Raihan, S.; Jahan, R.; Simin, F.A.; Rahman, A.; Biswas, S.; Salem, L. The Role of Mineral Deficiencies in Insulin Resistance and Obesity. Curr. Diabetes Rev. 2022, 18, 19–39. [Google Scholar] [CrossRef]
- Zhao, M.-F.; Zhang, X.-G.; Tang, Y.-P.; Zhu, Y.-X.; Nie, H.-Y.; Bu, D.-D.; Fang, L.; Li, C.-J. Ketone bodies promote epididymal white adipose expansion to alleviate liver steatosis in response to a ketogenic diet. J. Biol. Chem. 2024, 300, 105617. [Google Scholar] [CrossRef]
- Jäger, R.; Abou Sawan, S.; Purpura, M.; Grube, B.; Röske, Y.; De Costa, P.; Chong, P.-W. Proprietary alpha-amylase inhibitor formulation from white kidney bean (Phaseolus vulgaris L.) promotes weight and fat loss: A 12-week, double-blind, placebo-controlled, randomized trial. Sci. Rep. 2024, 14, 12685. [Google Scholar] [CrossRef]
- Smith, K.; Taylor, G.S.; Walker, M.; Brunsgaard, L.H.; Bowden Davies, K.A.; Stevenson, E.J.; West, D.J. Pre-Meal Whey Protein Alters Postprandial Insulinemia by Enhancing β-Cell Function and Reducing Insulin Clearance in T2D. J. Clin. Endocrinol. Metab. 2023, 108, e603–e612. [Google Scholar] [CrossRef] [PubMed]
- Houghton, D.; Shannon, O.M.; Chater, P.I.; Wilcox, M.D.; Pearson, J.P.; Stanforth, K.; Jordan, C.; Avery, L.; Blain, A.P.; Joel, A.; et al. White kidney bean extract as a nutraceutical: Effects on gut microbiota, alpha-amylase inhibition, and user experiences. Gut Microbiome 2023, 4, e8. [Google Scholar] [CrossRef]
- Nolan, R.; Shannon, O.M.; Robinson, N.; Joel, A.; Houghton, D.; Malcomson, F.C. It’s No Has Bean: A Review of the Effects of White Kidney Bean Extract on Body Composition and Metabolic Health. Nutrients 2020, 12, 1398. [Google Scholar] [CrossRef]
- de la Rosa-Millan, J. Lipid-Enriched Cooking Modulates Starch Digestibility and Satiety Hormone Responses in Traditional Nixtamalized Maize Tacos. Foods 2025, 14, 2576. [Google Scholar] [CrossRef]
- Palupi, E.; Nurdin, N.M.; Mufida, G.; Valentine, F.N.; Pangestika, R.; Rimbawan, R.; Sulaeman, A.; Briawan, D.; Filianty, F. High-Fiber Extruded Purple Sweet Potato (Ipomoea batatas) and Kidney Bean (Phaseolus vulgaris) Extends the Feeling of Fullness. Pol. J. Food Nutr. Sci. 2024, 74, 82–91. [Google Scholar] [CrossRef]
- Li, X.; Bai, Y.; Jin, Z.; Svensson, B. Food-derived non-phenolic α-amylase and α-glucosidase inhibitors for controlling starch digestion rate and guiding diabetes-friendly recipes. LWT 2022, 153, 112455. [Google Scholar] [CrossRef]
- Song, H.; Han, W.; Yan, F.; Xu, D.; Chu, Q.; Zheng, X. Dietary Phaseolus vulgaris extract alleviated diet-induced obesity, insulin resistance and hepatic steatosis and alters gut microbiota composition in mice. J. Funct. Foods 2016, 20, 236–244. [Google Scholar] [CrossRef]
- Razmpoosh, E.; Abdollahi, S.; Sikaroudi, M.K.; Sangsefidi, Z.S.; Zeraattalab-Motlagh, S.; Torabinasab, K.; Hejazi, M.; Meshkini, F.; Motallaei, M.; Soltani, S. The effect of low-fat diets on appetite: A systematic review of randomized clinical trials. BMC Public Health 2025, 25, 2264. [Google Scholar] [CrossRef]
- Thompson, H.; McGinley, J.; Neil, E.; Brick, M. Beneficial Effects of Common Bean on Adiposity and Lipid Metabolism. Nutrients 2017, 9, 998. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Zhang, X.; Zhu, Y.; Yao, Y.; Ren, G. Natural Extracts from White Common Bean (Phaseolus vulgaris L.) Inhibit 3T3-L1 Adipocytes Differentiation. Appl. Sci. 2020, 11, 167. [Google Scholar] [CrossRef]
