Upcycled Orange Peel Ingredients: A Scoping Review on Phytochemical Composition, Extraction Techniques, and Biorefinery Strategies
Abstract
1. Introduction
2. Bibliometric Analysis
2.1. Research Methodology
2.2. Overall Data Analysis
3. Nutritional and Phytochemical Compounds in Orange Peels
| Year | 2015 | 2017 | 2018 | 2019 | 2021 | 2022 | 2023 | 2019 | 2024 | 2024 |
|---|---|---|---|---|---|---|---|---|---|---|
| Purpose/Scope | NA | F | PE | NAA | BE | NAA | DF | BE | PE | POL |
| Moisture | 76.02 * | 81.60 * | - | 40.00 * | 78.53 * | 9.18 | 6.48 | - | 11.76 | |
| Ash | 3.17 | 4.91 | 4.30 | 4.30 | 3.61 | 3.00 | 3.83 | 3.70 | 0.09 | 3.00 |
| Fat | 0.80 | - | 2.75 | 7.90 | 5.18 | 3.52 | - | 5.35 | ||
| Protein | 8.12 | 1.60 | 5.26 | 2.83 | 4.86 | 6.72 | 6.04 | - | 4.90 | |
| Total Fiber | 10.00 | - | 9.90 | 4.65 | 44.91 | 13.30 | 65.40 | - | 46.50 | |
| Insoluble Fiber | - | - | 59.19 | - | - | - | 50.92 | - | 37.30 | |
| Soluble Fiber | - | - | 18.60 | - | - | - | 14.48 | - | 50.45 | 9.20 |
| Total Carbohydrates | - | - | 77.79 | 20.32 | - | 33.55 | 84.34 | - | 70.60 | 45.60 |
| Total Sugars | 46.24 | - | 18.60 | - | - | - | - | 35.2 | - | - |
| Structural Carbohydrates | ||||||||||
| Cellulose | 17.52 | 12.70 | - | 69.09 | 30.17 | - | 25.87 | 18.6 | - | - |
| Hemicellulose | - | 5.30 | - | 5.43 | 9.35 | - | 14.21 | 14.3 | - | - |
| Lignin | 14.38 | 0.20 | - | 19.80 | 5.07 | - | 8.77 | 6.5 | - | - |
| Pectin | 15.72 | - | - | - | 11.18 | - | 12.60 | 18.6 | 18.18 | - |
| Reference | [47] | [48] | [49] | [44,50] | [37] | [51] | [42] | [52] | [53] | [35] |
3.1. Essential Oils
3.2. Carotenoids
3.3. Phenolic Compounds
4. Extraction of Upcycled Ingredients from Orange Peels
4.1. Essential Oil Extraction
4.2. Phenolic Compound Extraction
4.3. Carotenoid Extraction
4.4. Pectin Extraction
| By-Product Type | Extraction | Extraction Conditions | Yield (%) | Identification and Quantification (%) | Ref. | ||
|---|---|---|---|---|---|---|---|
| Time (min) | Solvent | Other Parameters | |||||
| Fresh OP | Enzyme-assisted HD | 260 | Water | 3.9% Viscozyme L®; 55 °C | 4.6 | Limonene (66) and β-caryophyllene (23) | [97] |
| HD | 35 | Electromagnetic induction heating method | 3.77 | Limonene (94.43), β-myrcene (2.16), sabinene (0.47), linalool (0.29), valencene (0.17) | [61] | ||
| 41 | Heating mantle | 2.72 | Limonene (93.2), β-myrcene (2.28), sabinene (0.77), linalool (0.63%), valencene (0.04) | ||||
| HD assisted by solar energy | 120 | 10 m2 solar reflector coupled to a HD unit | 1.03 | Limonene (95.96), sabinene (0.16), myrcene (1.70), α-pinene (0.37), linalool (0.23) | [60] | ||
| HD | 190 | - | 1.05 | Limonene (95.24), sabinene (0.19), myrcene (1.73), α-pinene (0.39), linalool (0.30) | |||
| MAE | 60 | EthosX Extractor (600 W; 100 °C) | 0.43 | Limonene (80) | [72] | ||
| Fresh OP (Valencia variety) | Solvent-free MAE | 30 | - | 1000 W; 100 °C | 0.40 | Limonene (94.64), sabinene (0.54), myrcene (1.64), α-pinene (0.43), linalool (0.62) | [73] |
| HD | 180 | Water | - | 0.40 | Limonene (95.48), sabinene (0.49), myrcene (1.87), α-pinene (0.53), linalool (0.30) | ||
| CP | - | Automated cold-pressing machine | 0.16 | Limonene (95.06), sabinene (0.54), myrcene (1.82), α-pinene (0.51), linalool (0.30) | |||
| Steam explosion + HD | 30 | Pretreatment: 240 s, 170 °C, 8 bar | 1.34 | Limonene (89.13), myrcene (3.41), nonane (2.00), dodecanal (0.82), α-pinene (0.72) | [62] | ||
| HD | 240 | - | 1.21 | Limonene (77.39), myrcene (6.08), linalool (5.13), decanal (2.92), octanol (2.18) | |||
| Fresh OP (Navel Navelate variety) | Microwave-assisted HD | 20 | 785 W for 5 min + 250 W for 15 min | 1.80 | Limonene (97.38), β-myrcene (0.79), sabinene (0.50) and α-pinene (0.39) | [59] | |
| HD | 240 | - | 1.70 | Limonene (96.75), β-myrcene (0.74), sabinene (0.49) and α-pinene (0.32) | |||
| Fresh Orange Flavedo | Salt-assisted extraction by HD | 210 | Water + NaCl | 1:8.4 SLR; NaCl 5.3% (m/v); petroleum ether as used for EO separation | 2.15 | Limonene (88.07), β-myrcene (4.93), α-pinene (1.14), sabinene (0.39), α-citral (0.36), linalool (0.26), | [98] |
| Fresh OP (after juice extraction) | HD | 180 | Water | - | 1.90 | Limonene (86.70), sabinene (2.90), β-pinene (3.10), linalool (2.40), α-terpineol (1.91) | [58] |
| Salt-assisted extraction by hydrodistillation | 180 | Water + CaCl2 | - | 3.0 | Limonene (87.90), sabinene (2.18), β-pinene (2.95), linalool (3.05), α-terpineol (2.01) | ||
| EAE | 240 | Water | mix pectinase/hemicellulases; 60 min; 40 °C | 3.7 | Limonene (88.3), sabinene (2.28), β-pinene (3.01), linalool (2.61), α-terpineol (1.83) | ||
| UAE + HD | 210 | 30 min; 25 °C with power of 700 W | 2.9 | Limonene (88.2), sabinene (2.34), β-pinene (3.05), linalool (2.5), α-terpineol (1.72) | |||
| Solvent-free MAE | 30 | - | 10 min soaked with water; Power of 500 W | 3.6 | Limonene (85.4), sabinene (1.8), β-pinene (2.75), linalool (4.8), α-terpineol (2.50) | ||
| By-Product Type | Extraction | Extraction Conditions | Identification and Quantification (mg/g DW) | Ref. | ||
|---|---|---|---|---|---|---|
| Time (min) | Solvent/Medium | Other Parameters | ||||
| Dried OP Powder | SLE | 30 | Ethanol 80% (v/v) | 1:10 SLR; orbital shaker 900 rpm; 99.85 °C | Hesperidin (34.9), ferulic acid (0.10), catechin (0.06), rutin (0.04) | [74] |
| UAE | 30 | 1:10 SLR; power of 35 W; 99.85 °C | Hesperidin (40.0), ferulic acid (0.05), rutin (0.03), catechin (0.02) | |||
| MAE | 6 | 1:10 SLR; stirring at 1000 rpm; 99.85 °C | Hesperidin (58.2), catechin (0.15), ferulic acid (0.125) | |||
| SLE | 30 | 1:10 SLR; 35 °C | Neohesperidin (5.51), hesperidin (8.6), narirutin (0.38), nobiletin (0.42), naringin (0.42) | [27] | ||
| UAE | 30 | 1:10 SLR; 125 W; 30 °C | Neohesperidin (9.86), hesperidin (8.36), narirutin (0.17), nobiletin (0.74), naringin (0.82) | |||
