Dual-Mode Plasmonic Colorimetric/Photothermal Aptasensor for OTA: Based on a Mn2+-Powered DNA Walker for Mediating AuNB Growth
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Preparation of Magnetic Walker Probe
2.3. Preparation of Au Seed and AuNBs
2.4. Principle and Procedure of Dual-Mode Aptasensor
- (1)
- Recognition amplification: The MW probe (50 μL, 1.0 mg mL−1) was thoroughly mixed with OTA standard solution (50 μL) and incubated in a constant temperature shaker at 37 °C for 30 min. The OTA specifically binds to OTA-Apt on the MW probe, unlocking W-DNA on WA-DNA. Subsequently, the Mn2+ solution (10 μL, 0.8 mmol L−1) was added to activate the DNA enzyme to drive the DNA walker, with incubation at room temperature for 60 min to ensure complete reaction.
- (2)
- Signal transformation: The reaction solution was subjected to magnetic separation to isolate MB. The supernatant, containing the DNA walker product and DNA-SH probes, was retained for subsequent analysis. The OTA signal was thereby converted into a DNA-SH signal.
- (3)
- Au seed inhibited growth: The supernatant (90 μL), gold seed solution (10 μL), and the growth solution (1.0 mL) were mixed and incubated at 45 °C for 8 min. The DNA-SH can bind to the surface of the Au seed, inhibiting growth and resulting in the formation of AuNBs with diverse morphologies.
- (4)
- Dual-mode signal reading: The incubated solution (100 μL) underwent UV-Vis spectrum analysis. The TSPR offset (∆λ) of AuNBs was calculated using the following equation: ∆λ = λ(TSPR of AuNBs without OTA inhibition) − λ(TSPR of AuNBs with OTA inhibition). At the same time, the incubated solution (100 μL) was irradiated at a vertical distance of 2.0 cm for 6 min using a 780 nm near-infrared (NIR) laser. The real-time temperature changes for the solution were monitored using an external infrared camera. The temperature difference (ΔT) was obtained through the following equation: ΔT = T(max, blank control) − T(max, sample).
2.5. Establishment and Evaluation of Dual-Mode Aptasensor
2.6. Application for Dual-Mode Aptasensor
3. Results and Discussion
3.1. Feasibility of DNA Walker and Dual-Mode Aptasensor
3.2. Optimization
3.3. Sensitivity of Colorimetric/Photothermal Aptasensor
3.4. Specificity and Stability
3.5. Detection of Contaminated Samples
3.6. Comparison with Other Reported Biosensors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, C.F.; Xiao, Y.; Liu, Z.J.; Du, D.L.; Li, M. Cascade amplifying aptasensor for positively correlated detecting OTA: Based on DNase I-assisted cyclic enzyme digestion and AgNPs@gel-enhanced fluorescence. Food Control 2023, 153, 109970. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, W.; Fang, H.; Zhang, J.; Wu, S.; Yang, H.; Zhou, Y. Ratiometric fluorescence immunoassay based on silver nanoclusters and calcein-Ce3+ for detecting ochratoxin A. Talanta 2024, 269, 125470. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wang, L.; Sun, J.; Wang, L.; Guo, H.; Ye, Y.; Sun, X. Microbial detoxification of mycotoxins in food and feed. Crit. Rev. Food Sci. Nutr. 2021, 62, 4951–4969. [Google Scholar] [CrossRef] [PubMed]
- Mangiapelo, L.; Frangiamone, M.; Vila-Donat, P.; Paşca, D.; Ianni, F.; Cossignani, L.; Manyes, L. Grape pomace as a novel functional ingredient: Mitigating ochratoxin A bioaccessibility and unraveling cytoprotective mechanisms in vitro. Curr. Res. Food Sci. 2024, 9, 100800. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Niu, M.; Wei, D.; Wang, B.; Guan, T.; Lv, L.; Guo, Z. Exonuclease III-mediated label-free fluorometric aptasensor for ochratoxin A detection in food samples based on aggregation-induced emission probe. J. Food Compos. Anal. 2025, 148, 108272. [Google Scholar] [CrossRef]
- GB 2761−2017; National food safety standard−Maximum Limits of Mycotoxins in Food. China Standards Press: Beijing, China, 2017.
