Evaluation of Methods to Quantify Sialic Acid on Glycomacropeptide
Abstract
1. Introduction
1.1. Glycomacropeptide (GMP)
1.2. NANA on GMP
1.3. Historical Methods for NANA Quantification
1.4. Current Methods for NANA Quantification
2. Materials and Methods
2.1. GMP
2.2. Colorimetric Kit
2.3. Fluorometric Kit
2.4. Enzymatic Kit
2.5. Chromatographic
2.6. Method Validation
2.7. Statistical Analysis
3. Results
3.1. Time
3.2. Protein-Specificity
3.3. Linearity
3.4. Precision
3.5. Accuracy
4. Discussion
4.1. Fluorometric
4.2. Enzymatic
4.3. Chromatographic
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| beta-NADH | beta-nicotinamide adenine dinucleotide |
| DI | Deionized |
| DMSO | Dimethyl sulfoxide |
| DOE | Design of Experiments |
| Gal | Galactose |
| GalNAc | N-acetylgalactosamine |
| GC | Gas chromatography |
| GC-MS | Gas chromatography-mass spectrometry |
| GMP | Glycomacropeptide |
| HPLC | High-performance liquid chromatography |
| HPLC-MS | High-performance liquid chromatography–mass spectrometry |
| LOD | Limit of detection |
| LOQ | Limit of quantification |
| NANA | N-acetylneuraminic acid |
| OD | Optical density |
| Phe | Phenylalanine |
| PKU | Phenylketonuria |
| RSD | Relative standard deviation |
| SD | Standard deviation |
| Ser | Serine |
| TCA | Trichloroacetic acid |
| Thr | Threonine |
| Tris-HCl | Tris(hydroxymethyl)aminomethane hydrochloride |
References
- Córdova-Dávalos, L.E.; Jiménez, M.; Salinas, E. Glycomacropeptide Bioactivity and Health: A Review Highlighting Action Mechanisms and Signaling Pathways. Nutrients 2019, 11, 598. [Google Scholar] [CrossRef]
- O’Riordan, N.; Kane, M.; Joshi, L.; Hickey, R.M. Structural and Functional Characteristics of Bovine Milk Protein Glycosylation. Glycobiology 2014, 24, 220–236. [Google Scholar] [CrossRef]
- Lim, K.; van Calcar, S.C.; Nelson, K.L.; Gleason, S.T.; Ney, D.M. Acceptable Low-Phenylalanine Foods and Beverages Can Be Made with Glycomacropeptide from Cheese Whey for Individuals with PKU. Mol. Genet. Metab. 2007, 92, 176–178. [Google Scholar] [CrossRef]
- Sirtori, L.R.; Dutra-Filho, C.S.; Fitarelli, D.; Sitta, A.; Haeser, A.; Barschak, A.G.; Wajner, M.; Coelho, D.M.; Llesuy, S.; Belló-Klein, A.; et al. Oxidative Stress in Patients with Phenylketonuria. Biochim. Biophys. Acta 2005, 1740, 68–73. [Google Scholar] [CrossRef]
- Hendriksz, C.J.; Walter, J.H. Update on Phenylketonuria. Curr. Paediatr. 2004, 14, 400–406. [Google Scholar] [CrossRef]
- Proserpio, C.; Pagliarini, E.; Zuvadelli, J.; Paci, S.; Re Dionigi, A.; Banderali, G.; Cattaneo, C.; Verduci, E. Exploring Drivers of Liking of Low-Phenylalanine Products in Subjects with Phenyilketonuria Using Check-All-That-Apply Method. Nutrients 2018, 10, 1179. [Google Scholar] [CrossRef]
- Morrin, S.T.; Buck, R.H.; Farrow, M.; Hickey, R.M. Milk-Derived Anti-Infectives and Their Potential to Combat Bacterial and Viral Infection. J. Funct. Foods 2021, 81, 104442. [Google Scholar] [CrossRef]
- Fukudome, H.; Yamaguchi, T.; Higuchi, J.; Ogawa, A.; Taguchi, Y.; Li, J.; Kabuki, T.; Ito, K.; Sakai, F. Large-Scale Preparation and Glycan Characterization of Sialylglycopeptide from Bovine Milk Glycomacropeptide and Its Bifidogenic Properties. J. Dairy. Sci. 2021, 104, 1433–1444. [Google Scholar] [CrossRef]