| MAE | 3 | 1:10 SLR; power: 200 W, 76 °C | Nehohesperidin (12.2), hesperidin (9.3), naringin (1.3), nobiletin (0.8), didymin (0.6) | |||
| SFE | 30 | CO2 | 1:10 SLR; 250 bar, 10 MPa, flow rate of 15 g/min, 80 °C | Neohesperidin (7.0), hesperidin (5.1), naringin (0.65), nobiletin (0.5), didymin (0.24) | ||
| Freeze-dried OP | SLE | 36 | Methanol/DMSO (1:4 v/v) | 1:20 SLR; rotary shaker, 150 rpm | Hesperidin (0.23), sinensetin (0.39), nobiletin (0.37), luteolin (0.04), rutin (0.03), tangeretin (0.02) | [82] |
| EAE | 240 | pectinase, cellulase, hemicellulose, and papain | 1:20 SLR; rotary shaker, 150 rpm | Hesperidin (0.29), sinensetin (0.56), nobiletin (0.49), luteolin (0.08), rutin (0.16), tangeretin (0.03) | ||
| UAE | 27 | Methanol/DMSO (1:4 v/v) | 1:17.57 SLR; ultrasonic power, 63.84 W; 25.70 °C | Hesperidin (0.23), sinensetin (0.6), nobiletin (0.44), luteolin (0.08), rutin (0.04), tangeretin (0.03) | ||
| PFE | 50 | Water | 60 °C | Hesperidin (35.7), narirutin (0.90), gallic acid (0.21), p-coumaric acid (0.11), ferulic acid (0.1) (in DE) | [79] | |
| UAE | 10 | Methanol | 1:33 SLR; sonicator water bath; 40 °C | Hesperidin (278.95), narirutin (0.14), gallic acid (0.23), p-coumaric acid (0.11), ferulic acid (0.39) (in DE) | ||
| Dried OP | SLE | - | Water | 1:10 SLR; 25 °C | Narirutin (194), naringin (157.2), hesperidin (158.6) | [63] |
| - | Ethanol | Narirutin (198.6), naringin: (182.1), hesperetin (117.9), naringenin (1.2) | ||||
| DES | 100 | choline chloride-Ethylene Glycol ([Ch]Cl:EG 1:4) | 1:10 SLR; temperature of 99.85 °C | Gallic acid, syringic acid, rutin, naringin, p-coumaric acid, ferulic acid, caffeic acid, trans-cinnamic acid, flavone, and thymol | [7] | |
| OP (after the processing of juice and EO) | PFE | 40 | Ethanol 50% (v/v) | 1:5 SLR; 65 °C | Hesperidin (58), naringin (0.4), narirutin (9), hesperitin (0.27), tangeritin (0.32), naringenin (0.48) (in DE) | [80] |
| UAE | 30 | Ethanol 50% (v/v) | 1:56.5 SLR; 15 min in ultrasonic bath at 30 °C and 15 min in shaker at 200 rpm | Hesperidin (7.10), gallic acid (0.15), narirutin (5.50), hesperitin (0.24), tangeritin (0.26), naringenin (0.25) (in DE) | ||
| SFE | 240 | CO2 | 28.7 MPa; 60 °C | Hesperidin (0.11), caffeic acid (0.6), luteolin-6-C-glucoside (0.13), myricetin (0.38), apigenin-7-O-rutinoside (0.26) | [99] | |
| Defatted orange peels | SFE | 10 | water | 1:24 SLR; temperature: 150 °C; 10 MPa | Hesperidin (20), narirutin (2.33) | [100] |
| UAE | 120 | Ethanol 80% (v/v) | 1:20 SLR; 35 °C; 800 W power and 20 kHz frequency | Hesperidin (3), narirutin (2.85) | ||
| SLE | 1:20 SLR; 35 °C; 200 rpm shaker | Hesperidin (1.56), narirutin (0.73) | ||||
| By-Product | Extraction Technologies | Extraction Conditions | Yield (%) | Identification and Quantification (mg/g DW) | Refs. | ||
|---|---|---|---|---|---|---|---|
| Time (min) | Solvent | Other Parameters | |||||
| Freeze-dried OP | SLE | - | Acetone | Without saponification | - | Free carotenoids (50.9), monoesters (29.3), diesters (20.3), total carotenoids (97.4) | [101,102] |
| UAE + IL | 30 | [C4mim]Cl | 1:3 SLR; ultrasound probe at 20 kHz and 200 W, at 80% amplitude | - | Free carotenoids (32.1), monoesters (24.6), diesters (7.6), total carotenoids (64.2) | ||
| 25 | [C4mim]Cl (ethanol 59% (v/v) as co-solvent) | 1:3 SLR; ultrasound probe at 160 W, in an ice bath for 5 min; Amberlite XAD-7HP resin was used to separate the carotenoids from the IL | - | (all-E)-lutein (10.1), (all-E)-β-carotene (6.48), (13Z)-violaxanthin-C12: (3.54) | |||
| SFE | 16 | Supercritical CO2 and methanol | Temperature of 80 °C; 150 bar | - | free carotenoids (lutein, zeaxanthin, β-cryptoxanthin, b-carotene), carotenoid esters (antheraxanthin-C12:0, zeaxanthin-C12:0, β-cryptoxanthin-C12:0), apocarotenoids (β-apo-8′-carotenal, apo-8-luteinal), apo-esters (apo-10′-zeaxanthinal-C4:0, apo-8′-zeaxanthinal-C6:0) | ||
| Freeze-dried OP (after juice extraction) | UAE + IL | 5 | [BMIM][Cl] (ethanol 50% (v/v) as co-solvent) | 1:3 SLR; ultrasound probe at 200 W and 20 kHz at 80% amplitude; Amberlite XAD-7HP resin was used to separate the carotenoids from the IL | 0.32 | Total carotenoids (17.95), 9-cis-violaxanthin (6.76), all-trans-violaxanthin (0.48), all-trans-lutein (2.87) | [103] |
| SLE | 1440 | Acetone | Saponified with 10% methanolic KOH overnight at room temperature | 0.78 | Total carotenoids (7.88), 9-cis-violaxanthin (1.53), all-trans-violaxanthin, all-trans-lutein (3.07) | ||
| Dried OP (Navel cultivar) | DES + UAE | 20 | Octanoic acid: Proline | 1:20 SLR; ultrasound intensity of 60% (120 W); 45 °C | 0.46 | - | [104] |
| SLE | Hexane | 0.39 | - | ||||
| By-Product | Extraction Technologies | Extraction Conditions | Yield (%) | Degree of Esterification (DE) (%) | Other Pectin Parameters | Ref. | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Time (min) | Temperature (°C) | pH | Solvent/Medium | Purification Method | Other Parameters | ||||||
| Dried OP | SLE (hot acid-assisted extraction) | 240 | 80 | 1.5 | Water with HCl | Ethanol cold precipitation; oven drying | 1:20 SLR | 22.1 | 55 | GalA: 20.91%; Mw: 197.78 kDa; | [41] |
| UAE + enzymes | 270 | 80 °C (30 min) and 50 °C (240 min) | 5.0 | 50 mM sodium citrate buffer with Celluclast | 1:19 SLR; 30 min in ultrasonic bath (300 W); then incubated at 70 rpm | 26.9 | 8 | GalA: 22.77%; Mw: 70.22 kDa; | |||
| Ohmic extraction | 1 | 90 | 1.5 | Water with HCl | - | 1:20 SLR; voltage: 30 V/cm | 10.36 | 75 | GalA: 68.24% | [95] | |
| Freeze-dried OP powder | Acid-mediated hot extraction | 60 | 90 | 2.0 | Water with HCl | Nanofiltration (200 Da dialysis bag; ethanol precipitation; freeze-drying) | 1:30 SLR | 20.8 | 72 | Mw: 212.9 kDa | [38] |
| Hydrothermal Extraction | 45 | 120 | Water | 18.9 | 64 | Mw: 109.2 kDa | |||||
