The Role of a Sustainable Planetary Health Diet in the Prevention of Non-Communicable Diseases and Cause-Specific Mortality: A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Cohort Studies
3.2. Cross-Sectional Studies
3.3. Case–Control Studies
3.4. Meta-Analysis
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| BMI | body mass index |
| CHD | coronary heart disease |
| COPD | chronic obstructive pulmonary disease |
| CVD | cardiovascular diseases |
| DBP | diastolic blood pressure |
| EPIC | European Prospective Investigation into Cancer and Nutrition |
| FBG | fasting blood glucose |
| FPG | fasting plasma glucose |
| GHG | Greenhouse gas |
| HDL-C | high-density lipoprotein cholesterol |
| HOMA-IR | Homeostatic Model Assessment for Insulin Resistance |
| HPFS | Health Professionals Follow-Up Study |
| IARC | International Agency for Research on Cancer |
| LDL-C | low-density lipoprotein cholesterol |
| MD | Mediterranean Diet |
| NHS | Nurses’ Health Study |
| PHD | Planetary Health Diet |
| SBP | systolic blood pressure |
| TG | triglycerides |
| UK | United Kingdom |
| WC | waist circumference |
References
- GBD 2021 Causes of Death Collaborators. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2100–2132. [Google Scholar] [CrossRef]
- Menotti, A.; Kromhout, D.; Blackburn, H.; Fidanza, F.; Buzina, R.; Nissinen, A. Food intake patterns and 25-year mortality from coronary heart disease: Cross-cultural correlations in the Seven Countries Study. The Seven Countries Study Research Group. Eur. J. Epidemiol. 1999, 15, 507–515. [Google Scholar] [CrossRef]
- Seven Countries Study Webpage. Available online: https://www.sevencountriesstudy.com/mediterranean-dietary-patterns/ (accessed on 29 August 2025).
- Molani-Gol, R.; Rafraf, M. Effects of the Mediterranean diet on the secondary prevention of cardiovascular diseases: A systematic review of randomised controlled trials. Int. J. Food Sci. Nutr. 2025, 76, 226–238. [Google Scholar] [CrossRef]
- Hareer, L.W.; Lau, Y.Y.; Mole, F.; Reidlinger, D.P.; O’Neill, H.M.; Mayr, H.L.; Greenwood, H.; Albarqouni, L. The effectiveness of the Mediterranean Diet for primary and secondary prevention of cardiovascular disease: An umbrella review. Nutr. Diet. 2025, 82, 8–41. [Google Scholar] [CrossRef]
- Veronese, N.; Ragusa, F.S.; Maggi, S.; Witard, O.C.; Smith, L.; Dominguez, L.J.; Barbagallo, M.; Isanejad, M.; Prokopidis, K. Effect of the Mediterranean diet on incidence of heart failure in European countries: A systematic review and meta-analysis of cohort studies. Eur. J. Clin. Nutr. 2025, 79, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, S.A.; Padda, I.; Johal, G. Long-term impact of mediterranean diet on cardiovascular disease prevention: A systematic review and meta-analysis of randomized controlled trials. Curr. Probl. Cardiol. 2024, 49, 102509. [Google Scholar] [CrossRef]
- Ungvari, Z.; Fekete, M.; Fekete, J.T.; Grosso, G.; Ungvari, A.; Győrffy, B. Adherence to the Mediterranean diet and its protective effects against colorectal cancer: A meta-analysis of 26 studies with 2,217,404 participants. Geroscience 2025, 47, 1105–1121. [Google Scholar] [CrossRef]
- Karimi, M.; Asbaghi, O.; Hooshmand, F.; Aghayan, A.H.; Shariati, A.A.; Kazemi, K.; Amirpour, M.; Davoodi, S.H.; Larijani, B. Adherence to Mediterranean Diet and Breast Cancer Risk: A Meta-Analysis of Prospective Observational Studies. Health Sci. Rep. 2025, 8, e70736. [Google Scholar] [CrossRef] [PubMed]
- Zalaquett, N.; Lidoriki, I.; Lampou, M.; Saab, J.; Hadkhale, K.; Christophi, C.; Kales, S.N. Adherence to the Mediterranean Diet and the Risk of Head and Neck Cancer: A Systematic Review and Meta-Analysis of Case-Control Studies. Nutrients 2025, 17, 287. [Google Scholar] [CrossRef]
- Fekete, M.; Varga, P.; Ungvari, Z.; Fekete, J.T.; Buda, A.; Szappanos, Á.; Lehoczki, A.; Mózes, N.; Grosso, G.; Godos, J.; et al. The role of the Mediterranean diet in reducing the risk of cognitive impairement, dementia, and Alzheimer’s disease: A meta-analysis. Geroscience 2025, 47, 3111–3130. [Google Scholar] [CrossRef]
- Nucci, D.; Sommariva, A.; Degoni, L.M.; Gallo, G.; Mancarella, M.; Natarelli, F.; Savoia, A.; Catalini, A.; Ferranti, R.; Pregliasco, F.E.; et al. Association between Mediterranean diet and dementia and Alzheimer disease: A systematic review with meta-analysis. Aging Clin. Exp. Res. 2024, 36, 77. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
- Rock, C.L.; Thomson, C.; Gansler, T.; Gapstur, S.M.; McCullough, M.L.; Patel, A.V.; Andrews, K.S.; Bandera, E.V.; Spees, C.K.; Robien, K.; et al. American Cancer Society guideline for diet and physical activity for cancer prevention. CA Cancer J. Clin. 2020, 70, 245–271. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef]
- EAT-Lancet Commission. Healthy Diets From Sustainable Food Systems. Food Planet Health. Summary Report of the EAT-Lancet Commission. Available online: https://eatforum.org/wp-content/uploads/2025/09/EAT-Lancet_Commission_Summary_Report.pdf (accessed on 29 August 2025).
