Functional, Biological and Nutritional Properties of Protein Fraction Isolated from Yarrowia lipolytica Biomass
Abstract
1. Introduction
2. Materials and Methods
2.1. Substrates
2.2. Bioreactor Culture
2.3. Nutritional Quality Assessment of Biomasses
2.4. Microbiological Analysis
2.5. Protein Extraction from JII1c Biomass
2.6. Enzymatic Hydrolysis (EH)
2.6.1. Enzyme Applied in the Study
2.6.2. Hydrolysis Procedure
2.6.3. Degree of Hydrolysis (DH) [%]
2.7. Determination of Antioxidant Activity
2.7.1. DPPH
2.7.2. Ferric Reducing Antioxidant Power Assay (FRAP)
2.7.3. Fe(II) Ion Chelation
2.7.4. ACE Inhibitory Activity
2.7.5. α-Glucosidase Inhibitory Activity
2.7.6. DPP-IV Inhibitory Activity
2.8. Functional Properties Measurement
2.8.1. Water Absorption Capacity (WAC)
2.8.2. Oil Absorption Capacity (OAC)
2.8.3. Nitrogen Solubility Index (NSI)
2.8.4. Emulsion Stability
2.8.5. Foam Stability
2.9. Protein Extrudates
2.9.1. Production
2.9.2. Sensory Analysis
2.10. Statistical Analysis
3. Results
3.1. Biomass Yield and Nutritional Composition
3.2. Protein Hydrolysis and Peptide Characterization
3.3. Biological Activities of Hydrolysates
3.4. Functional Properties of Protein Preparations
3.5. Sensory Evaluation of Extrudates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gorissen, S.H.M.; Witard, O.C. Characterising the Muscle Anabolic Potential of Dairy, Meat and Plant-Based Protein Sources in Older Adults. Proc. Nutr. Soc. 2018, 77, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Sobczak, P.; Grochowicz, J.; Łusiak, P.; Żukiewicz-Sobczak, W. Development of Alternative Protein Sources in Terms of a Sustainable System. Sustainability 2023, 15, 12111. [Google Scholar] [CrossRef]
- Berners-Lee, M.; Kennelly, C.; Watson, R.; Hewitt, C.N. Current Global Food Production Is Sufficient to Meet Human Nutritional Needs in 2050 Provided There Is Radical Societal Adaptation. Elem. Sci. Anthr. 2018, 6, 52. [Google Scholar] [CrossRef]
- Li, X.; Cao, Q.; Liu, G. Advances, Applications, Challenges and Prospects of Alternative Proteins. J. Food Compos. Anal. 2025, 137, 106900. [Google Scholar] [CrossRef]
- Ma, J.; Sun, Y.; Meng, D.; Zhou, Z.; Zhang, Y.; Yang, R. Yeast Proteins: The Novel and Sustainable Alternative Protein in Food Applications. Trends Food Sci. Technol. 2023, 135, 190–201. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Gantriis, R.F.; Fraga, P.; Perez-Cueto, F.J.A. Plant-Based Food and Protein Trend from a Business Perspective: Markets, Consumers, and the Challenges and Opportunities in the Future. Crit. Rev. Food Sci. Nutr. 2021, 61, 3119–3128. [Google Scholar] [CrossRef]
- Abe-Inge, V.; Aidoo, R.; Moncada de la Fuente, M.; Kwofie, E.M. Plant-Based Dietary Shift: Current Trends, Barriers, and Carriers. Trends Food Sci. Technol. 2024, 143, 104292. [Google Scholar] [CrossRef]
- Fatima, N.; Emambux, M.N.; Olaimat, A.N.; Stratakos, A.C.; Nawaz, A.; Wahyono, A.; Gul, K.; Park, J.; Shahbaz, H.M. Recent Advances in Microalgae, Insects, and Cultured Meat as Sustainable Alternative Protein Sources. Food Humanit. 2023, 1, 731–741. [Google Scholar] [CrossRef]
- Wang, B.; Shi, Y.; Lu, H.; Chen, Q. A Critical Review of Fungal Proteins: Emerging Preparation Technology, Active Efficacy and Food Application. Trends Food Sci. Technol. 2023, 141, 104178. [Google Scholar] [CrossRef]
- Shanmugam, S.R.; Schorer, R.; Arthur, W.; Drabold, E.; Rudar, M.; Higgins, B. Upcycling Nutrients from Poultry Slaughterhouse Wastewater through Cultivation of the Nutritional Yeast, Yarrowia lipolytica. J. Environ. Chem. Eng. 2025, 13, 115245. [Google Scholar] [CrossRef]