| Dried OP Powder | SLE (hot acid-assisted extraction) | 114 | 94 | 1.45 | Water with HCl | Ethanol cold precipitation; oven drying | 1:20 SLR; water bath extraction | 23.64 | 73 | Anhydrouronic acid: 38.60% | [105] |
| MAE | 1.5 | 80 | 1.5 | Water with HNO3 | Ethanol cold precipitation; freeze-drying | 1:20 SLR; frequency 2450 MHz and power 540 w | 15.79 | 42 | - | [40] | |
| SLE (hot acid-assisted extraction) | 10 | Water with HNO3 | 1:20 SLR | 8.78 | 36 | - | |||||
| Dried OP powder (after juice processing; sugars and phenolics recovery) | MAE | 3 | - | 1.5 | Water acidified with hydrochloric acid | Ethanol cold precipitation; oven drying | 1:25 SLR; household microwave oven at 2450 MHz and irradiation 620 W | 18.3 | 74 | GalA: 65.7%; intrinsic viscosity: 0.57 dL/g; Mw: 9.9 kDa | [39] |
| SLE (hot acid-assisted extraction) | 117 | 90 | 1.6 | Water with HCl | 1:30 SLR | 18.5 | 78 | GalA: 56.4%; intrinsic viscosity: 0.774 dL/g; Mw: 14.6 kDa | |||
| 160 | 2.0 | Water with citric acid | 22.8 | 56 | GalA: 46.7%; intrinsic viscosity: 0.397 dL/g; Mw: 6.2 kDa | ||||||
5. Increasing the Value of OP Through Biorefinery Processes
| Pretreatment | Extraction Technologies | Yield Ingredients Obtained (from 1 Ton of OP) | Main Findings on Feasibility Study and Cost Estimate | Ref. |
|---|---|---|---|---|
| Dried in an oven at 50 °C for 24 h and ground | Citric acid extraction Alkaline extraction Enzymatic hydrolysis | 13 tons free sugars 2.9 tons pectin 0.8 tons XOS bioenergy | →Pectin and xylan precipitation are expensive. Therefore, 30% and 70% evaporation of pectin and xylan resulted in the lowest investment, payback time, ethanol, and energy consumption, respectively. →The integrated process reduced the net unit cost of pectin and XOS production. →The critical role of solvent and water recycling in reducing production costs and environmental footprint cannot be overstated. For instance, using citric acid not only improves economic feasibility but also significantly reduces the environmental impact, with 92% of the citric acid being recyclable. →XOS production is workable only if it is associated with the production of other bioproducts. | [111] |
| Cut to 1 cm and stored at 6 °C | Steam distillation Citric acid extraction Anaerobic digestion | 6.07 kg EOs 22.72 kg pectin 77.71 Nm3 biogas | →The proposed OP biorefinery has high energy demands, with EO production using over 51% of the thermal energy and pectin extraction consuming about 36%. →The utility costs (44.8%) are the most representative of the process due to the high consumption of steam and cooling water in the EO and pectin production processes. →Capital depreciation costs are higher than the raw material costs. Therefore, applying this process at scales of <240 ton/day is not feasible without strategic planning and investment. | [37] |
| Dried at 50 °C and ground | Steam distillation UAE Citric acid-mediated hot extraction Enzymatic hydrolysis | 1.5 kg EOs 1.3 kg polyphenol-rich extract 34 kg pectin 68 kg bacterial cellulose | →Industrial pectin and EO production are highly energy-consuming due to high utility requirements. →High quantities of ethanol used for pectin precipitation should be recycled. Process design showed that energy requirements could be reduced by 62% during pectin separation when the pectin-rich liquid extract is concentrated to 25% of its original volume via a mechanical vapor recompression-forced circulation evaporator system. | [108] |
| - | Solar HD HCl extraction | 10 kg EOs 20 kg polyphenol-rich extract (78% hesperidin) 80 kg pectin | →The distillation time was reduced by more than 30% compared to the traditional method while also allowing for higher narirutin and hesperidin concentrations. →The conventional process emits about 2560 g of CO2, whereas solar HD has a zero CO2 footprint since it requires no additional energy. →The investment cost for a solar system is 28.5% higher than that for conventional processes, but it has a payback period of nearly two years with no additional expenses. | [60] |
| Blade-milled until 500 µm and frozen (−20 °C) | Acetone extraction Acid and enzymatic hydrolysis | 22.5 kg EOs 15.7 kg polyphenol-rich extract 196.2 kg pectin 296 kg glucose | →Despite the purpose of sustainable integrated OP valorization, solvents such as acetone and petroleum ether were used. In addition, inorganic acid was used for pectin extraction. Monosaccharides were obtained solely based on green extraction (EAE). | [52] |
| Frozen and ground in ice (≤10 mm) | Hydrodynamic cavitation | 6 g EO (96% limonene) 2.6 kg polyphenol-rich extract with hesperidin (5.68 mg/g) and naringin (2.56 mg/g) Pectin | →The process’s scalability was validated since 42 kg of OP was used to test the hydrodynamic cavitation equipment (semi-industrial scale). However, based on the energy balance, it would be imperative to optimize the extraction time. →The results presented in this study open the route to the integral valorization of OP via a simple, low-cost, and highly effective technology, requiring water as the unique additional raw material. →The overall specific energy consumed at the end was around 0.62 kWh/kg. | [83] |
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gavahian, M.; Chu, Y.; Mousavi Khaneghah, A. Recent Advances in Orange Oil Extraction: An Opportunity for the Valorisation of Orange Peel Waste a Review. Int. J. Food Sci. Technol. 2019, 54, 925–932. [Google Scholar] [CrossRef]
- Hou, J.; Liang, L.; Su, M.; Yang, T.; Mao, X.; Wang, Y. Variations in Phenolic Acids and Antioxidant Activity of Navel Orange at Different Growth Stages. Food Chem. 2021, 360, 129980. [Google Scholar] [CrossRef]
- Statista Orange Production Worldwide. Available online: https://www.statista.com/statistics/577398/world-orange-production/ (accessed on 24 March 2025).