- Morcel, J.; Béghin, L.; Michels, N.; De Ruyter, T.; Drumez, E.; Cailliau, E.; Polito, A.; Le Donne, C.; Barnaba, L.; Azzini, E.; et al. Nutritional and physical fitness parameters in adolescence impact cardiovascular health in adulthood. Clin. Nutr. 2024, 43, 1857–1864. [Google Scholar] [CrossRef]
- Lei, L.; Qin, H.; Chen, Y.; Sun, Y.; Yin, W.; Tong, S. Association Between Adherence to EAT-Lancet Diet and Risk of Hypertension: An 18-Year National Cohort Study in China. J. Am. Nutr. Assoc. 2025, 44, 40–49. [Google Scholar] [CrossRef]
- Zhang, S.; Stubbendorff, A.; Olsson, K.; Ericson, U.; Niu, K.; Qi, L.; Borné, Y.; Sonestedt, E. Adherence to the EAT-Lancet diet, genetic susceptibility, and risk of type 2 diabetes in Swedish adults. Metabolism 2023, 141, 155401. [Google Scholar] [CrossRef]
- Xu, C.; Cao, Z.; Yang, H.; Hou, Y.; Wang, X.; Wang, Y. Association Between the EAT-Lancet Diet Pattern and Risk of Type 2 Diabetes: A Prospective Cohort Study. Front. Nutr. 2022, 8, 784018. [Google Scholar] [CrossRef]
- Langmann, F.; Ibsen, D.B.; Tjønneland, A.; Olsen, A.; Overvad, K.; Dahm, C.C. Adherence to the EAT-Lancet diet is associated with a lower risk of type 2 diabetes: The Danish Diet, Cancer and Health cohort. Eur. J. Nutr. 2023, 62, 1493–1502. [Google Scholar] [CrossRef]
- Cai, H.; Talsma, E.F.; Chang, Z.; Wen, X.; Fan, S.; Van’t Veer, P.; Biesbroek, S. Health outcomes, environmental impacts, and diet costs of adherence to the EAT-Lancet Diet in China in 1997-2015: A health and nutrition survey. Lancet Planet Health 2024, 8, e1030–e1042. [Google Scholar] [CrossRef]
- Wu, H.; Wei, J.; Wang, S.; Chen, L.; Zhang, J.; Wang, N.; Tan, X. Dietary pattern modifies the risk of MASLD through metabolomic signature. JHEP Rep. 2024, 6, 101133. [Google Scholar] [CrossRef]
- Li, T.; Zhao, J.; Cao, H.; Han, X.; Lu, Y.; Jiang, F.; Li, X.; Sun, J.; Zhou, S.; Sun, Z.; et al. Dietary patterns in the progression of metabolic dysfunction-associated fatty liver disease to advanced liver disease: A prospective cohort study. Am. J. Clin. Nutr. 2024, 120, 518–527. [Google Scholar] [CrossRef]
- Langmann, F.; Ibsen, D.B.; Tjønneland, A.; Olsen, A.; Overvad, K.; Dahm, C.C. Adherence to the EAT-Lancet diet in midlife and development in weight or waist circumference after five years in a Danish cohort. Dialogues Health 2023, 3, 100151. [Google Scholar] [CrossRef] [PubMed]
- Suikki, T.; Maukonen, M.; Kaartinen, N.E.; Harald, K.; Bäck, S.; Sares-Jäske, L.; Härkänen, T.; Koskinen, S.; Jousilahti, P.; Pajari, A.M.; et al. Associations of EAT-Lancet Planetary Health Diet or Finnish Nutrition Recommendations with changes in obesity measures: A follow-up study in adults. Food Nutr. Res. 2023, 67, 9107. [Google Scholar] [CrossRef]
- Suikki, T.; Maukonen, M.; Marjonen-Lindblad, H.; Kaartinen, N.E.; Härkänen, T.; Jousilahti, P.; Pajari, A.M.; Männistö, S. Role of Planetary Health Diet in the association between genetic susceptibility to obesity and anthropometric measures in adults. Int. J. Obes. 2025, 49, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Masip, G.; Nielsen, D.E. Relationships between the Planetary Health Diet Index, its food groups, and polygenic risk of obesity in the CARTaGENE cohort. Nutr. Metab. 2024, 21, 116. [Google Scholar] [CrossRef]
- Sawicki, C.M.; Ramesh, G.; Bui, L.; Nair, N.K.; Hu, F.B.; Rimm, E.B.; Stampfer, M.J.; Willett, W.C.; Bhupathiraju, S.N. Planetary health diet and cardiovascular disease: Results from three large prospective cohort studies in the USA. Lancet Planet Health 2024, 8, e666–e674. [Google Scholar] [CrossRef]
- Sotos-Prieto, M.; Ortolá, R.; Maroto-Rodriguez, J.; Carballo-Casla, A.; Kales, S.N.; Rodríguez-Artalejo, F. Association between Planetary Health Diet and Cardiovascular Disease: A Prospective Study from the UK Biobank. Eur. J. Prev. Cardiol. 2024, 32, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Colizzi, C.; Harbers, M.C.; Vellinga, R.E.; Verschuren, W.M.M.; Boer, J.M.A.; Biesbroek, S.; Temme, E.H.M.; van der Schouw, Y.T. Adherence to the EAT-Lancet Healthy Reference Diet in Relation to Risk of Cardiovascular Events and Environmental Impact: Results From the EPIC-NL Cohort. J. Am. Heart Assoc. 2023, 12, e026318. [Google Scholar] [CrossRef]