- Cao, X.; Liu, H.; Yang, M.; Mao, K.; Wang, X.; Chen, Z.; Ran, M.; Hao, L. Evaluation of the Nutritional Quality of Yeast Protein in Comparison to Animal and Plant Proteins Using Growing Rats and INFOGEST Model. Food Chem. 2025, 463, 141178. [Google Scholar] [CrossRef]
- Turck, D.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; et al. Safety of Yarrowia lipolytica Yeast Biomass as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA J. 2019, 17, e05594. [Google Scholar] [CrossRef] [PubMed]
- Mamaev, D.; Zvyagilskaya, R. Yarrowia lipolytica: A Multitalented Yeast Species of Ecological Significance. FEMS Yeast Res. 2021, 21, foab008. [Google Scholar] [CrossRef] [PubMed]
- Gottardi, D.; Ciccone, M.; Siroli, L.; Lanciotti, R.; Patrignani, F. Use of Yarrowia lipolytica to Obtain Fish Waste Functional Hydrolysates Rich in Flavoring Compounds. Fermentation 2022, 8, 708. [Google Scholar] [CrossRef]
- Carsanba, E.; Agirman, B.; Papanikolaou, S.; Fickers, P.; Erten, H. Valorisation of Waste Bread for the Production of Yeast Biomass by Yarrowia lipolytica Bioreactor Fermentation. Fermentation 2023, 9, 687. [Google Scholar] [CrossRef]
- Drzymała, K.; Mirończuk, A.M.; Pietrzak, W.; Dobrowolski, A. Rye and Oat Agricultural Wastes as Substrate Candidates for Biomass Production of the Non-Conventional Yeast Yarrowia lipolytica. Sustainability 2020, 12, 7704. [Google Scholar] [CrossRef]
- Lalić, A.; Jagelavičiūtė, J.; Rezić, T.; Trivunović, Z.; Žadeikė, D.; Bašinskienė, L. From Bakery Leftovers to Brewing Sustainability: Fermentation of Spent Grain with Yarrowia lipolytica and Lactobacillus Acidophilus. Sustainability 2025, 17, 782. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Guha, S.; Majumder, K. Food-Derived Bioactive Peptides in Human Health: Challenges and Opportunities. Nutrients 2018, 10, 1738. [Google Scholar] [CrossRef]
- Mazorra-Manzano, M.A.; Mora-Cortes, W.G.; Leandro-Roldan, M.M.; González-Velázquez, D.A.; Torres-Llanez, M.J.; Ramírez-Suarez, J.C.; González-Córdova, A.F.; Vallejo-Córdoba, B. Production of Whey Protein Hydrolysates with Angiotensin-Converting Enzyme-Inhibitory Activity Using Three New Sources of Plant Proteases. Biocatal. Agric. Biotechnol. 2020, 28, 101724. [Google Scholar] [CrossRef]
- Dąbrowska, A.; Szołtysik, M.; Babij, K.; Pokora, M.; Zambrowicz, A.; Chrzanowska, J. Application of Asian Pumpkin (Cucurbita ficifolia) Serine Proteinase for Production of Biologically Active Peptides from Casein. Acta Biochim. Pol. 2013, 60, 117–122. [Google Scholar] [CrossRef]
- Maciejewska, M.; Dąbrowska, A.; Cano-Lamadrid, M. Sustainable Protein Sources: Functional Analysis of Tenebrio Molitor Hydrolysates and Attitudes of Consumers in Poland and Spain Toward Insect-Based Foods. Foods 2025, 14, 333. [Google Scholar] [CrossRef] [PubMed]
- Zambrowicz, A.; Eckert, E.; Pokora, M.; Bobak, Ł.; Dąbrowska, A.; Szołtysik, M.; Trziszka, T.; Chrzanowska, J. Antioxidant and Antidiabetic Activities of Peptides Isolated from a Hydrolysate of an Egg-Yolk Protein by-Product Prepared with a Proteinase from Asian Pumpkin (Cucurbita ficifolia). RSC Adv 2015, 5, 10460–10467. [Google Scholar] [CrossRef]
- Babij, K.; Bajzert, J.; Dąbrowska, A.; Szołtysik, M.; Zambrowicz, A.; Lubec, G.; Stefaniak, T.; Willak-Janc, E.; Chrzanowska, J. Hydrolysis with Cucurbita ficifolia Serine Protease Reduces Antigenic Response to Bovine Whey Protein Concentrate and As-Casein. Amino Acids 2015, 47, 2335–2343. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, R.M.; da Silva, C.N.; de Faria-Júnior, C.S.; Buarque, F.S.; Ribeiro, B.D.; Lemes, A.C.; Coelho, M.A.Z. Extraction and Characterization of High-Value Compounds from Yarrowia lipolytica W29 Using Sequential Hydrolysis. Processes 2025, 13, 615. [Google Scholar] [CrossRef]