- Duarte, A.; Fernandes, M.J.; Bernardes, J.P.; Miguel, M.G. Citrus as a Component of the Mediterranean Diet. J. Spat. Organ. Dyn. 2016, 4, 289–304. [Google Scholar]
- Vlaicu, P.A.; Untea, A.E.; Panaite, T.D.; Turcu, R.P. Effect of Dietary Orange and Grapefruit Peel on Growth Performance, Health Status, Meat Quality and Intestinal Microflora of Broiler Chickens. Ital. J. Anim. Sci. 2020, 19, 1394–1405. [Google Scholar] [CrossRef]
- FAO. Citrus Fruits Statistical Compendium; FAO: Rome, Italy, 2021. [Google Scholar]
- Ozturk, B.; Parkinson, C.; Gonzalez-Miquel, M. Extraction of Polyphenolic Antioxidants from Orange Peel Waste Using Deep Eutectic Solvents. Sep. Purif. Technol. 2018, 206, 1–13. [Google Scholar] [CrossRef]
- Panwar, D.; Saini, A.; Panesar, P.S.; Chopra, H.K. Unraveling the Scientific Perspectives of Citrus By-Products Utilization: Progress towards Circular Economy. Trends Food Sci. Technol. 2021, 111, 549–562. [Google Scholar] [CrossRef]
- Panwar, D.; Panesar, P.S.; Chopra, H.K. Recent Trends on the Valorization Strategies for the Management of Citrus By-Products. Food Rev. Int. 2021, 37, 91–120. [Google Scholar] [CrossRef]
- Xu, G.; Zhao, J.; Shi, K.; Xu, Y.; Hu, H.; Xu, X.; Hu, T.; Zhang, P.; Yao, J.; Pan, S. Trends in Valorization of Citrus By-Products from the Net-Zero Perspective: Green Processing Innovation Combined with Applications in Emission Reduction. Trends Food Sci. Technol. 2023, 137, 124–141. [Google Scholar] [CrossRef]
- Da Silva, R.F.; Carneiro, C.N.; de Sousa, C.B.D.C.; Gomez, F.J.V.; Espino, M.; Boiteux, J.; de los Á. Fernández, M.; Silva, M.F.; de S. Dias, F. Sustainable Extraction Bioactive Compounds Procedures in Medicinal Plants Based on the Principles of Green Analytical Chemistry: A Review. Microchem. J. 2022, 175, 107184. [Google Scholar] [CrossRef]
- Mohsin, A.; Hussain, M.H.; Zaman, W.Q.; Mohsin, M.Z.; Zhang, J.; Liu, Z.; Tian, X.; Salim-ur-Rehman; Khan, I.M.; Niazi, S. Advances in Sustainable Approaches Utilizing Orange Peel Waste to Produce Highly Value-Added Bioproducts. Crit. Rev. Biotechnol. 2022, 42, 1284–1303. [Google Scholar] [CrossRef] [PubMed]
- Vilas-Boas, A.A.; Gómez-García, R.; Campos, D.A.; Correia, M.; Pintado, M. Integrated Biorefinery Strategy for Orange Juice By-Products Valorization: A Sustainable Protocol to Obtain Bioactive Compounds. In Food Waste Conversion; Springer: New York, NY, USA, 2023; pp. 113–124. [Google Scholar]
- Chemat, F.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G. Green Extraction of Natural Products. Origins, Current Status, and Future Challenges. TrAC Trends Anal. Chem. 2019, 118, 248–263. [Google Scholar] [CrossRef]
- Burlea-Schiopoiu, A.; Ogarca, R.F.; Barbu, C.M.; Craciun, L.; Baloi, I.C.; Mihai, L.S. The Impact of COVID-19 Pandemic on Food Waste Behaviour of Young People. J. Clean Prod. 2021, 294, 126333. [Google Scholar] [CrossRef]
- Saini, R.K.; Ranjit, A.; Sharma, K.; Prasad, P.; Shang, X.; Gowda, K.G.M.; Keum, Y.-S. Bioactive Compounds of Citrus Fruits: A Review of Composition and Health Benefits of Carotenoids, Flavonoids, Limonoids, and Terpenes. Antioxidants 2022, 11, 239. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, H.; Wen, X.; Ho, C.; Li, S. Citrus Flavonoids and the Intestinal Barrier: Interactions and Effects. Compr. Rev. Food Sci. Food Saf. 2021, 20, 225–251. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Hou, X.; Cui, Q.; Li, S.; Shen, G.; Luo, Q.; Wu, H.; Chen, H.; Liu, Y.; Chen, A. Pectin Mediates the Mechanism of Host Blood Glucose Regulation through Intestinal Flora. Crit. Rev. Food Sci. Nutr. 2024, 64, 6714–6736. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA); Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A. Safety of Glucosyl Hesperidin as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA J. 2024, 22, e8911. [Google Scholar]
- Pérez-Chabela, M.L.; Chaparro-Hernández, J.; Totosaus, A. Dietary Fiber from Agroindustrial By-Products: Orange Peel Flour as Functional Ingredient in Meat Products. In Dietary Fiber: Production Challenges, Food Sources and Health Benefits; Nova Science Publishers: Hauppauge, NY, USA, 2015; pp. 145–157. [Google Scholar]
- Rezzadori, K.; Benedetti, S.; Amante, E.R. Proposals for the Residues Recovery: Orange Waste as Raw Material for New Products. Food Bioprod. Process. 2012, 90, 606–614. [Google Scholar] [CrossRef]
- Tahir, Z.; Khan, M.I.; Ashraf, U.; Adan, I.R.D.N.; Mubarik, U. Industrial Application of Orange Peel Waste; a Review. Int. J. Agric. Biosci. 2023, 12, 71–76. [Google Scholar] [CrossRef]
- Li, Q.; Putra, N.R.; Rizkiyah, D.N.; Abdul Aziz, A.H.; Irianto, I.; Qomariyah, L. Orange Pomace and Peel Extraction Processes towards Sustainable Utilization: A Short Review. Molecules 2023, 28, 3550. [Google Scholar] [CrossRef]
- Pineda-Lozano, J.E.; Fonseca-Bustos, V.; Martinez-Moreno, A.G.; Virgen-Carrillo, C.A. The Biological Effect of Orange (Citrus sinensis, L.) by-Products on Metabolic Biomarkers: A Systematic Review. Front. Sustain. Food Syst. 2022, 6, 1003144. [Google Scholar] [CrossRef]
- Seminara, S.; Bennici, S.; Di Guardo, M.; Caruso, M.; Gentile, A.; La Malfa, S.; Distefano, G. Sweet Orange: Evolution, Characterization, Varieties, and Breeding Perspectives. Agriculture 2023, 13, 264. [Google Scholar] [CrossRef]
- Lu, X.; Zhao, C.; Shi, H.; Liao, Y.; Xu, F.; Du, H.; Xiao, H.; Zheng, J. Nutrients and Bioactives in Citrus Fruits: Different Citrus Varieties, Fruit Parts, and Growth Stages. Crit. Rev. Food Sci. Nutr. 2023, 63, 2018–2041. [Google Scholar] [CrossRef]
- M’hiri, N.; Ioannou, I.; Mihoubi Boudhrioua, N.; Ghoul, M. Effect of Different Operating Conditions on the Extraction of Phenolic Compounds in Orange Peel. Food Bioprod. Process. 2015, 96, 161–170. [Google Scholar] [CrossRef]