- Zhang, S.; Dukuzimana, J.; Stubbendorff, A.; Ericson, U.; Borné, Y.; Sonestedt, E. Adherence to the EAT-Lancet diet and risk of coronary events in the Malmö Diet and Cancer cohort study. Am. J. Clin. Nutr. 2023, 117, 903–909. [Google Scholar] [CrossRef]
- Zhang, S.; Marken, I.; Stubbendorff, A.; Ericson, U.; Qi, L.; Sonestedt, E.; Borné, Y. The EAT-Lancet Diet Index, Plasma Proteins, and Risk of Heart Failure in a Population-Based Cohort. JACC Heart Fail. 2024, 12, 1197–1208. [Google Scholar] [CrossRef] [PubMed]
- Ibsen, D.B.; Christiansen, A.H.; Olsen, A.; Tjønneland, A.; Overvad, K.; Wolk, A.; Mortensen, J.K.; Dahm, C.C. Adherence to the EAT-Lancet Diet and Risk of Stroke and Stroke Subtypes: A Cohort Study. Stroke 2022, 53, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Castellanos, K.B.; Zazpe, I.; Santiago, S.; Bes-Rastrollo, M.; Martínez-González, M.Á. Planetary Health Diet and Cardiovascular Disease Risk in the Seguimiento Universidad de Navarra (SUN) Cohort. Nutrients 2024, 17, 27. [Google Scholar] [CrossRef] [PubMed]
- Karavasiloglou, N.; Thompson, A.S.; Pestoni, G.; Knuppel, A.; Papier, K.; Cassidy, A.; Kühn, T.; Rohrmann, S. Adherence to the EAT-Lancet reference diet is associated with a reduced risk of incident cancer and all-cause mortality in UK adults. One Earth 2023, 6, 1726–1734. [Google Scholar] [CrossRef]
- Martins, L.B.; Gamba, M.; Stubbendorff, A.; Gasser, N.; Löbl, L.; Stern, F.; Ericson, U.; Marques-Vidal, P.; Vuilleumier, S.; Chatelan, A. Association between the EAT-Lancet Diet, Incidence of Cardiovascular Events, and All-Cause Mortality: Results from a Swiss Cohort. J. Nutr. 2025, 155, 483–491. [Google Scholar] [CrossRef]
- Berthy, F.; Brunin, J.; Allès, B.; Fezeu, L.K.; Touvier, M.; Hercberg, S.; Galan, P.; Pointereau, P.; Lairon, D.; Baudry, J.; et al. Association between adherence to the EAT-Lancet diet and risk of cancer and cardiovascular outcomes in the prospective NutriNet-Santé cohort. Am. J. Clin. Nutr. 2022, 116, 980–991. [Google Scholar] [CrossRef]
- Ye, Y.X.; Geng, T.T.; Zhou, Y.F.; He, P.; Zhang, J.J.; Liu, G.; Willett, W.; Pan, A.; Koh, W.P. Adherence to a Planetary Health Diet, Environmental Impacts, and Mortality in Chinese Adults. JAMA Netw. Open 2023, 6, e2339468. [Google Scholar] [CrossRef]
- Han, S.; Yan, C.; Zhang, Z.; Han, Y.; Wang, Q.; Cheng, S.; Li, P.; Wang, T.; Gong, X.; Guo, J. Examining the link between adherence to the planetary health diet pattern and mortality in the us: A prospective cohort study. Eur. J. Nutr. 2025, 64, 79. [Google Scholar] [CrossRef]
- Stubbendorff, A.; Sonestedt, E.; Ramne, S.; Drake, I.; Hallström, E.; Ericson, U. Development of an EAT-Lancet index and its relation to mortality in a Swedish population. Am. J. Clin. Nutr. 2022, 115, 705–716. [Google Scholar] [CrossRef]
- Pitt, S.; Kałuża, J.; Widenfalk, A.; Åkesson, A.; Wolk, A. Adherence to the EAT-Lancet diet in relation to mortality and exposure to food contaminants in population-based cohorts of Swedish men and women. Environ. Int. 2024, 184, 108495. [Google Scholar] [CrossRef]
- Bui, L.P.; Pham, T.T.; Wang, F.; Chai, B.; Sun, Q.; Hu, F.B.; Lee, K.H.; Guasch-Ferre, M.; Willett, W.C. Planetary Health Diet Index and risk of total and cause-specific mortality in three prospective cohorts. Am. J. Clin. Nutr. 2024, 120, 80–91. [Google Scholar] [CrossRef]
- Mangone, L.; Sacerdote, C.; Laine, J.; Masala, G.; Bendinelli, B.; Panico, S.; Chiodini, P.; Grioni, S.; Tumino, R.; Petiti, L.; et al. Food, Health, and Mitigation of Climate change in Italy. Food, Health, and Mitigation of Climate change in Italy. Epidemiol. Prev. 2023, 47, 32–38. [Google Scholar] [CrossRef]
- Liu, F.; Si, C.; Chen, L.; Peng, Y.; Wang, P.; Wang, X.; Gong, J.; Zhou, H.; Gu, J.; Qin, A.; et al. EAT-Lancet Diet Pattern, Genetic Predisposition, Inflammatory Biomarkers, and Risk of Lung Cancer Incidence and Mortality. Mol. Nutr. Food Res. 2024, 68, e2400448. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Peng, L.; Xu, Z.; Tang, Y.; He, H.; Gu, H.; Wang, Y.; Xiang, L. Association between adherence to Eat-Lancet diet and incidence and mortality of lung cancer: A prospective cohort study. Cancer Sci. 2023, 114, 4433–4444. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Yu, C.; Peng, L.; Gu, H.; Xiao, Y.; Tang, Y.; He, H.; Xiang, L.; Wang, Y.; Jiang, Y. Compliance with the EAT-Lancet diet and risk of colorectal cancer: A prospective cohort study in 98,415 American adults. Front. Nutr. 2023, 10, 1264178. [Google Scholar] [CrossRef]
