Effect of Hippophae rhamnoides Extract Addition on the Quality and Safety of Traditional Kazakh Chunked Delicacy “Jaya”
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.2.1. Ultrasound-Assisted Ethanol Extraction of Crushed Dry Defatted Sea Buckthorn Pomace
2.2.2. Preparation and Sensory Evaluation of Jaya Samples
2.2.3. Rationale for Determining the Optimal Level of Sea Buckthorn Extract
2.2.4. Preparation of the Jaya Chunked Horse Meat Delicacy
Brine Preparation and Injection
Tumbling and Moulding
Thermal Processing
Smoking and Packaging
2.2.5. Determination of Quality Parameters of the Traditional Kazakh Chunked Horse Meat Delicacy Jaya
2.3. Methods
2.3.1. Instrumental Colour
2.3.2. pH Value
2.3.3. Texture Profile Analysis (TPA)
2.3.4. Extraction of Muscle Proteins
2.3.5. Hydrolytic and Oxidative Changes in Lipid Fraction
2.3.6. Hydrolytic and Oxidative Changes in Protein Fraction
2.3.7. Antioxidant Activity
2.3.8. Sensory Analysis
2.3.9. Microbiological Evaluation
2.3.10. Statistical Analysis
3. Results
3.1. Effect of Dry Sea Buckthorn Extract on the Instrumental Colour of the Traditional Kazakh Chunked Horse Meat Delicacy Jaya
3.2. Effect of Dry Sea Buckthorn Extract on the pH Value of the Traditional Kazakh Chunked Horse Meat Delicacy Jaya
3.3. Effect of Dry Sea Buckthorn Extract on the Texture Profile (TPA) of the Traditional Kazakh Chunked Horse Meat Delicacy Jaya
3.4. Effect of Dry Sea Buckthorn Extract on Hydrolytic and Oxidative Changes in Lipid and Protein Fractions of the Traditional Kazakh Chunked Horse Meat Delicacy Jaya
3.5. Effect of Dry Sea Buckthorn Extract on Total Phenolic Content and Antioxidant Activity of the Traditional Kazakh Chunked Horse Meat Delicacy Jaya
3.6. Effect of Dry Sea Buckthorn Extract on the Microbiological Status of the Traditional Kazakh Chunked Horse Meat Delicacy Jaya
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ANOVA | Analysis of variance | 
| AV | Acid value | 
| DNPH | 2,4-Dinitrophenylhydrazine | 
| DPPH | 2,2-Diphenyl-1-picrylhydrazyl | 
| FAN | Free amino nitrogen | 
| FRAP | The transition metals-chelating activity against ferric (Fe3+) ions—FRAP assay | 
| GA | Gallic acid | 
| GOST R | State Standard of Russia | 
| LoD | Limit of detection | 
| MDA | Malondialdehyde | 
| POV | Peroxide value | 
| RSM | Reflection surface method | 
| SEM | Standard error of mean | 
| TAPC | Total aerobic plate count | 
| TBARS | Thiobarbituric acid reactive substances | 
| TPA | Texture profile | 
| TPC | Total phenolic content | 
References
- Batyrbek, A.; Chisbiyah, L.A. Exploring the role of traditional food in developing tourism in Kazakhstan. J. Tour. Culin. Entrep. (JTCE) 2025, 5, 51–71. [Google Scholar] [CrossRef]
- Tayeva, A.; Kozhakhiyeva, M.; Jetpisbayeva, B.; Tlevlessova, D.; Samadun, A.; Valiyv, A. Development of technology of boiled sausage from non-traditional raw materials. East.-Eur. J. Enter. Technol. 2023, 11, 15–23. [Google Scholar] [CrossRef]
- Dias, S.; Castanheira, E.M.; Fortes, A.G.; Pereira, D.M.; Rodrigues, A.R.O.; Pereira, R.; Gonçalves, M.S.T. Application of natural pigments in ordinary cooked ham. Molecules 2020, 25, 2241. [Google Scholar] [CrossRef]
- Lohita, B.; Srijaya, M.M. Novel Technologies for Shelf-Life Extension of Food Products as a Competitive Advantage: A Review. In Food Production, Diversity, and Safety Under Climate Change; Chakraborty, R., Mathur, P., Roy, S., Eds.; Advances in Science, Technology & Innovation; Springer: Cham, Switzerland, 2024; pp. 285–306. [Google Scholar] [CrossRef]
- Jaworska, D.; Sadowka, A. Strategies to improve the functional value of meat and meat products. Foods 2024, 13, 2433. [Google Scholar] [CrossRef]