- European Commission. Commission Regulation (EC) No.1881/2006 of December 2006 setting maximum levels for certain contaminants in food stuffs. Off. J. Eur. Union 2006, L364, 5. [Google Scholar]
- Mao, Y.H.; Sun, M.N.; Hong, X.; Chakraborty, S.; Duan, J.S.; Li, M.; Du, D.L. Semi-quantitative and quantitative detection of ochratoxin A in agricultural by-products using a self-assembly immunochromatographic strip. J. Sci. Food Agric. 2021, 101, 1659–1665. [Google Scholar] [CrossRef]
- Khataee, A.; Sohrabi, H.; Arbabzadeh, O.; Khaaki, P.; Majidi, R.M. Frontiers in conventional and nanomaterials based electrochemical sensing and biosensing approaches for ochratoxin A analysis in foodstuffs: A review. Food Chem. Toxicol. 2021, 149, 112030. [Google Scholar] [CrossRef]
- Guo, X.; Wen, F.; Zheng, N.; Saive, M.; Fauconnier, M.L.; Wang, J. Aptamer-based biosensor for detection of mycotoxins. Front. Chem. 2020, 8, 195. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Y.; Chen, X.; Feng, Y.; Guo, Y.; Yang, H.; Zhou, Y. Dual-mode detection of ochratoxin A based on silver nanocluster and phosphate. Food Chem. 2025, 474, 143131. [Google Scholar] [CrossRef]
- Jia, M.; Jia, B.; Liao, X.; Shi, L.; Zhang, Z.; Liu, M.; Zhou, L.; Li, D.; Kong, W. A CdSe@CdS quantum dots based electrochemiluminescence aptasensor for sensitive detection of ochratoxin A. Chemosphere 2022, 287, 131994. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ma, L.; Xie, L.; Wu, Q.; Liu, Y.; Zhao, Q.; Zhang, Y.; Jiao, B.; He, Y. Gold nanobipyramid-based photothermal immunoassay for portable detection of ochratoxin A in maize and grape juice. ACS Appl. Nano Mater. 2023, 6, 17858–17868. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Liu, Z.; Bai, M.; Wang, J.; Wang, Y. Nanobody-based immunochromatographic biosensor for colorimetric and photothermal dual-mode detection of foodborne pathogens. Sens. Actuators B Chem. 2022, 369, 132371. [Google Scholar] [CrossRef]
- Mansouri, S.; AlOmari, A. Recent development of nanozymes for dual and multi-mode biosensing applications in food safety and environmental monitoring: A review. J. Environ. Chem. Eng. 2025, 13, 116832. [Google Scholar] [CrossRef]
- Li, M.; Qiu, Y.; Liu, G.; Xiao, Y.; Tian, Y.; Fang, S. Plasmonic colorimetry and G-quadruplex fluorescence-based aptasensor: A dual-mode, protein-free and label-free detection for OTA. Food Chem. 2024, 448, 139115. [Google Scholar] [CrossRef]
- Chow, T.H.; Li, N.; Bai, X.; Zhuo, X.; Shao, L.; Wang, J. Gold nanobipyramids: An emerging and versatile type of plasmonic nanoparticles. Acc. Chem. Res. 2019, 52, 2136–2146. [Google Scholar] [CrossRef]
- Liang, D.; Wang, Y.; Ma, L.; Liu, Y.; Fu, R.; Liu, H.; Peng, Y.; Zhang, Y.; Wang, C.; Jiao, B.; et al. Controlled growth of gold nanobipyramids using thiocholine for plasmonic colorimetric detection of organophosphorus pesticides. ACS Appl. Nano Mater. 2022, 5, 16978–16986. [Google Scholar] [CrossRef]