- Ren, X.; Xiao, Y.; Xiang, L.; Peng, L.; Tang, Y.; He, H.; Wang, Y.; Du, Q.; Gu, H. Adherence to the EAT-Lancet diet reduces the risk of head and neck cancers in 101,755 American adults: A prospective cohort study. Public Health 2024, 234, 191–198. [Google Scholar] [CrossRef]
- Quartiroli, M.; Roncallo, C.; Pala, V.; Simeon, V.; Ricceri, F.; Venturelli, E.; Pattaroni, L.; Sieri, S.; Agnoli, C. Adherence to Diet Quality Indices and Breast Cancer Risk in the Italian ORDET Cohort. Nutrients 2024, 16, 1187. [Google Scholar] [CrossRef]
- Koelman, L.; Herpich, C.; Norman, K.; Jannasch, F.; Börnhorst, C.; Schulze, M.B.; Aleksandrova, K. Adherence to Healthy and Sustainable Dietary Patterns and Long-Term Chronic Inflammation: Data from the EPIC-Potsdam Cohort. J. Nutr. Health Aging 2023, 27, 1109–1117. [Google Scholar] [CrossRef]
- de Oliveira Neta, R.S.; Lima, S.C.V.C.; Medeiros, M.F.A.; Araújo, D.B.M.; Bernardi, N.; de Araújo, A.A.N.G.; Jacob, M.C.M.; Neta, A.D.C.P.A.; Marchioni, D.M.L.; Lyra, C.O.; et al. The EAT-Lancet diet associated cardiovascular health parameters: Evidence from a Brazilian study. Nutr. J. 2024, 23, 116. [Google Scholar] [CrossRef]
- Cacau, L.T.; Benseñor, I.M.; Goulart, A.C.; Cardoso, L.O.; Santos, I.S.; Lotufo, P.A.; Moreno, L.A.; Marchioni, D.M. Adherence to the EAT-Lancet sustainable reference diet and cardiometabolic risk profile: Cross-sectional results from the ELSA-Brasil cohort study. Eur. J. Nutr. 2023, 62, 807–817. [Google Scholar] [CrossRef]
- Frank, S.M.; Jaacks, L.M.; Avery, C.L.; Adair, L.S.; Meyer, K.; Rose, D.; Taillie, L.S. Dietary quality and cardiometabolic indicators in the USA: A comparison of the Planetary Health Diet Index, Healthy Eating Index-2015, and Dietary Approaches to Stop Hypertension. PLoS ONE 2024, 19, e0296069. [Google Scholar] [CrossRef]
- McDowell, S.R.; Murray, K.; Hunter, M.; Blekkenhorst, L.C.; Lewis, J.R.; Hodgson, J.M.; Bondonno, N.P. Comparison of Four Dietary Pattern Indices in Australian Baby Boomers: Findings from the Busselton Healthy Ageing Study. Nutrients 2023, 15, 659. [Google Scholar] [CrossRef] [PubMed]
- Cacau, L.T.; Benseñor, I.M.; Goulart, A.C.; Cardoso, L.O.; Lotufo, P.A.; Moreno, L.A.; Marchioni, D.M. Adherence to the Planetary Health Diet Index and Obesity Indicators in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Nutrients 2021, 13, 3691. [Google Scholar] [CrossRef] [PubMed]
- Macit-Çelebi, M.S.; Bozkurt, O.; Kocaadam-Bozkurt, B.; Köksal, E. Evaluation of sustainable and healthy eating behaviors and adherence to the planetary health diet index in Turkish adults: A cross-sectional study. Front. Nutr. 2023, 10, 1180880. [Google Scholar] [CrossRef]
- Ambroży, U.; Błaszczyk-Bębenek, E.; Ambroży, D.; Jagielski, P.; Rydzik, Ł.; Ambroży, T. Nutritional Status, Intentions and Motivations towards Adopting a Planetary Health Diet-A Cross-Sectional Study. Nutrients 2023, 15, 5102. [Google Scholar] [CrossRef] [PubMed]
- Shojaei, S.; Dehnavi, Z.; Irankhah, K.; Fatemi, S.F.; Sobhani, S.R. Adherence to the planetary health diet index and metabolic syndrome: Cross-sectional results from the PERSIAN cohort study. BMC Public Health 2024, 24, 2988. [Google Scholar] [CrossRef]
- Mohammadi, F.; Alijani, S.; Abdollahi, N.; Mashoufi, A.; Nouri, M.; Soltanii, M.; Shateri, Z.; Rashidkhani, B. The association between Planetary Health Diet Index and the risk of colorectal cancer: A case-control study. Sci. Rep. 2024, 14, 26546. [Google Scholar] [CrossRef]
- Liu, J.; Shen, Q.; Wang, X. Emerging EAT-Lancet planetary health diet is associated with major cardiovascular diseases and all-cause mortality: A global systematic review and meta-analysis. Clin. Nutr. 2024, 43, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, S.; Liu, J. Fiber consumption and all-cause, cardiovascular, and cancer mortalities: A systematic review and meta-analysis of cohort studies. Mol. Nutr. Food Res. 2015, 59, 139–146. [Google Scholar] [CrossRef]