- Jach, M.E.; Malm, A. Yarrowia lipolytica as an Alternative and Valuable Source of Nutritional and Bioactive Compounds for Humans. Molecules 2022, 27, 2300. [Google Scholar] [CrossRef]
- AOAC International. Official Method of Analysis for Dry Matter, 18th ed.; AOAC International: Arlington, TX, USA, 2007. [Google Scholar]
- AOAC International. AOAC Official Method 2011.25: Insoluble, Soluble and Total Dietary Fiber in Foods. Enzymatic-Gravimetric-Liquid Chromatography; AOAC International: Arlington, TX, USA, 2011. [Google Scholar]
- Masuko, T.; Minami, A.; Iwasaki, N.; Majima, T.; Nishimura, S.-I.; Lee, Y.C. Carbohydrate Analysis by a Phenol–Sulfuric Acid Method in Microplate Format. Anal. Biochem. 2005, 339, 69–72. [Google Scholar] [CrossRef]
- AOAC International. Method 996.06, Fat (Total, Saturated, and Monounsaturated) in Foods. Official Methods of Analysis; AOAC International: Arlington, TX, USA, 1995. [Google Scholar]
- Bremner, J.M. Determination of Nitrogen in Soil by the Kjeldahl Method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- EN 14084:2003; Foodstuffs—Determination of Trace Elements—Determination of Calcium, Copper, Iron, Magnesium, Manganese, Sodium, Phosphorus, Potassium and Zinc by ICP-OES. European Committee for Standardization: Brussels, Belgium, 2003.
- López-Bascón, M.A.; Luque de Castro, M.D. Soxhlet Extraction. In Liquid-Phase Extraction; Elsevier: Amsterdam, The Netherlands, 2020; pp. 327–354. [Google Scholar]
- AOAC. Official Method 944.12 Folic Acid in Vitamin Preparation, Microbiological Methods; AOAC: Gaithersburg, MD, USA, 1996. [Google Scholar]
- AOAC. Official Method 992.05 Folic Acid in Infant Formula, Microbiological Methods; AOAC: Gaithersburg, MD, USA, 2016. [Google Scholar]
- AOAC. 985.32 Vitamin B6 (Pyridoxine, Pyridoxal, Pyridoxamine) in Ready-to-Feed Milk Based Infant Formula; AOAC: Gaithersburg, MD, USA, 1988. [Google Scholar]
- AOAC. 961.15 Vitamin B6 (Pyridoxine, Pyridoxal, Pyridoxamine) in Food Extracts, Microbiological Methods; AOAC: Gaithersburg, MD, USA, 1975. [Google Scholar]
- AOAC. Official Method 960.46. Vitamin Assays, Microbiological Method; AOAC: Arlington, TX, USA, 2006. [Google Scholar]
- AOAC. Official Method 940.33 Riboflavin (Vitamin B2) in Vitamin Preparations, Microbiological Methods; AOAC: Gaithersburg, MD, USA, 2006. [Google Scholar]
- PN-EN 13805:2003; Foodstuffs. Determination of Trace Elements. Pressure Mineralization. Polish Committee for Standardization: Warsaw, Poland, 2004.
- Ardö, Y.; Gripon, J.-C. Comparative Study of Peptidolysis in Some Semi-Hard Round-Eyed Cheese Varieties with Different Fat Contents. J. Dairy Res. 1995, 62, 543–547. [Google Scholar] [CrossRef]
- Liang, X.; Qian, G.; Yang, H.; Chen, N.; Ai, Z.; Xing, Y.; Huang, W.; Xu, L.; Li, M.; Wang, Z.; et al. Evaluation of IgG/IgE-binding Capacity and Functional Properties of Enzymatic Hydrolysis in Skimmed Cow Milk System. J. Food Sci. 2023, 88, 2780–2795. [Google Scholar] [CrossRef]
- WHO. Energy and Protein Requirements. In Report of a Joint FAO/WHO/UNU Expert Consultation; World Health Organization: Geneva, Switzerland, 1985; Volume 724, pp. 1–206. [Google Scholar]
- FAO. Food Energy—Methods of Analysis and Conversion Factors; FAO Food and Nutrition Paper 77; FAO: Rome, Italy, 2003. [Google Scholar]
- ISO 4833-1:2013; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 °C by the Pour Plate Technique. ISO: Geneva, Switzerland, 2013.