- Kotsou, K.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Adamaki-Sotiraki, C.; Rumbos, C.I.; Athanassiou, C.G.; Lalas, S.I. Waste Orange Peels as a Feed Additive for the Enhancement of the Nutritional Value of Tenebrio Molitor. Foods 2023, 12, 783. [Google Scholar] [CrossRef]
- Jahromi, K.G.; Koochi, Z.H.; Kavoosi, G.; Shahsavar, A. Manipulation of Fatty Acid Profile and Nutritional Quality of Chlorella Vulgaris by Supplementing with Citrus Peel Fatty Acid. Sci. Rep. 2022, 12, 8151. [Google Scholar] [CrossRef]
- Xie, J.; Cao, Q.; Wang, W.; Zhang, H.; Deng, B. Understanding Changes in Volatile Compounds and Fatty Acids of Jincheng Orange Peel Oil at Different Growth Stages Using GC–MS. J. Integr. Agric. 2023, 22, 2282–2294. [Google Scholar] [CrossRef]
- Patience, N.A.; Schieppati, D.; Boffito, D.C. Continuous and Pulsed Ultrasound Pectin Extraction from Navel Orange Peels. Ultrason. Sonochem. 2021, 73, 105480. [Google Scholar] [CrossRef]
- Hassan, F.A.; Shalaby, A.G.; Elkassas, N.E.M.; El-Medany, S.A.; Hamdi Rabie, A.; Mahrose, K.; Abd El-Aziz, A.; Bassiony, S. Efficacy of Ascorbic Acid and Different Sources of Orange Peel on Growth Performance, Gene Expression, Anti-Oxidant Status and Microbial Activity of Growing Rabbits under Hot Conditions. Anim. Biotechnol. 2023, 34, 2480–2491. [Google Scholar] [CrossRef]
- Kaur, S.; Panesar, P.S.; Chopra, H.K. Citrus Processing By-Products: An Overlooked Repository of Bioactive Compounds. Crit. Rev. Food Sci. Nutr. 2023, 63, 67–86. [Google Scholar] [CrossRef] [PubMed]
- Bakr, A.F.; Farag, M.A. Soluble Dietary Fibers as Antihyperlipidemic Agents: A Comprehensive Review to Maximize Their Health Benefits. ACS Omega 2023, 8, 24680–24694. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Gómez, V.; Jesús Periago, M.; Luis Ordóñez-Díaz, J.; Pereira-Caro, G.; Manuel Moreno-Rojas, J.; González-Barrio, R. Dietary Fibre Fractions Rich in (Poly)Phenols from Orange by-Products and Their Metabolisation by in Vitro Digestion and Colonic Fermentation. Food Res. Int. 2024, 177, 113718. [Google Scholar] [CrossRef]
- Andrade, M.A.; Barbosa, C.H.; Shah, M.A.; Ahmad, N.; Vilarinho, F.; Khwaldia, K.; Silva, A.S.; Ramos, F. Citrus By-Products: Valuable Source of Bioactive Compounds for Food Applications. Antioxidants 2022, 12, 38. [Google Scholar] [CrossRef]
- Ortiz-Sanchez, M.; Solarte-Toro, J.C.; Orrego-Alzate, C.E.; Acosta-Medina, C.D.; Cardona-Alzate, C.A. Integral Use of Orange Peel Waste through the Biorefinery Concept: An Experimental, Technical, Energy, and Economic Assessment. Biomass Convers. Biorefin. 2021, 11, 645–659. [Google Scholar] [CrossRef]
- Wang, T.; Tao, Y.; Lai, C.; Huang, C.; Ling, Z.; Yong, Q. Influence of Extraction Methods on Navel Orange Peel Pectin: Structural Characteristics, Antioxidant Activity and Cytoprotective Capacity. Int. J. Food Sci. Technol. 2023, 58, 1382–1393. [Google Scholar] [CrossRef]
- Zioga, M.; Tsouko, E.; Maina, S.; Koutinas, A.; Mandala, I.; Evageliou, V. Physicochemical and Rheological Characteristics of Pectin Extracted from Renewable Orange Peel Employing Conventional and Green Technologies. Food Hydrocoll. 2022, 132, 107887. [Google Scholar] [CrossRef]
- Kute, A.B.; Mohapatra, D.; Kotwaliwale, N.; Giri, S.K.; Sawant, B.P. Characterization of Pectin Extracted from Orange Peel Powder Using Microwave-Assisted and Acid Extraction Methods. Agric. Res. 2020, 9, 241–248. [Google Scholar] [CrossRef]
- Bosch, R.; Malgas, S. Ultrasound-assisted Enzymatic Extraction of Orange Peel Pectin and Its Characterisation. Int. J. Food Sci. Technol. 2023, 58, 6784–6793. [Google Scholar] [CrossRef]
- Zhou, L.; Luo, J.; Xie, Q.; Huang, L.; Shen, D.; Li, G. Dietary Fiber from Navel Orange Peel Prepared by Enzymatic and Ultrasound-Assisted Deep Eutectic Solvents: Physicochemical and Prebiotic Properties. Foods 2023, 12, 2007. [Google Scholar] [CrossRef]
- Figueira, O.; Pereira, V.; Castilho, P.C. A Two-Step Approach to Orange Peel Waste Valorization: Consecutive Extraction of Pectin and Hesperidin. Foods 2023, 12, 3834. [Google Scholar] [CrossRef] [PubMed]
- Ayala, J.R.; Montero, G.; Coronado, M.A.; García, C.; Curiel-Alvarez, M.A.; León, J.A.; Sagaste, C.A.; Montes, D.G. Characterization of Orange Peel Waste and Valorization to Obtain Reducing Sugars. Molecules 2021, 26, 1348. [Google Scholar] [CrossRef]
- Gervasi, T.; Mandalari, G. Valorization of Agro-Industrial Orange Peel by-Products through Fermentation Strategies. Fermentation 2024, 10, 224. [Google Scholar] [CrossRef]
- Fernandes, F.A.; Heleno, S.A.; Pinela, J.; Carocho, M.; Prieto, M.A.; Ferreira, I.C.F.R.; Barros, L. Recovery of Citric Acid from Citrus Peels: Ultrasound-Assisted Extraction Optimized by Response Surface Methodology. Chemosensors 2022, 10, 257. [Google Scholar] [CrossRef]
- M’hiri, N.; Ioannou, I.; Ghoul, M.; Boudhrioua, N.M.; Ayadi, S.; Chamekh, Z.; Karmous, C.; Jallouli, S.; Ahmed, N.; Hammami, Z. Proximate Chemical Composition of Orange Peel and Variation of Phenols and Antioxidant Activity during Convective Air Drying. J. New Sci. 2015, 80, 9. [Google Scholar]
- Gaind, S. Exploitation of Orange Peel for Fungal Solubilization of Rock Phosphate by Solid State Fermentation. Waste Biomass Valorization 2017, 8, 1351–1360. [Google Scholar] [CrossRef]
- Mhgub, I.M.; Hefnawy, H.T.; Gomaa, A.M.; Badr, H.A. Chemical Composition, Antioxidant Activity and Structure of Pectin and Extracts from Lemon and Orange Peels. Zagazig J. Agric. Res. 2018, 45, 1395–1404. [Google Scholar] [CrossRef]
- Naqvi, S.A.Z.; Irfan, A.; Zaheer, S.; Sultan, A.; Shajahan, S.; Rubab, S.L.; Ain, Q.; Acevedo, R. Proximate Composition of Orange Peel, Pea Peel and Rice Husk Wastes and Their Potential Use as Antimicrobial Agents and Antioxidants. Vegetos 2021, 34, 470–476. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Eshak, N.S.; Mohamed, H.I.; Bendary, E.S.A.; Danial, A.W. Physical Characteristics, Mineral Content, and Antioxidant and Antibacterial Activities of Punica Granatum or Citrus Sinensis Peel Extracts and Their Applications to Improve Cake Quality. Plants 2022, 11, 1740. [Google Scholar] [CrossRef]