- Arayici, M.E.; Basbinar, Y.; Ellidokuz, H. High and low dietary fiber consumption and cancer risk: A comprehensive umbrella review with meta-meta-analysis involving meta-analyses of observational epidemiological studies. Crit. Rev. Food Sci. Nutr. 2025, 65, 1617–1630. [Google Scholar] [CrossRef]
- Rostampour, K.; Alipour, K.; Mirjalili, F.; Forootani, B.; Yekrang Safakar, H.; Beigrezaei, S.; Forbes, S.C.; Salehi-Abargouei, A. Dietary Flavonoids and Lung Cancer: A GRADE-Assessed Systematic Review and Meta-Analysis of Observational Studies. Nutr. Cancer 2025, 77, 164–178. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Micek, A.; Godos, J.; Pajak, A.; Sciacca, S.; Galvano, F.; Giovannucci, E.L. Dietary Flavonoid and Lignan Intake and Mortality in Prospective Cohort Studies: Systematic Review and Dose-Response Meta-Analysis. Am. J. Epidemiol. 2017, 185, 1304–1316. [Google Scholar] [CrossRef] [PubMed]
- Syed Soffian, S.S.; Mohammed Nawi, A.; Hod, R.; Ja’afar, M.H.; Isa, Z.M.; Chan, H.K.; Hassan, M.R.A. Meta-Analysis of the Association between Dietary Inflammatory Index (DII) and Colorectal Cancer. Nutrients 2022, 14, 1555. [Google Scholar] [CrossRef]
- Shivappa, N.; Godos, J.; Hébert, J.R.; Wirth, M.D.; Piuri, G.; Speciani, A.F.; Grosso, G. Dietary Inflammatory Index and Cardiovascular Risk and Mortality-A Meta-Analysis. Nutrients 2018, 10, 200. [Google Scholar] [CrossRef]
- Aburto, N.J.; Hanson, S.; Gutierrez, H.; Hooper, L.; Elliott, P.; Cappuccio, F.P. Effect of increased potassium intake on cardiovascular risk factors and disease: Systematic review and meta-analyses. BMJ 2013, 346, f1378. [Google Scholar] [CrossRef]
- Vinceti, M.; Filippini, T.; Crippa, A.; de Sesmaisons, A.; Wise, L.A.; Orsini, N. Meta-Analysis of Potassium Intake and the Risk of Stroke. J. Am. Heart Assoc. 2016, 5, e004210. [Google Scholar] [CrossRef]
- Livesey, G.; Taylor, R.; Livesey, H.F.; Buyken, A.E.; Jenkins, D.J.A.; Augustin, L.S.A.; Sievenpiper, J.L.; Barclay, A.W.; Liu, S.; Wolever, T.M.S.; et al. Dietary Glycemic Index and Load and the Risk of Type 2 Diabetes: Assessment of Causal Relations. Nutrient 2019, 11, 1436. [Google Scholar] [CrossRef]
- Dwivedi, A.K.; Dubey, P.; Reddy, S.Y.; Clegg, D.J. Associations of Glycemic Index and Glycemic Load with Cardiovascular Disease: Updated Evidence from Meta-analysis and Cohort Studies. Curr. Cardiol. Rep. 2022, 24, 141–161. [Google Scholar] [CrossRef] [PubMed]
- Juanola-Falgarona, M.; Salas-Salvadó, J.; Buil-Cosiales, P.; Corella, D.; Estruch, R.; Ros, E.; Fitó, M.; Recondo, J.; Gómez-Gracia, E.; Fiol, M.; et al. Dietary Glycemic Index and Glycemic Load Are Positively Associated with Risk of Developing Metabolic Syndrome in Middle-Aged and Elderly Adults. J. Am. Geriatr. Soc. 2015, 63, 1991–2000. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Dehghan, M.; Mente, A.; Bangdiwala, S.I.; Rangarajan, S.; Srichaikul, K.; Mohan, V.; Avezum, A.; Díaz, R.; Rosengren, A.; et al. Glycemic Index, Glycemic Load, and Cardiovascular Disease and Mortality. N. Engl. J. Med. 2021, 384, 1312–1322. [Google Scholar] [CrossRef]
- Melkonian, S.C.; Daniel, C.R.; Ye, Y.; Pierzynski, J.A.; Roth, J.A.; Wu, X. Glycemic Index, Glycemic Load, and Lung Cancer Risk in Non-Hispanic Whites. Cancer Epidemiol. Biomarkers Prev. 2016, 25, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, S.; Chan, D.S.M.; Vingeliene, S.; Vieira, A.R.; Abar, L.; Polemiti, E.; Stevens, C.A.T.; Greenwood, D.C.; Aune, D.; Norat, T. Carbohydrates, glycemic index, glycemic load, and breast cancer risk: A systematic review and dose-response meta-analysis of prospective studies. Nutr. Rev. 2017, 75, 420–441. [Google Scholar] [CrossRef] [PubMed]
- Sieri, S.; Agnoli, C.; Pala, V.; Grioni, S.; Brighenti, F.; Pellegrini, N.; Masala, G.; Palli, D.; Mattiello, A.; Panico, S.; et al. Dietary glycemic index, glycemic load, and cancer risk: Results from the EPIC-Italy study. Sci. Rep. 2017, 7, 9757. [Google Scholar] [CrossRef]
- World Cancer Research Fund International Webpage. Available online: https://www.wcrf.org/research-policy/evidence-for-our-recommendations/limit-red-processed-meat/ (accessed on 31 October 2025).
- International Agency for Research on Cancer. IARC Monographs on the Identification of Carcinogenic Hazards to Humans. Available online: https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (accessed on 31 October 2025).