- Anchidin, B.G.; Manoliu, D.R.; Ciobotaru, M.C.; Ciobanu, M.M.; Gucianu, I.; Sandu, G.A.; Boișteanu, P.C. Development of a functional meat product with sea buckthorn oil and analysis of its sensory and physicochemical quality. Sci. Papers Ser. D Anim. Sci. 2023, 66, 370–376. [Google Scholar]
- Tereshchuk, L.V.; Starovoitova, K.V.; Vyushinsky, P.A.; Zagorodnikov, K.A. The use of sea buckthorn processing products in the creation of a functional biologically active food emulsion. Foods 2022, 11, 2226. [Google Scholar] [CrossRef]
- Tian, J.; Fang, H.; Chen, S.; Wei, C.; Wei, X. Sea Buckthorn: A Functional Food Resource, 1st ed.; Springer Nature: Cham, Switzerland, 2025; pp. 13–26. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdyło, A.; Rudzinska, M.; Oszmianski, J.; Golis, T. Analysis of lipophilic and hydrophilic bioactive compounds content in sea buckthorn (Hippophae rhamnoides L.) berries. J. Agric. Food Chem. 2015, 63, 4120–4129. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, F.; Wei, P.; Chai, X.; Hou, G.; Meng, Q. Phytochemistry, health benefits, and food applications of sea buckthorn (Hippophae rhamnoides L.): A comprehensive review. Front. Nutr. 2022, 9, 1036295. [Google Scholar] [CrossRef]
- Wang, K.; Xu, Z.; Liao, X. Bioactive compounds, health benefits and functional food products of sea buckthorn: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 6761–6782. [Google Scholar] [CrossRef]
- Ivanišová, E.; Blašková, M.; Terentjeva, M.; Grygorieva, O.; Vergun, O.; Brindza, J. Biological properties of sea buckthorn (Hippophae rhamnoides L.) derived products. Acta Sci. Pol. Technol. Alim. 2020, 19, 195–205. [Google Scholar] [CrossRef]
- Christaki, E. Hippophae rhamnoides L. (Sea Buckthorn): A potential source of nutraceuticals. Food Public Health 2012, 2, 69–72. [Google Scholar] [CrossRef]
- Suryakumar, G.; Gupta, A. Medicinal and therapeutic potential of sea buckthorn (Hippophae rhamnoides L.). J. Ethnopharm. 2011, 138, 268–278. [Google Scholar] [CrossRef]
- Rafalska, A.; Abramowicz, K.; Krauze, M. Sea buckthorn (Hippophae rhamnoides L.) as a plant for universal application. World Sci. News 2017, 72, 123–140. [Google Scholar]
- Bayır, H.; Şimşek, B.İ.; Bayır, Y. Hippophae rhamnoides L. botanical, medicinal, traditional, and current use of plant and fruits: A Review. New Trends Med. Sci. 2024, 5, 35–44. [Google Scholar] [CrossRef]
- Ahani, H.; Attaran, S. Therapeutic potential of Seabuckthorn (Hippophae rhamnoides L.) in medical sciences. Cell. Mol. Biomed. Rep. 2022, 2, 22–32. [Google Scholar] [CrossRef]
- Tanwar, H.; Shweta; Singh, D.; Singh, S.B.; Ganju, L. Anti-inflammatory activity of the functional groups presents in Hippophae rhamnoides (Sea buckthorn) leaf extract. Inflammopharmacology 2018, 26, 291–301. [Google Scholar] [CrossRef]
- Rédei, D.; Kúsz, N.; Jedlinszki, N.; Blazsó, G.; Zupkó, I.; Hohmann, J. Bioactivity-guided investigation of the anti-inflammatory activity of Hippophae rhamnoides fruits. Planta Med. 2018, 84, 26–33. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, M.; Li, X.; Wang, Y.; Li, M.; Zhou, H. Flash extraction, characterization, and immunoenhancement activity of polysaccharide from Hippophae rhamnoides Linn. Chem. Biodiv. 2023, 20, e202200776. [Google Scholar] [CrossRef]
- Dvorska, D.; Sebova, D.; Kajo, K.; Kapinova, A.; Svajdlenka, E.; Goga, M.; Frenak, R.; Treml, J.; Mersakova, S.; Strnadel, J.; et al. Chemopreventive and therapeutic effects of Hippophae rhamnoides L. fruit peels evaluated in preclinical models of breast carcinoma. Front. Pharm. 2025, 16, 1561436. [Google Scholar] [CrossRef]