- Senit, J.J.; Velasco, D.; Gomez Manrique, A.; Sanchez-Barba, M.; Toledo, J.M.; Santos, V.E.; Garcia-Ochoa, F.; Yustos, P.; Ladero, M. Orange Peel Waste Upstream Integrated Processing to Terpenes, Phenolics, Pectin and Monosaccharides: Optimization Approaches. Ind. Crops. Prod. 2019, 134, 370–381. [Google Scholar] [CrossRef]
- Iñiguez-Moreno, M.; Pizaña-Aranda, J.J.P.; Ramírez-Gamboa, D.; Ramírez-Herrera, C.A.; Araújo, R.G.; Flores-Contreras, E.A.; Iqbal, H.M.N.; Parra-Saldívar, R.; Melchor-Martínez, E.M. Enhancing Pectin Extraction from Orange Peel through Citric Acid-Assisted Optimization Based on a Dual Response. Int. J. Biol. Macromol. 2024, 263, 130230. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, V.; Paymal, N.; Quinton, C.; Tomi, F.; Luro, F. Investigations of the Chemical Composition and Aromatic Properties of Peel Essential Oils throughout the Complete Phase of Fruit Development for Two Cultivars of Sweet Orange (Citrus sinensis (L.) Osb.). Plants 2022, 11, 2747. [Google Scholar] [CrossRef]
- Farahmandfar, R.; Tirgarian, B.; Dehghan, B.; Nemati, A. Changes in Chemical Composition and Biological Activity of Essential Oil from Thomson Navel Orange (Citrus sinensis L. Osbeck) Peel under Freezing, Convective, Vacuum, and Microwave Drying Methods. Food Sci. Nutr. 2020, 8, 124–138. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Yadav, M.P. Insights into the Chemical Composition and Bioactivities of Citrus Peel Essential Oils. Food Res. Int. 2021, 143, 110231. [Google Scholar] [CrossRef]
- Mahato, N.; Sharma, K.; Koteswararao, R.; Sinha, M.; Baral, E.; Cho, M.H. Citrus Essential Oils: Extraction, Authentication and Application in Food Preservation. Crit. Rev. Food Sci. Nutr. 2019, 59, 611–625. [Google Scholar] [CrossRef]
- Taktak, O.; Ben Youssef, S.; Abert Vian, M.; Chemat, F.; Allouche, N. Physical and Chemical Influences of Different Extraction Techniques for Essential Oil Recovery from Citrus Sinensis Peels. J. Essent. Oil Bear. Plants 2021, 24, 290–303. [Google Scholar] [CrossRef]
- Bustamante, J.; van Stempvoort, S.; García-Gallarreta, M.; Houghton, J.A.; Briers, H.K.; Budarin, V.L.; Matharu, A.S.; Clark, J.H. Microwave Assisted Hydro-Distillation of Essential Oils from Wet Citrus Peel Waste. J. Clean. Prod. 2016, 137, 598–605. [Google Scholar] [CrossRef]
- Hilali, S.; Fabiano-Tixier, A.-S.; Ruiz, K.; Hejjaj, A.; Ait Nouh, F.; Idlimam, A.; Bily, A.; Mandi, L.; Chemat, F. Green Extraction of Essential Oils, Polyphenols, and Pectins from Orange Peel Employing Solar Energy: Toward a Zero-Waste Biorefinery. ACS Sustain. Chem. Eng. 2019, 7, 11815–11822. [Google Scholar] [CrossRef]
- Youcef-Ettoumi, K.; Zouambia, Y.; Moulai-Mostefa, N. Chemical Composition, Antimicrobial and Antioxidant Activities of Algerian Citrus Sinensis Essential Oil Extracted by Hydrodistillation Assisted by Electromagnetic Induction Heating. J. Food Sci. Technol. 2021, 58, 3049–3055. [Google Scholar] [CrossRef]
- Golmohammadi, M.; Borghei, A.; Zenouzi, A.; Ashrafi, N.; Taherzadeh, M.J. Optimization of Essential Oil Extraction from Orange Peels Using Steam Explosion. Heliyon 2018, 4, e00893. [Google Scholar] [CrossRef]
- Shehata, M.G.; Awad, T.S.; Asker, D.; El Sohaimy, S.A.; Abd El- Aziz, N.M.; Youssef, M.M. Antioxidant and Antimicrobial Activities and UPLC-ESI-MS/MS Polyphenolic Profile of Sweet Orange Peel Extracts. Curr. Res. Food Sci. 2021, 4, 326–335. [Google Scholar] [CrossRef]
- Lux, P.E.; Carle, R.; Zacarías, L.; Rodrigo, M.-J.; Schweiggert, R.M.; Steingass, C.B. Genuine Carotenoid Profiles in Sweet Orange [Citrus sinensis (L.) Osbeck Cv. Navel] Peel and Pulp at Different Maturity Stages. J. Agric. Food Chem. 2019, 67, 13164–13175. [Google Scholar] [CrossRef]
- Magalhães, D.; Gonçalves, R.; Rodrigues, C.V.; Rocha, H.R.; Pintado, M.; Coelho, M.C. Natural Pigments Recovery from Food By-Products: Health Benefits towards the Food Industry. Foods 2024, 13, 2276. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic Composition, Antioxidant Potential and Health Benefits of Citrus Peel. Food Res. Int. 2020, 132, 109114. [Google Scholar] [CrossRef]
- Anastas, P.T.; Zimmerman, J.B. Peer Reviewed: Design through the 12 Principles of Green Engineering 2003. Environ. Sci. Technol. 2003, 94–101. [Google Scholar] [CrossRef]
- Liu, N.; Li, X.; Zhao, P.; Zhang, X.; Qiao, O.; Huang, L.; Guo, L.; Gao, W. A Review of Chemical Constituents and Health-Promoting Effects of Citrus Peels. Food Chem. 2021, 365, 130585. [Google Scholar] [CrossRef]
- Teigiserova, D.A.; Tiruta-Barna, L.; Ahmadi, A.; Hamelin, L.; Thomsen, M. A Step Closer to Circular Bioeconomy for Citrus Peel Waste: A Review of Yields and Technologies for Sustainable Management of Essential Oils. J. Environ. Manag. 2021, 280, 111832. [Google Scholar] [CrossRef]
- Khandare, R.D.; Tomke, P.D.; Rathod, V.K. Kinetic Modeling and Process Intensification of Ultrasound-Assisted Extraction of d-Limonene Using Citrus Industry Waste. Chem. Eng. Process.-Process Intensif. 2021, 159, 108181. [Google Scholar] [CrossRef]
- Karanicola, P.; Patsalou, M.; Stergiou, P.Y.; Kavallieratou, A.; Evripidou, N.; Christou, P.; Panagiotou, G.; Damianou, C.; Papamichael, E.M.; Koutinas, M. Ultrasound-Assisted Dilute Acid Hydrolysis for Production of Essential Oils, Pectin and Bacterial Cellulose via a Citrus Processing Waste Biorefinery. Bioresour. Technol. 2021, 342, 126010. [Google Scholar] [CrossRef]
- Ciriminna, R.; Fidalgo, A.; Delisi, R.; Carnaroglio, D.; Grillo, G.; Cravotto, G.; Tamburino, A.; Ilharco, L.M.; Pagliaro, M. High-Quality Essential Oils Extracted by an Eco-Friendly Process from Different Citrus Fruits and Fruit Regions. ACS Sustain. Chem. Eng. 2017, 5, 5578–5587. [Google Scholar] [CrossRef]