- Feng, Q.; Niu, Z.; Zhang, S.; Wang, L.; Dong, L.; Hou, D.; Zhou, S. Protective Effects of White Kidney Bean (Phaseolus vulgaris L.) against Diet-Induced Hepatic Steatosis in Mice Are Linked to Modification of Gut Microbiota and Its Metabolites. Nutrients 2023, 15, 3033. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jiang, X.; Xu, Q.; Li, W.; Zhang, D. Lipidomic Analysis Reveals the Anti-Obesity and Hepatoprotective Effects of Flavonoid Mimetic Components in Adzuki Beans on High-Fat Diet-Induced Obese Mice. Foods 2025, 14, 3191. [Google Scholar] [CrossRef]
- Barrett, M.L.; Udani, J.K. A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris): A review of clinical studies on weight loss and glycemic control. Nutr. J. 2011, 10, 34. [Google Scholar] [CrossRef]
- Tzeng, H.-P.; Chiu, C.-Y.; Liu, S.-H.; Chiang, M.-T. Improvement of Glycemic Control by a Functional Food Mixture Containing Maltodextrin, White Kidney Bean Extract, Mulberry Leaf Extract, and Niacin-Bound Chromium Complex in Obese Diabetic db/db Mice. Metabolites 2022, 12, 693. [Google Scholar] [CrossRef]
- Wang, S.; Chen, L.; Yang, H.; Gu, J.; Wang, J.; Ren, F. Regular intake of white kidney beans extract (Phaseolus vulgaris L.) induces weight loss compared to placebo in obese human subjects. Food Sci. Nutr. 2020, 8, 1315–1324. [Google Scholar] [CrossRef]
- Ciacci, C.; Ciclitira, P.; Hadjivassiliou, M.; Kaukinen, K.; Ludvigsson, J.F.; McGough, N.; Sanders, D.S.; Woodward, J.; Leonard, J.N.; Swift, G.L. The gluten-free diet and its current application in coeliac disease and dermatitis herpetiformis. United Eur. Gastroenterol. J. 2015, 3, 121–135. [Google Scholar] [CrossRef]
- Schaefer, M.; Kühnel, A.; Enge, S. Open-label placebos reduce weight in obesity: A randomized controlled trial. Sci. Rep. 2024, 14, 21311. [Google Scholar] [CrossRef]
- Gheorghiu, O.R.C.; Ciobanu, A.M.; Guțu, C.M.; Dănilă, G.-M.; Nițescu, G.V.; Rohnean, Ș.; Baconi, D.L. Detection of Adulterants in Herbal Weight Loss Supplements. J. Mind Med. Sci. 2025, 12, 23. [Google Scholar] [CrossRef]
- Bhambar, R.S.; Nehete, J.Y.; Bhide, Y.S. Extraction, Characterization and Therapeutic Evaluation of Seeds of Phaseolus vulgaris L. for Weight Management. Int. J. Pharm. Qual. Assur. 2022, 13, 396–401. [Google Scholar] [CrossRef]
- Singhi, H.; Ozturk, O.K. A comprehensive review of kidney bean proteins: Extraction, composition, techno-functional properties, and emerging food applications. Crit. Rev. Food Sci. Nutr. 2025, 65, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Vogelsang-O’Dwyer, M.; Sahin, A.W.; Arendt, E.K.; Zannini, E. Enzymatic Hydrolysis of Pulse Proteins as a Tool to Improve Techno-Functional Properties. Foods 2022, 11, 1307. [Google Scholar] [CrossRef] [PubMed]
- Saad, A.M.; Sitohy, M.Z.; Ahmed, A.I.; Rabie, N.A.; Amin, S.A.; Aboelenin, S.M.; Soliman, M.M.; El-Saadony, M.T. Biochemical and Functional Characterization of Kidney Bean Protein Alcalase-Hydrolysates and Their Preservative Action on Stored Chicken Meat. Molecules 2021, 26, 4690. [Google Scholar] [CrossRef]
- Siegel, J.; Mak, W.S.; German, J.B. Use of Proteolytic Enzymes to Enhance Protein Bioavailability. U.S. Patent Application No. 16/767,535, 26 May 2020. [Google Scholar]
- Di Filippo, G.; Melchior, S.; Plazzotta, S.; Calligaris, S.; Innocente, N. Effect of enzymatic hydrolysis with Alcalase or Protamex on technological and antioxidant properties of whey protein hydrolysates. Food Res. Int. 2024, 188, 114499. [Google Scholar] [CrossRef]
- Roy, M.; Sarker, A.; Azad, M.A.K.; Shaheb, M.R.; Hoque, M.M. Evaluation of antioxidant and antimicrobial properties of dark red kidney bean (Phaseolus vulgaris) protein hydrolysates. J. Food Meas. Charact. 2019, 14, 303–313. [Google Scholar] [CrossRef]