- Zheng, X.; Sun, L.; Zhao, Y.; Yang, H.; Zhu, Y.; Zhang, J.; Xu, D.; Zhang, X.; Zhou, Y. A fluorescence and colorimetric dual-mode immunoassay for detection of ochratoxin A based on cerium nanoparticles. Microchem. J. 2024, 201, 110419. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Y.; Lv, X.; Jia, J.; Du, X.; He, J.; Xie, F.; Din, Z.; Cai, J. Aptamers adsorbed on WSe2 nanosheets in a label-free colorimetric aptasensor for ochratoxin A. ACS Appl. Nano Mater. 2024, 7, 4835–4842. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Y.; Lu, X.; Qi, C.; Ma, X.; Zhang, W. Cascade signal amplification colorimetric aptasensor based on DNAzyme-driven DNA walker and catalytic hairpin assembly for the detection of aflatoxin B1. Food Control 2025, 171, 111124. [Google Scholar] [CrossRef]
- He, M.Q.; Wang, K.; Wang, W.J.; Yu, Y.L.; Wang, J.H. Smart DNA machine for carcinoembryonic antigen detection by exonuclease III-assisted target recycling and DNA walker cascade amplification. Anal. Chem. 2017, 89, 9292–9298. [Google Scholar] [CrossRef]
- Lu, X.; Wang, L.; Li, G.; Wang, Y.; Hao, G.; Ding, Y.; Liu, M.; Fu, S.; Xu, L.; Ge, N.; et al. Ratiometric fluorescence platform for the ultrasensitive detection of kanamycin based on split aptamer co-recognition triggers Mg2+-DNAzyme-driven DNA walker systems. Sci. Total. Environ. 2024, 928, 172499. [Google Scholar] [CrossRef]
- Gong, Y.; Fu, M.; Li, L.; Yin, Y.; Tang, Q.; Zhou, W.; Zhang, G.; Liao, X.; Gao, F. DNAzyme-driven tripedal DNA walker mediated signal-on and label-free for electrochemical detection of α-synuclein oligomers. Sens. Actuators B Chem. 2023, 378, 133150. [Google Scholar] [CrossRef]
- Hu, H.; Zhou, F.; Wang, B.; Chang, X.; Dai, T.; Tian, R.; Wan, Y.; Wang, X.; Wang, G. Autonomous operation of 3D DNA walkers in living cells for microRNA imaging. Nanoscale 2021, 13, 1863–1868. [Google Scholar] [CrossRef]
- Zeng, Y.; Guo, Y.Z.; Liu, J.L.; Yuan, R.; Chai, Y.Q. Environment-friendly MnO2 quantum dots with highly efffcient electrochemiluminescence for ultrasensitive assay of liver cancer markers. Anal. Chem. 2025, 97, 14815–14821. [Google Scholar] [CrossRef]
- de Souza Santos, V.L.; Ribeiro, F.A.; Kim, C.D.; López-Castillo, A. The phosphodiester dissociative hydrolysis of a DNA model promoted by metal dications. J. Mol. Model. 2024, 30, 381. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, Z.J.; Cao, H.X.; Liang, G.X. Ultrasensitive colorimetric miRNA detection based on magnetic 3D DNA walker and unmodiffed AuNPs. Sens. Actuators B Chem. 2021, 337, 129813. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, Z.; Zhang, Y.; Gao, X.; Liu, X.; Li, F.; Leng, D.; Wu, T.; Wei, Q. Enhanced photoelectrochemical sensing of T-2 toxin via photoelectron transfer mediated by SrTiO3-CdIn2S4/LaNiO3 composite and Mn2+-dependent DNAzyme amplification strategy. Talanta 2025, 288, 127680. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Xie, B.; Gao, H.; Zhang, J.; Fu, H.; Liao, F.; Liao, Y. Self-powered DNAzyme walker enables dual-mode biosensor construction for electrochemiluminescence and electrochemical detection of microRNA. Anal. Chem. 2023, 95, 7006–7013. [Google Scholar] [CrossRef]