- Aboudaou, M.; Ferhat, M.A.; Hazzit, M.; Ariño, A.; Djenane, D. Solvent Free-Microwave Green Extraction of Essential Oil from Orange Peel (Citrus sinensis L.): Effects on Shelf Life of Flavored Liquid Whole Eggs during Storage under Commercial Retail Conditions. J. Food Meas. Charact. 2019, 13, 3162–3172. [Google Scholar] [CrossRef]
- de Miera, B.S.; Cañadas, R.; González-Miquel, M.; González, E.J. Recovery of Phenolic Compounds from Orange Peel Waste by Conventional and Assisted Extraction Techniques Using Sustainable Solvents. Front. Biosci. Elite 2023, 15, 30. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Ballesteros, L.F.; Martins, S.; Teixeira, J.A. Extraction of Antioxidant Phenolic Compounds from Spent Coffee Grounds. Sep. Purif. Technol. 2011, 83, 173–179. [Google Scholar] [CrossRef]
- Boeing, J.S.; Barizão, É.O.; e Silva, B.C.; Montanher, P.F.; de Cinque Almeida, V.; Visentainer, J.V. Evaluation of Solvent Effect on the Extraction of Phenolic Compounds and Antioxidant Capacities from the Berries: Application of Principal Component Analysis. Chem. Cent. J. 2014, 8, 48. [Google Scholar] [CrossRef]
- Saini, A.; Panesar, P.S.; Bera, M.B. Comparative Study on the Extraction and Quantification of Polyphenols from Citrus Peels Using Maceration and Ultrasonic Technique. Curr. Res. Nutr. Food Sci. 2019, 7, 678. [Google Scholar] [CrossRef]
- Boukroufa, M.; Boutekedjiret, C.; Petigny, L.; Rakotomanomana, N.; Chemat, F. Bio-Refinery of Orange Peels Waste: A New Concept Based on Integrated Green and Solvent Free Extraction Processes Using Ultrasound and Microwave Techniques to Obtain Essential Oil, Polyphenols and Pectin. Ultrason. Sonochem. 2015, 24, 72–79. [Google Scholar] [CrossRef]
- Leo, C.H.; Foo, S.Y.; Tan, J.C.W.; Tan, U.-X.; Chua, C.K.; Ong, E.S. Green Extraction of Orange Peel Waste Reduces TNFα-Induced Vascular Inflammation and Endothelial Dysfunction. Antioxidants 2022, 11, 1768. [Google Scholar] [CrossRef]
- Barrales, F.M.; Silveira, P.; de Paula Menezes Barbosa, P.; Ruviaro, A.R.; Paulino, B.N.; Pastore, G.M.; Macedo, G.A.; Martinez, J. Recovery of Phenolic Compounds from Citrus By-Products Using Pressurized Liquids—An Application to Orange Peel. Food Bioprod. Process. 2018, 112, 9–21. [Google Scholar] [CrossRef]
- Gómez-Urios, C.; Viñas-Ospino, A.; Puchades-Colera, P.; López-Malo, D.; Frígola, A.; Esteve, M.J.; Blesa, J. Sustainable Development and Storage Stability of Orange By-Products Extract Using Natural Deep Eutectic Solvents. Foods 2022, 11, 2457. [Google Scholar] [CrossRef]
- Wang, Z.; Mei, X.; Chen, X.; Rao, S.; Ju, T.; Li, J.; Yang, Z. Extraction and Recovery of Bioactive Soluble Phenolic Compounds from Brocade Orange (Citrus sinensis) Peels: Effect of Different Extraction Methods Thereon. LWT 2023, 173, 114337. [Google Scholar] [CrossRef]
- Meneguzzo, F.; Brunetti, C.; Fidalgo, A.; Ciriminna, R.; Delisi, R.; Albanese, L.; Zabini, F.; Gori, A.; dos Santos Nascimento, L.B.; De Carlo, A. Real-Scale Integral Valorization of Waste Orange Peel via Hydrodynamic Cavitation. Processes 2019, 7, 581. [Google Scholar] [CrossRef]
- Shahram, H.; Dinani, S.T.; Amouheydari, M. Effects of Pectinase Concentration, Ultrasonic Time, and PH of an Ultrasonic-Assisted Enzymatic Process on Extraction of Phenolic Compounds from Orange Processing Waste. J. Food Meas. Charact. 2019, 13, 487–498. [Google Scholar] [CrossRef]
- Savic Gajic, I.M.; Savic, I.M.; Gajic, D.G.; Dosic, A. Ultrasound-Assisted Extraction of Carotenoids from Orange Peel Using Olive Oil and Its Encapsulation in ca-Alginate Beads. Biomolecules 2021, 11, 225. [Google Scholar] [CrossRef] [PubMed]
- Montero-Calderon, A.; Cortes, C.; Zulueta, A.; Frigola, A.; Esteve, M.J. Green Solvents and Ultrasound-Assisted Extraction of Bioactive Orange (Citrus sinensis) Peel Compounds. Sci. Rep. 2019, 9, 16120. [Google Scholar] [CrossRef]
- Toprakçı, İ.; Kurtulbaş, E.; Pekel, A.G.; Şahin, S. Application of D--optimal Design for Automatic Solvent Extraction of Carotenoid from Orange Peel. J. Food Process. Preserv. 2021, 45, e15724. [Google Scholar] [CrossRef]
- Terlidis, K.; Athanasiadis, V.; Chatzimitakos, T.; Bozinou, E.; Lalas, S.I. Carotenoids Extraction from Orange Peels Using a Thymol-Based Hydrophobic Eutectic Solvent. AppliedChem 2023, 3, 437–451. [Google Scholar] [CrossRef]
- Jiao, Y.; Li, D.; Chang, Y.; Xiao, Y. Effect of Freeze-thaw Pretreatment on Extraction Yield and Antioxidant Bioactivity of Corn Carotenoids (Lutein and Zeaxanthin). J. Food Qual. 2018, 2018, 9843503. [Google Scholar] [CrossRef]
- Ignaczak, A.; Salamon, A.; Kowalska, J.; Marzec, A.; Kowalska, H. Influence of Pre-Treatment and Drying Methods on the Quality of Dried Carrot Properties as Snacks. Molecules 2023, 28, 6407. [Google Scholar] [CrossRef]
- Boukroufa, M.; Boutekedjiret, C.; Chemat, F. Development of a Green Procedure of Citrus Fruits Waste Processing to Recover Carotenoids. Resour. Effic. Technol. 2017, 3, 252–262. [Google Scholar] [CrossRef]
- Suthar, P.; Kaushal, M.; Vaidya, D.; Thakur, M.; Chauhan, P.; Angmo, D.; Kashyap, S.; Negi, N. Deep Eutectic Solvents (DES): An Update on the Applications in Food Sectors. J. Agric. Food Res. 2023, 14, 100678. [Google Scholar] [CrossRef]
- Riyamol; Gada Chengaiyan, J.; Rana, S.S.; Ahmad, F.; Haque, S.; Capanoglu, E. Recent Advances in the Extraction of Pectin from Various Sources and Industrial Applications. ACS Omega 2023, 8, 46309–46324. [Google Scholar] [CrossRef] [PubMed]
- Naqash, F.; Masoodi, F.A.; Rather, S.A.; Wani, S.M.; Gani, A. Emerging Concepts in the Nutraceutical and Functional Properties of Pectin—A Review. Carbohydr. Polym. 2017, 168, 227–239. [Google Scholar] [CrossRef]