- Tejasari, T.; Aulia, F.; Agustina, N. Inhibiting Activity of Angiotensin Converting Enzyme-1 by Bean Protein Hydrolysate Genus Phaseolus. J. Penelit. Pascapanen Pertan. 2021, 18, 75–86. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, Y.; Zhang, Y.; Zhang, C.; Liu, X.; Wang, Y.; Meng, F.; Yu, L. Water-Assisted Microwave Processing: Rapid Detoxification and Antioxidant Enhancement in Colored Kidney Beans. Foods 2025, 14, 3557. [Google Scholar] [CrossRef]
- Nickhil, C.; Singh, R.; Deka, S.C.; Srivastava, B. Structural and physicochemical changes in protein and starch during finger millet storage. Discov. Food 2025, 5, 343. [Google Scholar] [CrossRef]
- Mora, L.; Toldrá, F. Advanced enzymatic hydrolysis of food proteins for the production of bioactive peptides. Curr. Opin. Food Sci. 2023, 49, 100973. [Google Scholar] [CrossRef]
- Higa, F.; Nickerson, C.; Nickerson, M.T. Effect of pH shifting and temperature on the functional properties of a commercial pea protein isolate. Cereal Chem. 2024, 102, 89–101. [Google Scholar] [CrossRef]
- Patil, N.D.; Bains, A.; Goksen, G.; Ali, N.; Dhull, S.B.; Khan, M.R.; Chawla, P. Effect of solid-state fermentation on kidney bean flour: Functional properties, mineral bioavailability, and product formulation. Food Chem. X 2025, 27, 102339. [Google Scholar] [CrossRef] [PubMed]
- Dinesh, G.; Krishna, A.S.; Kumar, Y.; Joshi, T.J.; Rao, P.S. Postharvest Processing of Millets: Advancements & Entrepreneurship Development Opportunities. Future Postharvest Food 2025, 2, 108–123. [Google Scholar] [CrossRef]
- Azevedo, P.Z.; Rigolon, T.C.B.; de Souza, B.R.; Stringheta, P.C.; Martins, E.; Campelo, P.H. White bean (Phaseolus vulgaris L.) proteins: Extraction methods, physicochemical and techno-functional properties, applications, and challenges for the food industry. Obs. DE LA Econ. Latinoam. 2025, 23, e10325. [Google Scholar] [CrossRef]
- Mekonnen, H.K.; Hassan, S.M.; Ateye, M.D. Nutritional Composition, Utilization, and Processing of Haricot Beans (Phaseolus vulgaris L): A Comprehensive Review. Asian J. Adv. Res. Rep. 2024, 18, 178–187. [Google Scholar] [CrossRef]
- Punia, S.; Dhull, S.B.; Sandhu, K.S.; Kaur, M.; Purewal, S.S. Kidney bean (Phaseolus vulgaris) starch: A review. Legume Sci. 2020, 2, e52. [Google Scholar] [CrossRef]
- Alfaro-Diaz, A.; Escobedo, A.; Luna-Vital, D.A.; Castillo-Herrera, G.; Mojica, L. Common beans as a source of food ingredients: Techno-functional and biological potential. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2910–2944. [Google Scholar] [CrossRef]
- Finley, J.W.; Holliday, D.; Kim, H.; da Silva Alves, P.L.; Shao, D.-Y.; Bartley, G.; Yokoyama, W. Substitution of cooked kidney beans or ground beef in hypercholesterolemic high fat diets reduces plasma and liver lipids in hamsters. Food Prod. Process. Nutr. 2023, 5, 20. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Satija, A.; Pan, A.; Sotos-Prieto, M.; Rimm, E.; Willett, W.C.; Hu, F.B. Association of changes in red meat consumption with total and cause specific mortality among US women and men: Two prospective cohort studies. BMJ 2019, 365, l2110. [Google Scholar] [CrossRef] [PubMed]
- Oz, E.; Aoudeh, E.; Murkovic, M.; Toldra, F.; Gomez-Zavaglia, A.; Brennan, C.; Proestos, C.; Zeng, M.; Oz, F. Heterocyclic aromatic amines in meat: Formation mechanisms, toxicological implications, occurrence, risk evaluation, and analytical methods. Meat Sci. 2023, 205, 109312. [Google Scholar] [CrossRef] [PubMed]