- Filippini, T.; Malavolti, M.; Whelton, P.K.; Vinceti, M. Sodium Intake and Risk of Hypertension: A Systematic Review and Dose-Response Meta-analysis of Observational Cohort Studies. Curr. Hypertens. Rep. 2022, 24, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Jayedi, A.; Ghomashi, F.; Zargar, M.S.; Shab-Bidar, S. Dietary sodium, sodium-to-potassium ratio, and risk of stroke: A systematic review and nonlinear dose-response meta-analysis. Clin. Nutr. 2019, 38, 1092–1100. [Google Scholar] [CrossRef]
- Wang, Y.J.; Yeh, T.L.; Shih, M.C.; Tu, Y.K.; Chien, K.L. Dietary Sodium Intake and Risk of Cardiovascular Disease: A Systematic Review and Dose-Response Meta-Analysis. Nutrients 2020, 12, 2934. [Google Scholar] [CrossRef]
- Wu, B.; Yang, D.; Yang, S.; Zhang, G. Dietary Salt Intake and Gastric Cancer Risk: A Systematic Review and Meta-Analysis. Front. Nutr. 2021, 8, 801228. [Google Scholar] [CrossRef]
- Hong, J.Y.; Kim, Y.J.; Bae, S.; Kim, M.K. Associations of daily diet-related greenhouse gas emissions with the incidence and mortality of chronic diseases: A systematic review and meta-analysis of epidemiological studies. Epidemiol. Health 2023, 45, e2023011. [Google Scholar] [CrossRef]
- Stubbendorff, A.; Janzi, S.; Borné, Y.; Carlbaum, M.; Jukkola, J.; Ericson, U.; Hallström, E.; Sonestedt, E. Associations between dietary greenhouse gas emissions, mortality, and chronic disease risk: A prospective cohort study in Sweden. Environ. Chall. 2025, 20, 101309. [Google Scholar] [CrossRef]
- Kesse-Guyot, E.; Chayre, A.; Perraud, E.; Berger, S.; Richard, A.; Berlivet, J.; Touvier, M.; Allès, B.; Hercberg, S.; Lairon, D.; et al. Association between dietary environmental pressures and major chronic diseases: Assessment from the prospective NutriNet-Santé cohort. Lancet Reg. Health Eur. 2025, 59, 101481. [Google Scholar] [CrossRef]
- Laine, J.E.; Huybrechts, I.; Gunter, M.J.; Ferrari, P.; Weiderpass, E.; Tsilidis, K.; Aune, D.; Schulze, M.B.; Bergmann, M.; Temme, E.H.M.; et al. Co-benefits from sustainable dietary shifts for population and environmental health: An assessment from a large European cohort study. Lancet Planet Health 2021, 5, e786–e796. [Google Scholar] [CrossRef]
- Alahmad, B.; Khraishah, H.; Althalji, K.; Borchert, W.; Al-Mulla, F.; Koutrakis, P. Connections Between Air Pollution, Climate Change, and Cardiovascular Health. Can. J. Cardiol. 2023, 39, 1182–1190. [Google Scholar] [CrossRef]
- Zhang, J.D.; Cheng, X.F.; Min, S.H.; Guo, R.Q.; Wang, R.N.; He, Y.T.; Zhang, Y.L.; Li, B. Burden of non-communicable diseases attributable to high temperature in a changing climate from 1990 to 2019: A global analysis. BMC Public Health 2024, 24, 2475. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, M.; Ji, M.; Fan, J.; Xie, J.; Wei, X.; Jiang, X.; Xu, J.; Chen, L.; Yin, R.; et al. Air Pollution, Genetic Factors, and the Risk of Lung Cancer: A Prospective Study in the UK Biobank. Am. J. Respir. Crit. Care Med. 2021, 204, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zeng, H.; Zheng, R.; Li, S.; Barnett, A.G.; Zhang, S.; Zou, X.; Huxley, R.; Chen, W.; Williams, G. The association between lung cancer incidence and ambient air pollution in China: A spatiotemporal analysis. Environ. Res. 2016, 144 Pt A, 60–65. [Google Scholar] [CrossRef]
- Tseng, C.H.; Tsuang, B.J.; Chiang, C.J.; Ku, K.C.; Tseng, J.S.; Yang, T.Y.; Hsu, K.H.; Chen, K.C.; Yu, S.L.; Lee, W.C.; et al. The Relationship Between Air Pollution and Lung Cancer in Nonsmokers in Taiwan. J. Thorac. Oncol. 2019, 14, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Bui, L.P.; Wang, F.; Wang, D.D.; Springmann, M.; Willett, W.C. Global adherence to a healthy and sustainable diet and potential reduction in premature death. Proc. Natl. Acad. Sci. USA 2024, 121, e2319008121. [Google Scholar] [CrossRef]
- Chen, Y.; Chai, L. How Far Are We from the Planetary Health Diet? A Threshold Regression Analysis of Global Diets. Foods 2022, 11, 986. [Google Scholar] [CrossRef]
- Tucci, M.; Martini, D.; Vinelli, V.; Biscotti, P.; Porrini, M.; Del Bo’, C.; Riso, P. The MED_EAT-IT approach: A modelling study to develop feasible, sustainable and nutritionally targeted dietary patterns based on the Planetary health diet. Curr. Res. Food Sci. 2024, 8, 100765. [Google Scholar] [CrossRef]
- de Pee, S.; Hardinsyah, R.; Jalal, F.; Kim, B.F.; Semba, R.D.; Deptford, A.; Fanzo, J.C.; Ramsing, R.; Nachman, K.E.; McKenzie, S.; et al. Balancing a sustained pursuit of nutrition, health, affordability and climate goals: Exploring the case of Indonesia. Am. J. Clin. Nutr. 2021, 114, 1686–1697. [Google Scholar] [CrossRef]
- Goulding, T.; Lindberg, R.; Russell, C.G. The affordability of a healthy and sustainable diet: An Australian case study. Nutr. J. 2020, 19, 109. [Google Scholar] [CrossRef]
- Kersting, M.; Kalhoff, H.; Zahn, K.; Belgardt, A.; Cacau, L.T.; Moreno, L.A.; Sinningen, K.; Lücke, T. How to improve sustainability of nutrient dense diets for children and adolescents: An exemplary assessment in Germany. Eur. J. Nutr. 2024, 64, 11. [Google Scholar] [CrossRef] [PubMed]