- ISO 21527-2:2008; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 2: Colony Count Technique in Products with Water Activity Less than or Equal to 0.95. ISO: Geneva, Switzerland, 2008.
- ISO 4832:2006; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Coliforms—Colony Count Technique. ISO: Geneva, Switzerland, 2006.
- ISO 6579-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. ISO: Geneva, Switzerland, 2017.
- Shetty, K.J.; Kinsella, J.E. Preparation of Yeast Protein Isolate with Low Nucleic Acid by Succinylation. J. Food Sci. 1979, 44, 633–638. [Google Scholar] [CrossRef]
- Dryjanski, M.; Otlewski, J.; Polanowski, A.; Wilusz, T. Serine Proteinase from Cucurbita ficifolia Seed; Purification, Properties, Substrate Specificity and Action on Native Squash Trypsin Inhibitor (CMTI I). Biol. Chem. Hoppe Seyler 1990, 371, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Silvestre, M.P.C. Review of Methods for the Analysis of Protein Hydrolysates. Food Chem. 1997, 60, 263–271. [Google Scholar] [CrossRef]
- Yen, G.-C.; Chen, H.-Y. Antioxidant Activity of Various Tea Extracts in Relation to Their Antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Xu, X.; Katayama, S.; Mine, Y. Antioxidant Activity of Triptic Digest of Hen Egg Yolk Phosvitin. J. Sci. Food Agric. 2007, 87, 2604–2608. [Google Scholar] [CrossRef]
- Hernández-Ledesma, B.; Miralles, B.; Amigo, L.; Ramos, M.; Recio, I. Identification of Antioxidant and ACE-Inhibitory Peptides in Fermented Milk. J. Sci. Food Agric. 2005, 85, 1041–1048. [Google Scholar] [CrossRef]
- Yu, Z.; Yin, Y.; Zhao, W.; Liu, J.; Chen, F. Anti-Diabetic Activity Peptides from Albumin against α-Glucosidase and α-Amylase. Food Chem. 2012, 135, 2078–2085. [Google Scholar] [CrossRef]
- Tulipano, G.; Sibilia, V.; Caroli, A.M.; Cocchi, D. Whey Proteins as Source of Dipeptidyl Dipeptidase IV (Dipeptidyl Peptidase-4) Inhibitors. Peptides 2011, 32, 835–838. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Adhikari, R.; Barrow, C.J.; Adhikari, B. Physicochemical and Functional Properties of Protein Isolate Produced from Australian Chia Seeds. Food Chem. 2016, 212, 648–656. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Q.; Ma, T.; Ren, J. Comparative Studies on the Functional Properties of Various Protein Concentrate Preparations of Peanut Protein. Food Res. Int. 2009, 42, 343–348. [Google Scholar] [CrossRef]
- Achouri, A.; Nail, V.; Boye, J.I. Sesame Protein Isolate: Fractionation, Secondary Structure and Functional Properties. Food Res. Int. 2012, 46, 360–369. [Google Scholar] [CrossRef]
- Rytel, E.; Kita, A.; Pęksa, A.; Tajner-Czopek, A.; Miedzianka, J. Wpływ Zastosowania Soli w Produkcji Chrupek Kukurydzianych Wzbogaconych Dodatkiem Niekonwencjonalnych Surowców Na Wybrane Cechy Jakościowe. Bromat. Chem. Toksykol. 2015, 48, 512–517. [Google Scholar]
- ISO 13299:2016; Sensory Analysis—Methodology—General Guidance for Establishing a Sensory Profile. ISO: Geneva, Switzerland, 2016.