- Seyyedsalehi, M.S.; Mohebbi, E.; Tourang, F.; Sasanfar, B.; Boffetta, P.; Zendehdel, K. Association of Dietary Nitrate, Nitrite, and N-Nitroso Compounds Intake and Gastrointestinal Cancers: A Systematic Review and Meta-Analysis. Toxics 2023, 11, 190. [Google Scholar] [CrossRef] [PubMed]
- Kadyan, S.; Sharma, A.; Arjmandi, B.H.; Singh, P.; Nagpal, R. Prebiotic Potential of Dietary Beans and Pulses and Their Resistant Starch for Aging-Associated Gut and Metabolic Health. Nutrients 2022, 14, 1726. [Google Scholar] [CrossRef]
- Ganesan, K.; Xu, B. Polyphenol-rich dry common beans (Phaseolus vulgaris L.) and their health benefits. Int. J. Mol. Sci. 2017, 18, 2331. [Google Scholar] [CrossRef]
- Neji, C.; Semwal, J.; Máthé, E.; Sipos, P. Dough Rheological Properties and Macronutrient Bioavailability of Cereal Products Fortified through Legume Proteins. Processes 2023, 11, 417. [Google Scholar] [CrossRef]
- Lisciani, S.; Marconi, S.; Le Donne, C.; Camilli, E.; Aguzzi, A.; Gabrielli, P.; Gambelli, L.; Kunert, K.; Marais, D.; Vorster, B.J.; et al. Legumes and common beans in sustainable diets: Nutritional quality, environmental benefits, spread and use in food preparations. Front. Nutr. 2024, 11, 1385232. [Google Scholar] [CrossRef]
- Sai-Ut, S.; Ketnawa, S.; Chaiwut, P.; Rawdkuen, S. Biochemical and functional properties of proteins from red kidney, navy and adzuki beans. Asian J. Food Agro-Ind. 2009, 2, 493–504. [Google Scholar]
- Blair, M.W.; Li, H.; Nekkalapudi, L.; Becerra, V.; Paredes, M. Nutritional Traits of Beans (Phaseolus vulgaris): Nutraceutical Characterization and Genomics. In Compendium of Crop Genome Designing for Nutraceuticals; Kole, C., Ed.; Springer: Singapore, 2023; pp. 611–638. [Google Scholar]
- Chattopadhyay, A.; Dey, C.; Mukherjee, S. Unleashing the Positive Impact of Natural Bioactive Compounds in the Therapeutic Strategy for Metabolic Syndrome. In Bioactive Ingredients for Healthcare Industry Volume 2; Lahiri, D., Nag, M., Bhattacharya, D., Pati, S., Sarkar, T., Eds.; Springer: Singapore, 2025; pp. 1–53. [Google Scholar]
- Ram, S.; Narwal, S.; Gupta, O.P.; Pandey, V.; Singh, G.P. Anti-nutritional factors and bioavailability: Approaches, challenges, and opportunities. In Wheat and Barley Grain Biofortification; Gupta, O.P., Pandey, V., Narwal, S., Sharma, P., Ram, S., Singh, G.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 101–128. [Google Scholar]
- Bergeron, N.; Chiu, S.; Williams, P.T.; M King, S.; Krauss, R.M. Effects of red meat, white meat, and nonmeat protein sources on atherogenic lipoprotein measures in the context of low compared with high saturated fat intake: A randomized controlled trial. Am. J. Clin. Nutr. 2019, 110, 24–33. [Google Scholar] [CrossRef]
- Berrazaga, I.; Micard, V.; Gueugneau, M.; Walrand, S. The Role of the Anabolic Properties of Plant- versus Animal-Based Protein Sources in Supporting Muscle Mass Maintenance: A Critical Review. Nutrients 2019, 11, 1825. [Google Scholar] [CrossRef]
- Qin, P.; Wang, T.; Luo, Y. A review on plant-based proteins from soybean: Health benefits and soy product development. J. Agric. Food Res. 2022, 7, 100265. [Google Scholar] [CrossRef]
- Velissaridou, A.; Panoutsopoulou, E.; Prokopiou, V.; Tsoupras, A. Cardio-Protective-Promoting Properties of Functional Foods Inducing HDL-Cholesterol Levels and Functionality. Nutraceuticals 2024, 4, 469–502. [Google Scholar] [CrossRef]
- Wu, D.-T.; Li, W.-X.; Wan, J.-J.; Hu, Y.-C.; Gan, R.-Y.; Zou, L. A Comprehensive Review of Pea (Pisum sativum L.): Chemical Composition, Processing, Health Benefits, and Food Applications. Foods 2023, 12, 2527. [Google Scholar] [CrossRef] [PubMed]