- Knuppel, A.; Papier, K.; Key, T.J.; Travis, R.C. EAT-Lancet score and major health outcomes: The EPIC-Oxford study. Lancet 2019, 394, 213–214. [Google Scholar] [CrossRef]
- Cacau, L.T.; De Carli, E.; de Carvalho, A.M.; Lotufo, P.A.; Moreno, L.A.; Bensenor, I.M.; Marchioni, D.M. Development and Validation of an Index Based on EAT-Lancet Recommendations: The Planetary Health Diet Index. Nutrients 2021, 13, 1698. [Google Scholar] [CrossRef]
- DiPietro, N.A. Methods in epidemiology: Observational study designs. Pharmacotherapy 2010, 30, 973–984. [Google Scholar] [CrossRef]
- Wang, J.J.; Attia, J. Study designs in epidemiology and levels of evidence. Am. J. Ophthalmol. 2010, 149, 367–370. [Google Scholar] [CrossRef]
- Sacks, F.M.; Obarzanek, E.; Windhauser, M.M.; Svetkey, L.P.; Vollmer, W.M.; McCullough, M.; Karanja, N.; Lin, P.H.; Steele, P.; Proschan, M.A. Rationale and design of the Dietary Approaches to Stop Hypertension trial (DASH). A multicenter controlled-feeding study of dietary patterns to lower blood pressure. Ann. Epidemiol. 1995, 5, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, M.Á.; Corella, D.; Salas-Salvadó, J.; Ros, E.; Covas, M.I.; Fiol, M.; Wärnberg, J.; Arós, F.; Ruíz-Gutiérrez, V.; Lamuela-Raventós, R.M.; et al. Cohort profile: Design and methods of the PREDIMED study. Int. J. Epidemiol. 2012, 41, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Wallace, S.S.; Barak, G.; Truong, G.; Parker, M.W. Hierarchy of evidence within the medical literature. Hosp. Pediatr. 2022, 12, 745–750. [Google Scholar] [CrossRef]
| References | Time of Follow-Up | Characteristics of the Study Group | Results: The Planetary Health Diet vs.: |
|---|---|---|---|
| Morcel et al. [18] | 10–14 years | N = 215; age 21–32 years at follow-up, Belgium, France, Italy, Spain | HDL-cholesterol level (↑) |
| Lei et al. [19] | 93,058 person-years | N = 11,402; age 40.8 ± 14.0 years *, China | risk of hypertension (↓) |
| Zhang et al. [20] | 24.3 years | N = 24,494; age 58.1 ± 7.7 years *, Sweden | risk of diabetes (↓) |
| Xu et al. [21] | 10.0 years | N = 59,849; age 40–69 years * (55.91 ± 8.14), UK Biobank | risk of diabetes (↓) |
| Langmann et al. [22] | 15.0 years | N = 54,232; age 50–64 years *, Denmark | risk of diabetes (↓) |
| Cai et al. [23] | 9.86 years | N = 16,029, age 43.8 ± 14.6 years *, China | risk of diabetes, mortality, CVD (↓) |
| Wu et al. [24] | 11.6 years | N = 105,752; age 39–72 years *, UK Biobank | risk of metabolic dysfunction-associated steatotic liver disease (↓) |
| Li et al. [25] | 13.65 years | N = 459,502; age 56.53 ± 8.09 years *, UK Biobank | risk of chronic and severe liver disease (↓) |
| Langmann et al. [26] | 5 years | N = 44,194; age 50–64 years *, Denmark | follow-up WC, risk of obesity, risk of elevated WC (↓) follow-up body weight (–) |
| Suikki et al. [27] | 7 years | N = 4371; age 30–74 years *, Finland | changes in body weight, BMI, WC (–) during the follow-up |
| Suikki et al. [28] | 7 years | N = 2942; age 53 ± 13 years *, Finland | lack of mediating or moderating role in the associations between genetic susceptibility to obesity and anthropometric parameters |
| Masip et al. [29] | 6 years | N = 7037, age 55.6 ± 7.7 years *, Canada | BMI, WC, body fat percentage (↓) lack of mediating or moderating role in the obesity polygenic risk |
| Sawicki et al. [30] | approx. 30 years | N = 62,919 women from NHS I (age 30–55 years), 88,535 women from NHS II (age 25–42 years), and 42,164 men from HPFS (age 40–75 years), USA | risk of CVD, CHD, total stroke (↓) |
| Sotos-Prieto et al. [31] | 9.4 years | N = 118,469; age 40–69 years *, UK Biobank | risk of CVD, myocardial infarction and stroke (↓) |
| Colizzi et al. [32] | 15.1 years | N = 35,496; age 20–70 years *, Netherlands | risk of CVD and CHD (↓) |
| Zhang et al. [33] | 24.9 years | N = 23,877; age 57.9 ± 7.7 years *, Sweden | risk of coronary events (↓) |
| Zhang et al. [34] | 25.0 years | N = 23,260; age 57.8 ± 7.6 years *, Sweden | risk of heart failure (↓) |
| Ibsen et al. [35] | 15 years | N = 55,016; age 50–64 years *, Denmark | risk of subarachnoid stroke (↓) risk of stroke, ischemic stroke, intracerebral hemorrhage (–) |
| Guzmán-Castellanos et al. [36] | 11.5 years | N = 18,656; age 38 ± 12.1 years *, Spain | risk of CVD (–) |
| Karavasiloglou et al. [37] | 10.49 years (cancer) 11.98 years (major CV events) 11.98 years (mortality) | N = 473,836–448,053 (depending on the outcome); age 56.50 ± 8.08 years *, UK Biobank | risk of cancer and all-cause mortality (↓) major cardiovascular events (–) |
| Martins et al. [38] | 7.9 ± 2.0 years | N = 3866; age 35–75 years *, Switzerland | all-cause mortality (↓); cardiovascular events (–) |
| Berthy et al. [39] | 8.1 years | N = 62,382; age 51.0 ± 10.2 years *, France | risk of cancer and CVD combined among low consumers of alcohol (↓) risk of cancer among females (↓) risk of cancer and CVD combined, and separately (–) |