- Butré, C.I.; Buhler, S.; Sforza, S.; Gruppen, H.; Wierenga, P.A. Spontaneous, Non-Enzymatic Breakdown of Peptides during Enzymatic Protein Hydrolysis. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2015, 1854, 987–994. [Google Scholar] [CrossRef] [PubMed]
- Bruder, S.; Melcher, F.A.; Zoll, T.; Hackenschmidt, S.; Kabisch, J. Evaluation of a Yarrowia lipolytica Strain Collection for Its Lipid and Carotenoid Production Capabilities. Eur. J. Lipid Sci. Technol. 2020, 122, 1900172. [Google Scholar] [CrossRef]
- Liu, L.; Pan, A.; Spofford, C.; Zhou, N.; Alper, H.S. An Evolutionary Metabolic Engineering Approach for Enhancing Lipogenesis in Yarrowia lipolytica. Metab. Eng. 2015, 29, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Tsirigka, A.; Theodosiou, E.; Patsios, S.I.; Tsoureki, A.; Andreadelli, A.; Papa, E.; Aggeli, A.; Karabelas, A.J.; Makris, A.M. Novel Evolved Yarrowia lipolytica Strains for Enhanced Growth and Lipid Content under High Concentrations of Crude Glycerol. Microb. Cell Fact. 2023, 22, 62. [Google Scholar] [CrossRef]
- Wang, S.; Yang, Y.; Yu, K.; Xu, S.; Liu, M.; Sun, J.; Zheng, J.; Zhang, Y.; Yuan, W. Engineering of Yarrowia lipolytica for Producing Pyruvate from Glycerol. 3 Biotech. 2022, 12, 98. [Google Scholar] [CrossRef]
- Juszczyk, P.; Tomaszewska, L.; Kita, A.; Rymowicz, W. Biomass Production by Novel Strains of Yarrowia lipolytica Using Raw Glycerol, Derived from Biodiesel Production. Bioresour. Technol. 2013, 137, 124–131. [Google Scholar] [CrossRef]
- Michalik, B.; Biel, W.; Lubowicki, R.; Jacyno, E. Chemical Composition and Biological Value of Proteins of the Yeast Yarrowia lipolytica Growing on Industrial Glycerol. Can. J. Anim. Sci. 2014, 94, 99–104. [Google Scholar] [CrossRef]
- Patsios, S.I.; Dedousi, A.; Sossidou, E.Ν.; Zdragas, A. Sustainable Animal Feed Protein through the Cultivation of Yarrowia lipolytica on Agro-Industrial Wastes and by-Products. Sustainability 2020, 12, 1398. [Google Scholar] [CrossRef]
- Jach, M.E.; Sajnaga, E.; Janeczko, M.; Juda, M.; Kochanowicz, E.; Baj, T.; Malm, A. Production of Enriched in B Vitamins Biomass of Yarrowia lipolytica Grown in Biofuel Waste. Saudi J. Biol. Sci. 2021, 28, 2925–2932. [Google Scholar] [CrossRef]
- Timira, V.; Chen, X.; Zhou, P.; Wu, J.; Wang, T. Potential Use of Yeast Protein in Terms of Biorefinery, Functionality, and Sustainability in Food Industry. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13326. [Google Scholar] [CrossRef]
- Celus, I.; Brijs, K.; Delcour, J.A. Enzymatic Hydrolysis of Brewers’ Spent Grain Proteins and Technofunctional Properties of the Resulting Hydrolysates. J. Agric. Food Chem. 2007, 55, 8703–8710. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Ferreira, C.; Pereira, J.O.; Pintado, M.E.; Carvalho, A.P. Valorisation of Protein-Rich Extracts from Spent Brewer’s Yeast (Saccharomyces cerevisiae): An Overview. Biomass Convers. Biorefin. 2025, 15, 1771–1793. [Google Scholar] [CrossRef]
- Della Rosa, F.; Tonin, A.; Rocha, B.; Santos, M.; Silveira, F.; Cardoso-Filho, L.; Ribeiro, V.; Meurer, E. Optimization of Hydrolysis and Identification of Bioactive Peptides in Brewery Yeast Residuals. J. Braz. Chem. Soc. 2024, 35, e20230146. [Google Scholar] [CrossRef]