- Choi, A. Effects of Pea Protein on Satiety, Postprandial Glucose Response and Appetite Hormones: A Literature Review. Undergrad. Res. Nat. Clin. Sci. Technol. (URNCST) J. 2022, 6, 1–13. [Google Scholar] [CrossRef]
- Wang, J.; Kadyan, S.; Ukhanov, V.; Cheng, J.; Nagpal, R.; Cui, L. Recent advances in the health benefits of pea protein (Pisum sativum): Bioactive peptides and the interaction with the gut microbiome. Curr. Opin. Food Sci. 2022, 48, 100944. [Google Scholar] [CrossRef]
- Guo, Q.; Luo, J.; Zhang, X.; Zhi, J.; Yin, Z.; Zhang, J.; Zhang, W.; Xu, B.; Chen, L. A Comprehensive Review of the Chemical Constituents and Functional Properties of Adzuki Beans (Vigna angulariz). J. Agric. Food Chem. 2025, 73, 6361–6384. [Google Scholar] [CrossRef]
- Dileep, K.C.; Bhatt, K.; Kumar, S.; Sharma, R.; Rana, P.; Thakur, M.; Suthar, P. Kidney Bean Sprouts and Lentil Sprouts. In Advances in Plant Sprouts; Kehinde, B.A., Dar, B., Nanda, V., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 201–227. [Google Scholar]
- Navin Venketeish, K.S.; Govindarajan, N.; Pandiselvam, R.; Mousavi Khaneghah, A. Unlocking the potential of underutilized legumes: Nutritional benefits, anti-nutritional challenges, and mitigation strategies. J. Food Meas. Charact. 2024, 18, 9588–9602. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, C.; Wu, S.; Ma, T. The Non-Nutritional Factor Types, Mechanisms of Action and Passivation Methods in Food Processing of Kidney Bean (Phaseolus vulgaris L.): A Systematic Review. Foods 2023, 12, 3697. [Google Scholar] [CrossRef]
- Salim, R.; Nehvi, I.B.; Mir, R.A.; Tyagi, A.; Ali, S.; Bhat, O.M. A review on anti-nutritional factors: Unraveling the natural gateways to human health. Front. Nutr. 2023, 10, 1215873. [Google Scholar] [CrossRef]
- Bento, J.A.C.; Ribeiro, P.R.V.; Alexandre, L.M.; Alves Filho, E.G.; Bassinello, P.Z.; de Brito, E.S.; Caliari, M.; Júnior, M.S.S. Chemical profile of colorful bean (Phaseolus vulgaris L) flours: Changes influenced by the cooking method. Food Chem. 2021, 356, 129718. [Google Scholar] [CrossRef]
- Li, M.; Wang, B.; Lv, W.; Lin, R.; Zhao, D. Characterization of pre-gelatinized kidney bean (Phaseolus vulgaris L.) produced using microwave hot-air flow rolling drying technique. LWT 2022, 154, 112673. [Google Scholar] [CrossRef]
- Choudhary, M.I. (Ed.) Frontiers in Cardiovascular Drug Discovery; Bentham Science Publishers: Oak Park, IL, USA, 2022; Volume 6, pp. 1–245. [Google Scholar]
- Mehmood, S.; Thirup, S.S.; Ahmed, S.; Bashir, N.; Saeed, A.; Rafiq, M.; Saeed, Q.; Najam-ul-Haq, M.; Khaliq, B.; Ibrahim, M.; et al. Crystal structure of Kunitz-type trypsin inhibitor: Entomotoxic effect of native and encapsulated protein targeting gut trypsin of Tribolium castaneum Herbst. Comput. Struct. Biotechnol. J. 2024, 23, 3132–3142. [Google Scholar] [CrossRef]
- Molino, S.; Pilar Francino, M.; Ángel Rufián Henares, J. Why is it important to understand the nature and chemistry of tannins to exploit their potential as nutraceuticals? Food Res. Int. 2023, 173, 113329. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Phosanam, A.; Stockmann, R. Perspectives on Saponins: Food Functionality and Applications. Int. J. Mol. Sci. 2023, 24, 13538. [Google Scholar] [CrossRef]
- Ma, Y.; Rang, Y.; Yang, R.; Zhao, W. Effect of white kidney bean extracts on estimated glycemic index of different kinds of porridge. LWT 2018, 96, 576–582. [Google Scholar] [CrossRef]
- Uawongwattana, A.; Posridee, K.; Promyo, K.; Thaeomor, A.; Oonsivilai, R. Evaluation of Phaseolus vulgaris Extract in a Rat Model of Cafeteria-Diet-Induced Obesity: Metabolic and Biochemical Effects. Foods 2025, 14, 2038. [Google Scholar] [CrossRef]