- Idota, T.; Kawakami, H.; Nakajima, I. Growth-Promoting Effects of N-Acetylneuraminic Acid-Containing Substances on Bifidobacteria. Biosci. Biotechnol. Biochem. 1994, 58, 1720–1722. [Google Scholar] [CrossRef]
- Nakajima, K.; Tamura, N.; Kobayashi-Hattori, K.; Yoshida, T.; Hara-Kudo, Y.; Ikedo, M.; Sugita-Konishi, Y.; Hattori, M. Prevention of Intestinal Infection by Glycomacropeptide. Biosci. Biotechnol. Biochem. 2005, 69, 2294–2301. [Google Scholar] [CrossRef]
- Kawasaki, Y.; Isoda, H.; Tanimoto, M.; Dosako, S.; Idota, T.; Ahiko, K. Inhibition by Lactoferrin and κ-Casein Glycomacropeptide of Binding of Cholera Toxin to Its Receptor. Biosci. Biotechnol. Biochem. 1992, 56, 195–198. [Google Scholar] [CrossRef]
- Kawasaki, Y.; Isoda, H.; Shinmoto, H.; Tanimoto, M. Inhibition by K-Casein Glycomacropeptide and Lactoferrin of Influenza Virus Hemagglutination. Biosci. Biotechnol. Biochem. 1993, 57, 1214–1215. [Google Scholar] [CrossRef] [PubMed]
- Neelima; Sharma, R.; Singh Rajput, Y.; Mann, B. Chemical and Functional Properties of Glycomacropeptide (GMP) and Its Role in the Detection of Cheese Whey Adulteration in Milk: A Review. Dairy. Sci. Technol. 2013, 93, 21–43. [Google Scholar] [CrossRef]
- Kreuß, M.; Strixner, T.; Kulozik, U. The Effect of Glycosylation on the Interfacial Properties of Bovine Caseinomacropeptide. Food Hydrocoll. 2009, 23, 1818–1826. [Google Scholar] [CrossRef]
- González-Morelo, K.J.; Vega-Sagardía, M.; Garrido, D. Molecular Insights Into O-Linked Glycan Utilization by Gut Microbes. Front. Microbiol. 2020, 11, 591568. [Google Scholar] [CrossRef]
- Saito, T.; Itoh, T. Variations and Distributions of O-Glycosidically Linked Sugar Chains in Bovine K-Casein. J. Dairy. Sci. 1992, 75, 1768–1774. [Google Scholar] [CrossRef]
- Huang, L.J.; Lin, J.H.; Tsai, J.H.; Chu, Y.Y.; Chen, Y.W.; Chen, S.L.; Chen, S.H. Identification of Protein O-Glycosylation Site and Corresponding Glycans Using Liquid Chromatography–Tandem Mass Spectrometry via Mapping Accurate Mass and Retention Time Shift. J. Chromatogr. A 2014, 1371, 136–145. [Google Scholar] [CrossRef]
- Minkiewicz, P.; Slangen, C.J.; Lagerwerf, F.M.; Haverkamp, J.; Rollema, H.S.; Visser, S. Reversed-Phase High-Performance Liquid Chromatographic Separation of Bovine κ-Casein Macropeptide and Characterization of Isolated Fractions. J. Chromatogr. A 1996, 743, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Thomä-Worringer, C.; Sørensen, J.; López-Fandiño, R. Health Effects and Technological Features of Caseinomacropeptide. Int. Dairy. J. 2006, 16, 1324–1333. [Google Scholar] [CrossRef]
- Qu, Y.; Kim, B.J.; Koh, J.; Dallas, D.C. Analysis of Bovine Kappa-Casein Glycomacropeptide by Liquid Chromatography–Tandem Mass Spectrometry. Foods 2021, 10, 2028. [Google Scholar] [CrossRef]
- Poulsen, N.; Jensen, H.; Larsen, L. Factors Influencing Degree of Glycosylation and Phosphorylation of Caseins in Individual Cow Milk Samples. J. Dairy. Sci. 2016, 99, 3325–3333. [Google Scholar] [CrossRef]
- Taylor, C.M.; Woonton, B.W. Quantity and Carbohydrate Content of Glycomacropeptide Fractions Isolated from Raw and Heat-Treated Milk. Int. Dairy. J. 2009, 19, 709–714. [Google Scholar] [CrossRef]