- Min, J.H.; Lee, Y.J.; Kang, H.J.; Moon, N.R.; Park, Y.K.; Joo, S.-T.; Jung, Y.H. Characterization of Yeast Protein Hydrolysate for Potential Application as a Feed Additive. Food Sci. Anim. Resour. 2024, 44, 723–737. [Google Scholar] [CrossRef] [PubMed]
- Yi, D.; Lin, Q.; Johns, P.W. Estimation of Degree of Hydrolysis of Protein Hydrolysates by Size Exclusion Chromatography. Food Anal. Methods 2021, 14, 805–813. [Google Scholar] [CrossRef]
- Suh, H.J.; Shin, J.C.; Kim, J.H.; Jang, J.H.; Han, S.H. Optimal Enzyme Selection for Organic Whey Protein Hydrolysis. Korean Soc. Food Nutr. 2017, 30, 1359–1363. [Google Scholar]
- Dent, T.; LeMinh, A.; Maleky, F. Comparison of Colorimetric Methods for Measuring the Solubility of Legume Proteins. Gels 2024, 10, 551. [Google Scholar] [CrossRef]
- Grossmann, L.; McClements, D.J. Current Insights into Protein Solubility: A Review of Its Importance for Alternative Proteins. Food Hydrocoll. 2023, 137, 108416. [Google Scholar] [CrossRef]
- Louhasakul, Y.; Cheirsilp, B.; Intasit, R.; Maneerat, S.; Saimmai, A. Enhanced Valorization of Industrial Wastes for Biodiesel Feedstocks and Biocatalyst by Lipolytic Oleaginous Yeast and Biosurfactant-Producing Bacteria. Int. Biodeterior. Biodegrad. 2020, 148, 104911. [Google Scholar] [CrossRef]
- Amaral, P.F.F.; da Silva, J.M.; Lehocky, M.; Barros-Timmons, A.M.V.; Coelho, M.A.Z.; Marrucho, I.M.; Coutinho, J.A.P. Production and Characterization of a Bioemulsifier from Yarrowia lipolytica. Process Biochem. 2006, 41, 1894–1898. [Google Scholar] [CrossRef]
- Hang, Y.; Wang, J.; Hou, Y.; Hu, S.-Q. Production of Yeast Hydrolysates by Bacillus subtilis Derived Enzymes and Antihypertensive Activity in Spontaneously Hypertensive Rats. Food Biotechnol. 2020, 34, 262–281. [Google Scholar] [CrossRef]
- Guo, H.; Guo, S.; Liu, H. Antioxidant Activity and Inhibition of Ultraviolet Radiation-Induced Skin Damage of Selenium-Rich Peptide Fraction from Selenium-Rich Yeast Protein Hydrolysate. Bioorg. Chem. 2020, 105, 104431. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.S.; Ferreira, C.; Pereira, J.O.; Pintado, M.E.; Carvalho, A.P. Spent Brewer’s Yeast (Saccharomyces cerevisiae) as a Potential Source of Bioactive Peptides: An Overview. Int. J. Biol. Macromol. 2022, 208, 1116–1126. [Google Scholar] [CrossRef]
- Amorim, M.M.; Pereira, J.O.; Monteiro, K.M.; Ruiz, A.L.; Carvalho, J.E.; Pinheiro, H.; Pintado, M. Antiulcer and Antiproliferative Properties of Spent Brewer’s Yeast Peptide Extracts for Incorporation into Foods. Food Funct. 2016, 7, 2331–2337. [Google Scholar] [CrossRef]
- Branco, P.; Francisco, D.; Monteiro, M.; Almeida, M.G.; Caldeira, J.; Arneborg, N.; Prista, C.; Albergaria, H. Antimicrobial Properties and Death-Inducing Mechanisms of Saccharomycin, a Biocide Secreted by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2017, 101, 159–171. [Google Scholar] [CrossRef]
- Caldeira, J.; Almeida, G.; Macedo, A.L.; Silva, J.P.M.; Albergaria, H. Saccharomycin, a Biocide from S. cerevisiae That Kill-off Other Yeasts. Ann. Med. 2024, 51, 94–95. [Google Scholar] [CrossRef]
- Cui, C.; Qian, Y.; Sun, W.; Zhao, H. Effects of High Solid Concentrations on the Efficacy of Enzymatic Hydrolysis of Yeast Cells and the Taste Characteristics of the Resulting Hydrolysates. Int. J. Food Sci. Technol. 2016, 51, 1298–1304. [Google Scholar] [CrossRef]