- Zare, L.; Karimi, J.; Sanaei-Nasab, S.; Tahmouzi, S.; Feizollahi, E.; Mollakhalili-Meybodi, N. Effective strategies for producing low glycemic index wheat bread and their impact on technological properties: A review. J. Food Meas. Charact. 2025, 19, 5222–5241. [Google Scholar] [CrossRef]
- Guerrero-Becerra, L.; Morimoto, S.; Arrellano-Ordoñez, E.; Morales-Miranda, A.; Guevara-Gonzalez, R.G.; Feregrino-Pérez, A.A.; Lomas-Soria, C. Polyphenolic Compounds in Fabaceous Plants with Antidiabetic Potential. Pharmaceuticals 2025, 18, 69. [Google Scholar] [CrossRef]
- Lange, E.; Kęszycka, P.K.; Pałkowska-Goździk, E.; Billing-Marczak, K. Comparison of Glycemic Response to Carbohydrate Meals without or with a Plant-Based Formula of Kidney Bean Extract, White Mulberry Leaf Extract, and Green Coffee Extract in Individuals with Abdominal Obesity. Int. J. Environ. Res. Public Health 2022, 19, 12117. [Google Scholar] [CrossRef] [PubMed]
- Rani, M.; Yannam, S.K.; LakshmiA, J. Utilization of Plant Protein Hydrolysates in an Instant Porridge Mix with Improved Protein Digestibility and Palatability. ACS Food Sci. Technol. 2025, 5, 2743–2753. [Google Scholar] [CrossRef]
- Ucar, E.M.; Kizil, M. A Review on Healthier Bread Making: Focusing on the Underlying Mechanisms for Decreasing Glycemic Index. Food Rev. Int. 2025, 41, 1469–1508. [Google Scholar] [CrossRef]
- Sawant, S.S.; Park, H.-Y.; Sim, E.-Y.; Kim, H.-S.; Choi, H.-S. Microbial Fermentation in Food: Impact on Functional Properties and Nutritional Enhancement—A Review of Recent Developments. Fermentation 2025, 11, 15. [Google Scholar] [CrossRef]
- Amin, W.S.; Amin, W.S.; Dewidar, O. A new approach in the production of a novel gluten-free probiotic beverage using broken white beans, broken rice, and whey. Egypt. J. Chem. 2024, 67, 2119–2131. [Google Scholar] [CrossRef]
- Shahidi, F.; Pan, Y. Influence of food matrix and food processing on the chemical interaction and bioaccessibility of dietary phytochemicals: A review. Crit. Rev. Food Sci. Nutr. 2021, 62, 6421–6445. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of In Vitro Digestion on Composition, Bioaccessibility and Antioxidant Activity of Food Polyphenols—A Non-Systematic Review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef]
- Pinarli, B.; Simge Karliga, E.; Ozkan, G.; Capanoglu, E. Interaction of phenolics with food matrix: In vitro and in vivo approaches. Mediterr. J. Nutr. Metab. 2020, 13, 63–74. [Google Scholar] [CrossRef]
- Sęczyk, Ł.; Gawlik-Dziki, U.; Świeca, M. Influence of Phenolic-Food Matrix Interactions on In Vitro Bioaccessibility of Selected Phenolic Compounds and Nutrients Digestibility in Fortified White Bean Paste. Antioxidants 2021, 10, 1825. [Google Scholar] [CrossRef]
- Sik, B.; Székelyhidi, R.; Lakatos, E.; Kapcsándi, V.; Ajtony, Z. Analytical procedures for determination of phenolics active herbal ingredients in fortified functional foods: An overview. Eur. Food Res. Technol. 2021, 248, 329–344. [Google Scholar] [CrossRef]
- Cichońska, P.; Ziarno, M. Legumes and Legume-Based Beverages Fermented with Lactic Acid Bacteria as a Potential Carrier of Probiotics and Prebiotics. Microorganisms 2021, 10, 91. [Google Scholar] [CrossRef]
- Tian, C.; Yang, J.; Zeng, Y.; Zhang, T.; Zhou, Y.; Men, Y.; You, C.; Zhu, Y.; Sun, Y.; Zhou, N.-Y. Biosynthesis of Raffinose and Stachyose from Sucrose via an In Vitro Multienzyme System. Appl. Environ. Microbiol. 2019, 85, e02306-18. [Google Scholar] [CrossRef] [PubMed]