- Hubl, U.; Sun, C.Q. Comparison of Conditions for the Hydrolytic Release of N-Acetylneuraminic Acid from Bovine Glycomacropeptide. Food New Zealand 2022, 22, 22–29. [Google Scholar]
- Ghosh, S. Sialic Acid and Biology of Life: An Introduction. In Sialic Acids and Sialoglycoconjugates in the Biology of Life, Health and Disease; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–61. ISBN 9780128161265. [Google Scholar]
- Karamanos, N.K.; Wikstrom, B.; Antonopoulos, C.A.; Hjerpe, A. Determination of N-Acetyl- and N-Glycolylneuraminic Acids in Glycoconjugates by Reversed-Phase High-Performance Liquid Chromatography with Ultraviolet Detection. J. Chromatogr. 1990, 503, 421–429. [Google Scholar] [CrossRef]
- Cheeseman, J.; Kuhnle, G.; Spencer, D.I.R.; Osborn, H.M.I. Assays for the Identification and Quantification of Sialic Acids: Challenges, Opportunities and Future Perspectives. Bioorg. Med. Chem. 2021, 30, 115882. [Google Scholar] [CrossRef] [PubMed]
- Spichtig, V.; Michaud, J.; Austin, S. Determination of Sialic Acids in Milks and Milk-Based Products. Anal. Biochem. 2010, 405, 28–40. [Google Scholar] [CrossRef]
- Schauer, R. Characterization of Sialic Acids. Methods Enzym. 1978, 50, 64–89. [Google Scholar] [CrossRef]
- Hara, S.; Takemori, Y.; Yamaguchi, M.; Nakamura, M.; Ohkura, Y. Fluorometric High-Performance Liquid Chromatography of N-Acetyl- and N-Glycolylneuraminic Acids and Its Application to Their Microdetermination in Human and Animal Sera, Glycoproteins, and Glycolipids. Anal. Biochem. 1987, 164, 138–145. [Google Scholar] [CrossRef]
- Varki, A.; Diaz, S. The Release and Purification of Sialic Acids from Glycoconjugates: Methods to Minimize the Loss and Migration of O-Acetyl Groups. Anal. Biochem. 1984, 137, 236–247. [Google Scholar] [CrossRef]
- Chen, X.; Varki, A. Advances in the Biology and Chemistry of Sialic Acids. ACS Chem. Biol. 2010, 5, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Hammond, K.S.; Papermaster, D.S. Fluorometric Assay of Sialic Acid in the Picomole Range: A Modification of the Thiobarbituric Acid Assay. Anal. Biochem. 1976, 74, 292–297. [Google Scholar] [CrossRef]
- Shukla, A.K.; Schauer, R. Analysis Of N,O-Acylated Neuraminic Acids By High-Performance Liquid Anion-Exchange Chromatography. J. Chromatogr. 1982, 244, 81–89. [Google Scholar] [CrossRef]
- Warren, L. The Thiobarbituric Acid Assay of Sialic Acids*. J. Biol. Chem. 1959, 234, 1971–1975. [Google Scholar] [CrossRef]
- Sigma-Aldrich. Sialic Acid Assay Kit. Available online: https://www.sigmaaldrich.com/US/en/product/sigma/mak314 (accessed on 17 March 2024).
- Sigma-Aldrich. Sialic Acid Quantitation Kit Technical Bulletin. 2019. Available online: https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/product/documents/228/218/sialicqbul.pdf (accessed on 2 November 2025).
- Sigma-Aldrich. Sialic Acid Quantitation Kit Sufficient for 25 Reactions. Available online: https://www.sigmaaldrich.com/US/en/product/sigma/sialicq (accessed on 18 March 2024).
- Sigma-Aldrich. Sialic Acid Assay Kit Technical Bulletin. 2017. Available online: https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/product/documents/185/226/mak314bul.pdf (accessed on 2 November 2025).