- Sanchez-Iglesias, A.; Winckelmans, N.; Altantzis, T.; Bals, S.; Grzelczak, M.; Liz-Marzán, L.M. High-yield seeded growth of monodisperse pentatwinned gold nanoparticles through thermally induced seed twinning. J. Am. Chem. Soc. 2017, 139, 107–110. [Google Scholar] [CrossRef]
- Xu, L.; Qu, W.; Zhu, Z.; Hao, X.; Yang, Q.; Liu, L.; Gong, Z.; Li, P. Tetrahedral DNA scaffold-based label-free electrochemical aptasensor for the detection of ochratoxin A. LWT-Food Sci. Technol. 2025, 218, 117475. [Google Scholar] [CrossRef]
- Pavicich, A.M.; Compagnoni, S.; Meerpoel, C.; Raes, K.; Saeger, D.S. Ochratoxin A and AFM1 in cheese and cheese substitutes: LC-MS/MS method validation, natural occurrence, and risk assessment. Toxins 2024, 16, 547. [Google Scholar] [CrossRef] [PubMed]





| Method | Strategy | Detection Range (pg mL−1) | LOD (pg mL−1) | Time (min) | Mode | Ref. |
|---|---|---|---|---|---|---|
| Colorimetric mode | WSe2 | (0.5–50) × 103 | 500 | 100 | 1 | [20] |
| Photothermal mode | AuNBs | (0.2–100) × 103 | 200 | 165 | 1 | [13] |
| Fluorescence | DSAI | (5.0–200) × 103 | 1.37 × 103 | 120 | 1 | [5] |
| Fluorescence | AgNCs | (0.625–25) × 103 | 40 | 150 | 1 | [2] |
| Electrochemiluminescence | CdSe@ CdS QD | (1–100) × 103 | 890 | 120 | 1 | [12] |
| Colorimetric mode Fluorescence mode | GSH@ AgNCs | (1.25–35) × 103 (6.25–250) × 103 | 540 3130 | 300 | 2 | [11] |
| Colorimetric mode Fluorescence mode | G4@ AuNPs | (16.5–96.4) × 103 (9.3–103.3) × 103 | 1650 930 | 90 | 2 | [16] |
| Fluorescence mode Colorimetric mode | CPNs | (4.69–37.5) × 103 (14.0–300) × 103 | 404 962 | 225 | 2 | [19] |
| Colorimetric mode Photothermal mode | AuNBs | 48.6–1995.3 37.6–1789.4 | 48.6 37.6 | 100 | 2 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Liu, Q.; Zhang, H.; Xiao, Y.; Li, M.; Chai, X.; Ji, J.; Li, J.; Qin, S. Dual-Mode Plasmonic Colorimetric/Photothermal Aptasensor for OTA: Based on a Mn2+-Powered DNA Walker for Mediating AuNB Growth. Foods 2025, 14, 3767. https://doi.org/10.3390/foods14213767
Li Z, Liu Q, Zhang H, Xiao Y, Li M, Chai X, Ji J, Li J, Qin S. Dual-Mode Plasmonic Colorimetric/Photothermal Aptasensor for OTA: Based on a Mn2+-Powered DNA Walker for Mediating AuNB Growth. Foods. 2025; 14(21):3767. https://doi.org/10.3390/foods14213767
Chicago/Turabian StyleLi, Zhi, Quan Liu, Hongwei Zhang, Yu Xiao, Ming Li, Xiaojie Chai, Jianlong Ji, Jindong Li, and Shu Qin. 2025. "Dual-Mode Plasmonic Colorimetric/Photothermal Aptasensor for OTA: Based on a Mn2+-Powered DNA Walker for Mediating AuNB Growth" Foods 14, no. 21: 3767. https://doi.org/10.3390/foods14213767
APA StyleLi, Z., Liu, Q., Zhang, H., Xiao, Y., Li, M., Chai, X., Ji, J., Li, J., & Qin, S. (2025). Dual-Mode Plasmonic Colorimetric/Photothermal Aptasensor for OTA: Based on a Mn2+-Powered DNA Walker for Mediating AuNB Growth. Foods, 14(21), 3767. https://doi.org/10.3390/foods14213767