| Ye et al. [40] | 23.4 years | N = 57,078; age 45–74 years *, Chinese cohort from Singapore | risk of all-cause mortality, CVD mortality, cancer mortality, respiratory disease mortality (↓) |
| Han et al. [41] | 8.50 years | N = 30,521; age 47.02 ± 17.01 years *, USA | risk of all-cause mortality, CVD mortality, cancer mortality, other-cause mortality (↓) |
| Stubbendorff et al. [42] | 20 years | N = 22,421; age 45–73 years *, Sweden | all-cause mortality, cancer mortality, cardiovascular mortality (↓) |
| Pitt et al. [43] | 22 years | N = 68,175; adults and elderly, Sweden | risk of all-cause mortality, cardiovascular mortality, cancer mortality (–) |
| Bui et al. [44] | 34 years | N = 66,692 women from NHS I (age 30–55 years), 92,438 women from NHS II (age 25–42 years), and 47,274 men from HPFS (age 40–75 years), USA | risk of all-cause mortality, CVD mortality, cancer mortality, respiratory diseases mortality, neurodegenerative diseases mortality (↓), and risk of infectious diseases among women (↓) |
| Mangone et al. [45] | 15.6 years | N = 47,749; mean age 50.5 years *, Italy | risk for overall mortality and cancer incidence (↓) |
| Liu et al. [46] | 9.47 years | N = 175,214; age 58.09 ± 8.03 years *, UK Biobank | risk of lung cancer incidence and mortality (↓) |
| Xiao et al. [47] | 8.82 ± 1.95 years | N = 101,755; age 65.5 ± 5.7 years *, USA | risk of lung cancer incidence and mortality (↓) |
| Ren et al. [48] | 8.82 years | N = 98,415; age 65.52 ± 5.73 years *, USA | risk of colorectal cancer (↓) |
| Ren et al. [49] | 8.84 years | N = 101,755; age 65.5 ± 5.7 years *, USA | risk of head and neck cancers, oral cavity and pharyngeal cancers (↓) |
| Quartiroli et al. [50] | 22.6 years | N = 9144; age 35–69 years *, Italy | risk of breast cancer (–); concentration of circulating levels of C-reactive protein (↑) |
| Koelman et al. [51] | 6.8 years | N = 636; age 50.8 ± 8.1 years *, Germany | the concentrations of inflammatory biomarkers (–) |
| References | Characteristics of the Study Group | Results: The Planetary Health Diet vs.: |
|---|---|---|
| de Oliveira Neta et al. [52] | N = 398; adults and elderly, Brazil | total cholesterol level, LDL-C, SBP, risk of self-reported diabetes, risk of dyslipidemia (↓) HDL-C, TG, FBG, risk of self-reported hypertension (–) |
| Cacau et al. [53] | N = 14,155, age 35–74 years, Brazil | total cholesterol level, LDL-C, non-HDL-C, SBP, DBP (↓); HDL-C, TG, HOMA-IR (–) |
| Frank et al. [54] | N = 8128 for the laboratory-based sample (age 48.6 ± 15.6 years) and N = 3933 for the fasted subsample, USA | fasting TG, WC, predicted probability of high WC, predicted probability of high blood pressure, predicted probability of low HDL-C, (↓); HDL-C (↑) SBP, DBP, FPG, predicted probability of high FPG, predicted probability of high fasting TG (–) |
| McDowell et al. [55] | N = 3458; median age 64 years (Q1–Q3: 60–69 years), Australia | lower values of the EAT-Lancet Index in the group with high blood pressure (ever and current) vs. no hypertension lower values of the EAT-Lancet Index in the group with diabetes (ever) vs. no diabetes no significant results in the groups with cancer, high cholesterol, diabetes, kidney disease, COPD, CVD vs. the groups without those abnormalities |
| Cacau et al. [56] | N = 14,515, adults (34–59 years) and elderly (≥60 years), Brazil | BMI and WC values, risk of overweight, obesity, having increased WC or substantially increased WC (↓) |
| Macit-Çelebi et al. [57] | N = 1112; mean age 28.7 years (SE = 0.34), Turkey | BMI values (↓) |
| Ambroży et al. [58] | N = 216, median age 30.0 years (Q1–Q3: 23.0–40.0 years), Poland | lower percentage of overweight/obesity participants in the group who followed the PHD vs. the group who did not follow the PHD |
| Shojaei et al. [59] | N = 5206; age 45.57 ± 9.01 years, Iran | prevalence of metabolic syndrome, hypo-HDL cholesterolemia, abdominal obesity (↓) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Różańska, D.; Regulska-Ilow, B. The Role of a Sustainable Planetary Health Diet in the Prevention of Non-Communicable Diseases and Cause-Specific Mortality: A Narrative Review. Foods 2025, 14, 3909. https://doi.org/10.3390/foods14223909
Różańska D, Regulska-Ilow B. The Role of a Sustainable Planetary Health Diet in the Prevention of Non-Communicable Diseases and Cause-Specific Mortality: A Narrative Review. Foods. 2025; 14(22):3909. https://doi.org/10.3390/foods14223909
Chicago/Turabian StyleRóżańska, Dorota, and Bożena Regulska-Ilow. 2025. "The Role of a Sustainable Planetary Health Diet in the Prevention of Non-Communicable Diseases and Cause-Specific Mortality: A Narrative Review" Foods 14, no. 22: 3909. https://doi.org/10.3390/foods14223909
APA StyleRóżańska, D., & Regulska-Ilow, B. (2025). The Role of a Sustainable Planetary Health Diet in the Prevention of Non-Communicable Diseases and Cause-Specific Mortality: A Narrative Review. Foods, 14(22), 3909. https://doi.org/10.3390/foods14223909