- Demir, I.; Bulduk, I.; Darwish, I.A.; Enginar, H. A Green Approach for Metoclopramide Quantification in Pharmaceutical Products: New HPLC and Spectrophotometric Methods. Sci. Rep. 2024, 14, 8765. [Google Scholar] [CrossRef] [PubMed]
- Bilskey, S.R.; Olendorff, S.A.; Chmielewska, K.; Tucker, K.R. A Comparative Analysis of Methods for Quantitation of Sugars during the Corn-to-Ethanol Fermentation Process. SLAS Technol. 2020, 25, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Schauer, R.; Kamerling, J.P. Chemistry, Biochemistry and Biology of Sialic Acids. In Glycoproteins II; Montreuil, J., Vliegenthart, J.F.G., Schachter, H., Eds.; Elsevier: Amsterdam, The Netherlands, 1997; pp. 243–402. [Google Scholar]
- Skoza, L.; Mohos, S. Stable Thiobarbituric Acid Chromophore with Dimethyl Sulphoxide. Biochem. J. 1976, 159, 457–462. [Google Scholar] [CrossRef]
- Fernando, S.F.; Woonton, B.W. Quantitation of N-Acetylneuraminic (Sialic) Acid in Bovine Glycomacropeptide (GMP). J. Food Compos. Anal. 2010, 23, 359–366. [Google Scholar] [CrossRef]


| Method | * Colorimetric | * Fluorometric | * Enzymatic | * Chromatographic |
|---|---|---|---|---|
| Sample Preparation | 2 h | 2 h | 2.5 h | 3 h |
| Reaction or Drying | 2 h | 2 h | 5 h | 24 h |
| Detection | 30 s | 30 s | 30 s | 3 h |
| Data Analysis | 0.5 h | 0.5 h | 0.5 h | 1 h |
| Total | 4.5 h | 4.5 h | 8 h | 31 h |
| Total Active Time | 2.5 h | 2.5 h | 3 h | 4 h |
| Method | Colorimetric | Fluorometric | Enzymatic | Chromatographic |
|---|---|---|---|---|
| Number of standards (n) | 4 | 4 | 4 | 5 |
| Range of concentration (µg/mL) | 0–309 | 0–30.9 | 0–309 | 0–485.0 |
| Number of calibration curves | 3 | 3 | 2 | 10 |
| The slope of the regression equation | 0.0017 ± 0.0001 | 39.747 ± 6.741 | 0.0003 ± 0.0000 | 9.6162 ± 0.4943 |
| The intercept of the regression equation | −0.0056 ± 0.0106 | 71.532 ± 44.610 | −0.0029 ± 0.0113 | 0.387 ± 0.030 |
| Coefficient of determination | 0.9979 ± 0.0024 | 0.9969 ± 0.0032 | 0.9858 ± 0.0113 | 0.9992 ± 0.0006 |
| Limit of detection (µg/mL) | 16.5 ± 11.5 | 2.13 ± 1.20 | 52.1 ± 3.2 | 10.7 ± 3.3 |
| Limit of quantification (µg/mL) | 50.1 ± 34.7 | 6.44 ± 3.63 | 158 ± 10 | 32.5 ± 10.0 |
| Method | * Colorimetric | * Fluorometric | * Enzymatic | * Chromatographic |
|---|---|---|---|---|
| Number of observations (n) | 12 | 11 | 5 | 10 |
| Average | 5.25 (5.11) | 7.26 | (14.09) | 6.18 (6.17) |
| SD | 0.24 (0.27) | 1.37 | (3.25) | 0.12 (0.15) |
| RSD (%) | 4.48 (5.19) | 18.90 | (23.09) | 1.94 (2.44) |
| Sample | Measured NANA (%w/w) | Recovery (%) |
|---|---|---|
| 1 | 6.25 | 96.32 |
| 2 | 5.94 | 81.18 |
| 3 | 6.44 | 93.24 |
| Average | 6.21 | 90.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dirks, M.L.; Hale, J.; Theiste, E.; McDougal, O.M. Evaluation of Methods to Quantify Sialic Acid on Glycomacropeptide. Foods 2025, 14, 3939. https://doi.org/10.3390/foods14223939
Dirks ML, Hale J, Theiste E, McDougal OM. Evaluation of Methods to Quantify Sialic Acid on Glycomacropeptide. Foods. 2025; 14(22):3939. https://doi.org/10.3390/foods14223939
Chicago/Turabian StyleDirks, Madison L., Joseph Hale, Eric Theiste, and Owen M. McDougal. 2025. "Evaluation of Methods to Quantify Sialic Acid on Glycomacropeptide" Foods 14, no. 22: 3939. https://doi.org/10.3390/foods14223939
APA StyleDirks, M. L., Hale, J., Theiste, E., & McDougal, O. M. (2025). Evaluation of Methods to Quantify Sialic Acid on Glycomacropeptide. Foods, 14(22), 3939. https://doi.org/10.3390/foods14223939