- Saberian, H.; Hamidi-Esfahani, Z.; Ahmadi Gavlighi, H.; Banakar, A.; Barzegar, M. The Potential of Ohmic Heating for Pectin Extraction from Orange Waste. J. Food Process. Preserv. 2018, 42, e13458. [Google Scholar] [CrossRef]
- Yang, N.; Jin, Y.; Tian, Y.; Jin, Z.; Xu, X. An Experimental System for Extraction of Pectin from Orange Peel Waste Based on the O-Core Transformer Structure. Biosyst. Eng. 2016, 148, 48–54. [Google Scholar] [CrossRef]
- Waheed, A.; Akram, S.; Ashraf, R.; Mushtaq, M.; Adnan, A. Kinetic Model and Optimization for Enzyme-assisted Hydrodistillation of D-limonene-rich Essential Oil from Orange Peel. Flavour Fragr. J. 2020, 35, 561–569. [Google Scholar] [CrossRef]
- Liu, K.; Deng, W.; Hu, W.; Cao, S.; Zhong, B.; Chun, J. Extraction of ‘Gannanzao’ Orange Peel Essential Oil by Response Surface Methodology and Its Effect on Cancer Cell Proliferation and Migration. Molecules 2019, 24, 499. [Google Scholar] [CrossRef]
- Argun, M.E.; Argun, M.Ş.; Arslan, F.N.; Nas, B.; Ates, H.; Tongur, S.; Cakmakcı, O. Recovery of Valuable Compounds from Orange Processing Wastes Using Supercritical Carbon Dioxide Extraction. J. Clean. Prod. 2022, 375, 134169. [Google Scholar] [CrossRef]
- Lachos-Perez, D.; Baseggio, A.M.; Mayanga-Torres, P.C.; Junior, M.R.M.; Rostagno, M.A.; Martínez, J.; Forster-Carneiro, T. Subcritical Water Extraction of Flavanones from Defatted Orange Peel. J. Supercrit. Fluids 2018, 138, 7–16. [Google Scholar] [CrossRef]
- Murador, D.C.; Mesquita, L.M.D.S.; Neves, B.V.; Braga, A.R.C.; Martins, P.L.G.; Zepka, L.Q.; De Rosso, V. V Bioaccessibility and Cellular Uptake by Caco-2 Cells of Carotenoids and Chlorophylls from Orange Peels: A Comparison between Conventional and Ionic Liquid Mediated Extractions. Food Chem. 2021, 339, 127818. [Google Scholar] [CrossRef]
- Murador, D.C.; Salafia, F.; Zoccali, M.; Martins, P.L.G.; Ferreira, A.G.; Dugo, P.; Mondello, L.; de Rosso, V.V.; Giuffrida, D. Green Extraction Approaches for Carotenoids and Esters: Characterization of Native Composition from Orange Peel. Antioxidants 2019, 8, 613. [Google Scholar] [CrossRef]
- Murador, D.C.; Braga, A.R.C.; Martins, P.L.G.; Mercadante, A.Z.; de Rosso, V.V. Ionic Liquid Associated with Ultrasonic-Assisted Extraction: A New Approach to Obtain Carotenoids from Orange Peel. Food Res. Int. 2019, 126, 108653. [Google Scholar] [CrossRef] [PubMed]
- Viñas-Ospino, A.; Panić, M.; Radojčić- Redovniković, I.; Blesa, J.; Esteve, M.J. Using Novel Hydrophobic Deep Eutectic Solvents to Improve a Sustainable Carotenoid Extraction from Orange Peels. Food Biosci. 2023, 53, 102570. [Google Scholar] [CrossRef]
- Kamal, M.M.; Kumar, J.; Mamun, M.A.H.; Ahmed, M.N.U.; Shishir, M.R.I.; Mondal, S.C. Extraction and Characterization of Pectin from Citrus Sinensis Peel. J. Biosyst. Eng. 2021, 46, 16–25. [Google Scholar] [CrossRef]
- Jokić, S.; Molnar, M.; Cikoš, A.-M.; Jakovljević, M.; Šafranko, S.; Jerković, I. Separation of Selected Bioactive Compounds from Orange Peel Using the Sequence of Supercritical CO2 Extraction and Ultrasound Solvent Extraction: Optimization of Limonene and Hesperidin Content. Sep. Sci. Technol. 2020, 55, 2799–2811. [Google Scholar] [CrossRef]
- Angoy, A.; Ginies, C.; Goupy, P.; Bornard, I.; Ginisty, P.; Sommier, A.; Valat, M.; Chemat, F. Development of a Green Innovative Semi-Industrial Scale Pilot Combined Microwave Heating and Centrifugal Force to Extract Essential Oils and Phenolic Compounds from Orange Peels. Innov. Food Sci. Emerg. Technol. 2020, 61, 102338. [Google Scholar] [CrossRef]
- Tsouko, E.; Maina, S.; Ladakis, D.; Kookos, I.K.; Koutinas, A. Integrated Biorefinery Development for the Extraction of Value-Added Components and Bacterial Cellulose Production from Orange Peel Waste Streams. Renew Energy 2020, 160, 944–954. [Google Scholar] [CrossRef]
- Tovar, A.K.; Godínez, L.A.; Espejel, F.; Ramírez-Zamora, R.-M.; Robles, I. Optimization of the Integral Valorization Process for Orange Peel Waste Using a Design of Experiments Approach: Production of High-Quality Pectin and Activated Carbon. Waste Manag. 2019, 85, 202–213. [Google Scholar] [CrossRef]
- Vaez, S.; Karimi, K.; Mirmohamadsadeghi, S.; Jeihanipour, A. An Optimal Biorefinery Development for Pectin and Biofuels Production from Orange Wastes without Enzyme Consumption. Process Saf. Environ. Prot. 2021, 152, 513–526. [Google Scholar] [CrossRef]
- Martins, M.; Goldbeck, R. Integrated Biorefinery for Xylooligosaccharides, Pectin, and Bioenergy Production from Orange Waste. Biofuels Bioprod. Biorefining 2023, 17, 1775–1788. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilas-Boas, A.A.; Magalhães, D.; Gómez-García, R.; Campos, D.A.; Correia, M.; Pintado, M. Upcycled Orange Peel Ingredients: A Scoping Review on Phytochemical Composition, Extraction Techniques, and Biorefinery Strategies. Foods 2025, 14, 3766. https://doi.org/10.3390/foods14213766
Vilas-Boas AA, Magalhães D, Gómez-García R, Campos DA, Correia M, Pintado M. Upcycled Orange Peel Ingredients: A Scoping Review on Phytochemical Composition, Extraction Techniques, and Biorefinery Strategies. Foods. 2025; 14(21):3766. https://doi.org/10.3390/foods14213766
Chicago/Turabian StyleVilas-Boas, Ana A., Daniela Magalhães, Ricardo Gómez-García, Débora A. Campos, Marta Correia, and Manuela Pintado. 2025. "Upcycled Orange Peel Ingredients: A Scoping Review on Phytochemical Composition, Extraction Techniques, and Biorefinery Strategies" Foods 14, no. 21: 3766. https://doi.org/10.3390/foods14213766
APA StyleVilas-Boas, A. A., Magalhães, D., Gómez-García, R., Campos, D. A., Correia, M., & Pintado, M. (2025). Upcycled Orange Peel Ingredients: A Scoping Review on Phytochemical Composition, Extraction Techniques, and Biorefinery Strategies. Foods, 14(21), 3766. https://doi.org/10.3390/foods14213766