- Ziarno, M.; Zaręba, D.; Ścibisz, I.; Kozłowska, M. Texture and water holding capacity of oat drinks fermented with lactic acid bacteria, bifidobacteria and Propionibacterium. Int. J. Food Prop. 2023, 27, 106–122. [Google Scholar] [CrossRef]
- Voelker, A.L.; Taylor, L.S.; Mauer, L.J. Effect of pH and concentration on the chemical stability and reaction kinetics of thiamine mononitrate and thiamine chloride hydrochloride in solution. BMC Chem. 2021, 15, 47. [Google Scholar] [CrossRef] [PubMed]
- Khrisanapant, P.; Leong, S.Y.; Kebede, B.; Oey, I. Effects of hydrothermal processing duration on the texture, starch and protein in vitro digestibility of cowpeas, chickpeas and kidney beans. Foods 2021, 10, 1415. [Google Scholar] [CrossRef]
- Wang, Z.; Fan, M.; Hannachi, K.; Li, Y.; Qian, H.; Wang, L. Impact of red kidney bean protein on starch digestion and exploring its underlying mechanism. Int. J. Biol. Macromol. 2023, 253, 127023. [Google Scholar] [CrossRef]
- Une, S.; Nonaka, K.; Akiyama, J. Effects of hull scratching, soaking, and boiling on Antinutrients in Japanese red sword bean (Canavalia gladiata). J. Food Sci. 2016, 81, C2398–C2404. [Google Scholar] [CrossRef]
- Wiesinger, J.A.; Cichy, K.A.; Glahn, R.P.; Grusak, M.A.; Brick, M.A.; Thompson, H.J.; Tako, E. Demonstrating a nutritional advantage to the fast-cooking dry bean (Phaseolus vulgaris L.). J. Agric. Food Chem. 2016, 64, 8592–8603. [Google Scholar] [CrossRef]
- Godrich, J.; Rose, P.; Muleya, M.; Gould, J. The effect of popping, soaking, boiling and roasting processes on antinutritional factors in chickpeas and red kidney beans. Int. J. Food Sci. Technol. 2023, 58, 279–289. [Google Scholar] [CrossRef]
- Sparvoli, F.; Laureati, M.; Pilu, R.; Pagliarini, E.; Toschi, I.; Giuberti, G.; Fortunati, P.; Daminati, M.G.; Cominelli, E.; Bollini, R. Exploitation of common bean flours with low antinutrient content for making nutritionally enhanced biscuits. Front. Plant Sci. 2016, 7, 928. [Google Scholar] [CrossRef]
- Wang, J.; Liu, C.; Zheng, X.; Hong, J.; Sun, B.; Liu, M. The structural integrity of endosperm/cotyledon cells and cell modification affect starch digestion properties. Food Funct. 2023, 14, 6784–6801. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.L. Current regulatory guidelines and resources to support research of dietary supplements in the United States. Crit. Rev. Food Sci. Nutr. 2018, 60, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.K.; Balodi, V.; Tripathi, A.D.; Rizwana; Agarwal, A.; Nirmal, N.P. The importance of labeling and certification: Ensuring quality and transparency. In Unleashing the Power of Functional Foods and Novel Bioactives; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2025; pp. 449–465. [Google Scholar]
- Ta, A.; Pn, A.; An, O.; No, B.; Po, U.; On, N.; Oc, P.; A, I. Effects of Raw and Cooked Aqueous and Methanol Extracts of Phaseolus vulgaris (Kidney Beans) on Renal Function in Albino Wistar Rats. Univers. J. Pharm. Res. 2020, 5, 6–11. [Google Scholar] [CrossRef]
- Qin, G.; Wang, F.; Liang, H.; Tang, S.; Shekh, K.; Wang, Y.; Li, B.; Dong, B.; Wen, P. Subchronic Study of a White Kidney Bean (Phaseolus vulgaris) Extract withα-Amylase Inhibitory Activity. BioMed Res. Int. 2019, 2019, 9272345. [Google Scholar] [CrossRef]
- Ferreira, K.C.; Bento, J.A.C.; Caliari, M.; Bassinello, P.Z.; Berrios, J.D.J. Dry bean proteins: Extraction methods, functionality, and application in products for human consumption. Cereal Chem. 2021, 99, 67–77. [Google Scholar] [CrossRef]
- Islam, S.S.; Adhikary, S.; Mostafa, M.; Hossain, M. Vegetable Beans: Comprehensive Insights into Diversity, Production, Nutritional Benefits, Sustainable Cultivation and Future Prospects. OnLine J. Biol. Sci. 2024, 24, 477–494. [Google Scholar] [CrossRef]