- Niu, Y.; Gu, Y.; Zhang, J.; Sun, B.; Wu, L.; Mao, X.; Liu, Z.; Zhang, Y.; Li, K.; Zhang, Y. Characteristics of Saltiness-Enhancing Peptides Derived from Yeast Proteins and Elucidation of Their Mechanism of Action by Molecular Docking. Food Chem. 2024, 449, 139216. [Google Scholar] [CrossRef]




| Nutritional Analysis | ||
| Nutrient | Unit | Value [Mean ± SD] |
| Energy value | kJ (kcal)/100 g | 1588 (375) |
| Dry matter | % | 95.11 ± 0.95 |
| Protein | % | 43.12 ± 0.43 |
| Carbohydrates, including: | % | 32.34 ± 0.32 |
| dietary fibres | % | 32.32 ± 0.32 |
| sugars | % | <0.20 |
| Ash | % | 11.00 ± 0.11 |
| Fats, including: | % | 7.03 ± 0.07 |
| saturated fatty acids | % | 0.50 ± 0.01 |
| monounsaturated fatty acids | % | 4.05 ± 0.04 |
| polyunsaturated fatty acids | % | 3.30 ± 0.03 |
| Water content (moisture) | % | 4.89 ± 0.05 |
| Salt content | g/100 g | 4.62 ± 0.05 |
| Vitamins | Unit | Value [mean ± SD] |
| Vitamin B1 (thiamine) | mg/100 g | 0.01 ± 0.01 |
| Vitamin B2 (riboflavin) | mg/100 g | 3.19 ± 0.14 |
| Vitamin B6 (pyridoxine) | mg/100 g | 0.20 ± 0.01 |
| Vitamin B7 (biotin) | µg/100 g | 205.00 ± 3.34 |
| Vitamin B9 (folic acid) | µg/100 g | 177.00 ± 7.06 |
| Vitamin B12 (cyanocobalamin) | µg/100 g | 0.33 ± 0.02 |
| Macro and Microelements | Unit | Value [mean ± SD] |
| Calcium (Ca) | mg/100 g | 27.50 ± 1.49 |
| Phosphorus (P) | mg/100 g | 2640.00 ± 13.94 |
| Sodium (Na) | mg/100 g | 1848 ± 76.57 |
| Iron (Fe) | mg/100 g | 24.00 ± 2.30 |
| Copper (Cu) | mg/100 g | 1.90 ± 0.08 |
| Magnesium (Mg) | mg/100 g | 138.00 ± 6.12 |
| Potassium (K) | mg/100 g | 2665 ± 15.33 |
| Manganese (Mn) | mg/100 g | 1.06 ± 0.04 |
| Zinc (Zn) | mg/100 g | 22.00 ± 0.77 |
| Chromium (Cr) | mg/100 g | 0.10 ± 0.01 |
| Amino Acid Profile | Unit | Value [mean ± SD] |
| Aspartic acid | g/kg | 41.10 ± 0.41 |
| Glutamic acid | g/kg | 56.00 ± 0.56 |
| Arginine | g/kg | 21.40 ± 0.21 |
| Serine | g/kg | 27.70 ± 0.28 |
| Alanine | g/kg | 31.10 ± 0.31 |
| Glycine | g/kg | 17.20 ± 0.17 |
| Proline | g/kg | 16.80 ± 0.17 |
| Lysine | g/kg | 31.10 ± 0.31 |
| Methionine + Cystine | g/kg | 9.30 ± 0.05 |
| Phenylalanine + Tyrosine | g/kg | 35.20 ± 0.35 |
| Threonine | g/kg | 25.40 ± 0.25 |
| Tryptophan | g/kg | 5.10 ± 0.05 |
| Leucine | g/kg | 31.20 ± 0.31 |
| Isoleucine | g/kg | 23.60 ± 0.24 |
| Valine | g/kg | 25.10 ± 0.25 |
| Histidine | g/kg | 8.70 ± 0.09 |
| Ornithine | g/kg | 1.10 ± 0.03 |
| Gamma-aminobutyric acid | g/kg | 11.00 ± 0.61 |
| Taurine | g/kg | < 0.05 |
| Fatty Acids | Unit | Value [mean ± SD] |
| Butyric acid (C4:0) | % | <0.05 |
| Myristic acid (C14:0) | % | <0.05 |
| Pentadecanoic acid (C15:0) | % | 0.48 ± 0.02 |
| Palmitic acid (C16:0) | % | 6.12 ± 0.20 |
| Palmitoleic acid (C16:1) | % | 0.38 ± 0.02 |
| Heptadecanoic acid (C17:0) | % | 0.19 ± 0.01 |
| Stearic acid (C18:0) | % | 1.05 ± 0.04 |
| Oleic acid (C18:1, n9c) | % | 48.20 ± 0.87 |
| Linoelaidic acid (C18:2, n6t) | % | <0.05 |
| Linoleic acid (C18:2, n6c) | % | 29.20 ± 1.11 |
| Arachidic acid (C20:0) | % | 0.19 ± 0.01 |
| cis-11.14-Eicosadienoic acid (C20:2) | % | <0.05 |
| Behenic acid (C22:0) | % | <0.05 |
| cis-11,17,17-Eicosatrienoic acid (C20:3, n3) | % | <0.05 |