- Singh, R.P. Kidney bean starch: Composition, structure, properties, and modifications. In Non-Conventional Starch Sources; Singh, J., Kaur, L., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 439–465. [Google Scholar]
- Kelly, J.D.; Varner, G.V.; Chilvers, M.I.; Cichy, K.A.; Wright, E.M. Registration of ‘Coho’ light red kidney bean. J. Plant Regist. 2020, 14, 134–138. [Google Scholar] [CrossRef]






| Trial/Study (Year) | Design | Dose/Duration | Main Outcomes | Efficacy | References |
|---|---|---|---|---|---|
| Tzeng et al. (2022) | Clinical/Human | Not specified | Improve insulin sensitivity, reduce fasting glucose, fructosamine and HbA1c. | Promote glycemic control. | [84] |
| Barrett et al. (2011) Trial 1 | 11 adults, crossover | 1500 mg, single meal | Decrease glucose AUC by 66%, leading to quicker return to baseline. | Dose-dependent effect. | [83] |
| Barrett et al. (2011) Trial 2 | 7 adults, crossover | 750 mg, single meal | Reduce glucose AUC by 28%. | Lower dose, lower impact. | |
| Barrett et al. (2011) Trial 3 | 13 adults, crossover | 1500–3000 mg, single meal | (Capsule form) No impact, 3000 mg powder causes hyperglycemia by 34.1%. | Precise formulation is necessary. | |
| Barrett et al. (2011) Trial 4 | 13 individuals, FBG > 126 mg/dL. | 500 mg coleus/chitosan | Reduced glucose and insulin levels after 30–60 min compared to placebo. | A product developed by combining. | |
| 60-day RCT (n = 101) | Obese adults | 1000 mg × 3/day for 60 days | Loss of weight of 1.9 kg, as well as waist circumference. | Placebo: weight loss of 0.4 kg. | [88] |
| Wang et al. (2020) | Obese adults | 35 days, 2400 mg/day | Reduced weight by 2.2 kg, body fat and BMI. | Placebo-controlled. | [85] |
| 84-day RCT (n = 62) | Obese adults | Dosage not specified | 3.2 kg weight, 2.8% of fat reduction, 3.7 cm of waist circumference. | Controls are unchanged. | [70] |
| Jäger et al. (2024) | Double-blind, placebo-controlled | Dosage not specified | Increase fullness, decrease appetite and overindulging and improve portion management. | Modulation of appetite. | |
| 60-day RCT | Obese adults | Dosage not specified | Reduced weight and intake of food enhanced satiety vs. placebo | Consistent with other research findings. | [89] |
| 35-day RCT | Obese adults | 2400 mg/day | Lower triglycerides, cholesterol, fat mass, and body weight. | Cardiometabolic advantages. | [85] |
| 84-day RCT (n = 62) | Obese adults | Dosage not specified | Reduction in weight, BMI, waist circumference and improvement in HDL. | Cardiometabolic benefit. | [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muzaffar, H.; Jehangir, M.; Hu, J.; Yu, Y.; Yu, M.; Hu, Y. Therapeutic Potential of White Kidney Beans (Phaseolus vulgaris) for Weight Management. Foods 2025, 14, 3940. https://doi.org/10.3390/foods14223940
Muzaffar H, Jehangir M, Hu J, Yu Y, Yu M, Hu Y. Therapeutic Potential of White Kidney Beans (Phaseolus vulgaris) for Weight Management. Foods. 2025; 14(22):3940. https://doi.org/10.3390/foods14223940
Chicago/Turabian StyleMuzaffar, Hassan, Muhammad Jehangir, Jiayue Hu, Yiyang Yu, Mingzhou Yu, and Yonghong Hu. 2025. "Therapeutic Potential of White Kidney Beans (Phaseolus vulgaris) for Weight Management" Foods 14, no. 22: 3940. https://doi.org/10.3390/foods14223940
APA StyleMuzaffar, H., Jehangir, M., Hu, J., Yu, Y., Yu, M., & Hu, Y. (2025). Therapeutic Potential of White Kidney Beans (Phaseolus vulgaris) for Weight Management. Foods, 14(22), 3940. https://doi.org/10.3390/foods14223940