| Lignoceric acid (C24:0) | % | <0.05 |
| Nutritional Indexes | ||
| Parameter | Unit | Value [mean ± SD] |
| CS | % | 37.80 ± 0.38 |
| EAAI | % | 36.17 ± 0.36 |
| Type of Biological Activity Determination Method | Sample | |
|---|---|---|
| PI from Y. lipolytica JII1c Biomass | PH from Y. lipolytica JII1c Biomass | |
| Mean ± SD | Mean ± SD | |
| Antioxidant activity (DPPH) [μM Trolox/mg] | 0.39 ± 0.01 a | 0.87 ± 0.00 b |
| Fe3+ ion reducing capacity (FRAP) [g Fe3+/mg] | 4.03 ± 0.01 a | 39.12 ± 0.01 b |
| Fe2+ ion chelation capacity [μg Fe2+/mg] | 275.00 ± 0.58 a | 1326.00 ± 0.58 b |
| Angiotensin-converting enzyme (ACE) inhibitory activity IC50 [mg/mL] | 37.43 ± 0.06 a | 8.20 ± 0.00 b |
| α-Glucosidase inhibitory activity IC50 [mg/mL] | 12.23 ± 0.12 a | 4.17 ± 0.06 b |
| DPP-IV inhibitory activity IC50 [mg/mL] | 10.20 ± 0.00 a | 2.40 ± 0.10 b |
| Type of Functional Property | Sample | |
|---|---|---|
| PI from Y. lipolytica JII1c Biomass | PH from Y. Lipolytica JII1c Biomass | |
| Mean ± SD | Mean ± SD | |
| Water absorption capacity (WAC) [g H2O/g] | 4.34 ± 0.04 a | 9.12 ± 0.09 b |
| Oil absorption capacity (OAC) [g oil/g] | 2.35 ± 0.02 a | 7.23 ± 0.07 b |
| Nitrogen solubility index (NSI) [%] | 19.40 ± 0.19 a | 49.20 ± 0.49 b |
| Type of Substance | Dose [%] | Leakage Volume After 30 min [mL] | Emulsion Stability [%] | |||
|---|---|---|---|---|---|---|
| 0.5 h | 1 h | 2 h | 3 h | |||
| Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | ||
| Control | - | 29.0 ± 0.3 a | 64.87 ± 0.48 a | 56.85 ± 0.48 a | 54.07 ± 0.69 a | 53.36 ± 0.6 |
| PI from Y. lipolytica JII1c biomass | 1 | 6.6 ± 0.1 b,A | 90.80 ± 0.72 b | 90.49 ± 0.99 b | 84.17 ± 0.67 b | 83.44 ± 1.32 b |
| 2 | 1.9 ± 0.02 c,A | 96.80 ± 0.89 b | 95.96 ± 1.22 b | 95.60 ± 0.53 b | 92.92 ± 0.67 b | |
| 3 | 0.0 ± 0.0 d,A | 97.41 ± 1.41 b | 96.49 ± 1.43 b | 95.74 ± 0.20 b | 95.11 ± 0.23 b | |
| PH from Y. lipolytica JII1c biomass | 1 | 28.0 ± 0.3 a,B | 96.51 ± 1.22 b | 96.53 ± 0.59 b | 95.88 ± 2.75 b | 95.31 ± 2.01 b |
| 2 | 6.8 ± 0.1 e,B | 96.68 ± 1.04 b | 96.47 ± 1.37 b | 96.36 ± 0.72 b | 95.42 ± 0.54 b | |
| 3 | 2.4 ± 0.02 f,B | 96.86 ± 1.30 b | 96.66 ± 1.05 b | 96.39 ± 0.41 b | 95.75 ± 1.40 b | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szołtysik, M.; Mandecka, A.; Maciejewska, M.; Dąbrowska, A.; Nowak, M. Functional, Biological and Nutritional Properties of Protein Fraction Isolated from Yarrowia lipolytica Biomass. Foods 2025, 14, 3801. https://doi.org/10.3390/foods14213801
Szołtysik M, Mandecka A, Maciejewska M, Dąbrowska A, Nowak M. Functional, Biological and Nutritional Properties of Protein Fraction Isolated from Yarrowia lipolytica Biomass. Foods. 2025; 14(21):3801. https://doi.org/10.3390/foods14213801
Chicago/Turabian StyleSzołtysik, Marek, Anna Mandecka, Marcelina Maciejewska, Anna Dąbrowska, and Marek Nowak. 2025. "Functional, Biological and Nutritional Properties of Protein Fraction Isolated from Yarrowia lipolytica Biomass" Foods 14, no. 21: 3801. https://doi.org/10.3390/foods14213801
APA StyleSzołtysik, M., Mandecka, A., Maciejewska, M., Dąbrowska, A., & Nowak, M. (2025). Functional, Biological and Nutritional Properties of Protein Fraction Isolated from Yarrowia lipolytica Biomass. Foods, 14(21), 3801. https://doi.org/10.3390/foods14213801