- Süleyman, H.; Demirezer, L.Ö.; Büyükokuroglu, M.E.; Akcay, M.F.; Gepdiremen, A.; Banoglu, Z.N.; Göçer, F. Antiulcerogenic effect of Hippophae rhamnoides L. Phytother. Res. 2001, 15, 625–627. [Google Scholar] [CrossRef]
- Pang, X.; Zhao, J.; Zhang, W.; Zhuang, X.; Wang, J.; Xu, R.; Xu, Z.; Qu, W. Antihypertensive effect of total flavones extracted from seed residues of Hippophae rhamnoides L. in sucrose-fed rats. J. Ethnopharm. 2008, 117, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Park, K.H.; Hong, J.H.; Kim, S.H.; Kim, J.C.; Kim, K.H.; Park, K.M. Anti-osteoporosis effects of the fruit of sea buckthorn (Hippophae rhamnoides) through promotion of osteogenic differentiation in ovariectomized mice. Nutrients 2022, 14, 3604. [Google Scholar] [CrossRef] [PubMed]
- Jaśniewska, A.; Diowksz, A. Wide spectrum of active compounds in sea buckthorn (Hippophae rhamnoides) for disease prevention and food production. Antioxidants 2021, 10, 1279. [Google Scholar] [CrossRef] [PubMed]
- Muzykiewicz, A.; Zielonka-Brzezicka, J.; Klimowicz, A. Antioxidant potential of Hippophae rhamnoides L. extracts obtained with green extraction technique. Herba Polon. 2018, 64, 14–22. [Google Scholar] [CrossRef]
- Netreba, N.; Sandulachi, E.; Macari, A.; Popa, S.; Ribintev, I.; Sandu, I.; Boestean, O.; Dianu, I. A study on the fruiting and correlation between the chemical indicators and antimicrobial properties of Hippophae rhamnoides L. Horticulturae 2024, 10, 137. Horticulturae 2024, 10, 137. [Google Scholar] [CrossRef]
- Michel, T.; Destandau, E.; Le Floch, G.; Lucchesi, M.E.; Elfakir, C. Antimicrobial, antioxidant and phytochemical investigations of sea buckthorn (Hippophaë rhamnoides L.) leaf, stem, root and seed. Food Chem. 2012, 131, 754–760. [Google Scholar] [CrossRef]
- Buyukokuroglu, M.E.; Gulcin, I. In vitro antioxidant and antiradical properties of Hippophae rhamnoides L. Pharm. Mag. 2009, 5, 189–195. [Google Scholar]
- Papuc, C.; Nicorescu, V.; Crivineanu, D.C.; Goran, G. Phytochemical constituents and free radicals scavenging activity of extracts from sea buckthorn fruits (Hippophae rhamnoides). Acta Hortic. 2009, 806, 187–192. [Google Scholar] [CrossRef]
- Salejda, A.M.; Nawirska-Olszańska, A.; Janiewicz, U.; Krasnowska, G. Effects on quality properties of pork sausages enriched with sea buckthorn (Hippophae rhamnoides L.). J. Food Qual. 2017, 2017, 7123960. [Google Scholar] [CrossRef]
- Kozhakhiyeva, M.; Dragoev, S.; Uzakov, Y.; Nurgazezova, A. Improving of the oxidative stability and quality of new functional horse meat delicacy enriched with sea buckthorn (Hippophae rhamnoides) fruit powder extracts or seed kernel pumpkin (Cucurbita pero L.) flour. Com. Ren. l’Acad. Bulg. Sci. 2018, 71, 132–140. [Google Scholar] [CrossRef]
- Wojtaszek, A.; Salejda, A.M.; Nawirska-Olszańska, A.; Zambrowicz, A.; Szmaja, A.; Ambrozik-Haba, J. Physicochemical, antioxidant, organoleptic, and anti-diabetic properties of innovative beef burgers enriched with juices of açaí (Euterpe oleracea Mart.) and sea buckthorn (Hippophae rhamnoides L.) berries. Foods 2024, 13, 3209. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Han, L.; Yu, Q.L.; Lin, L. Effect of a sea buckthorn pomace extract-esterified potato starch film on the quality and spoilage bacteria of beef jerky sold in supermarket. Food Chem. 2020, 326, 127001. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Ge, X.; Gou, Q.; Yang, L.; Han, M.; Han, G.; Yu, Q.-L.; Han, L. Changes in chilled beef packaged in starch film containing sea buckthorn pomace extract and quality changes in the film during super-chilled storage. Meat Sci. 2021, 182, 108620. [Google Scholar] [CrossRef] [PubMed]
- Park, M.G.; Jo, S.Y. Comparison of biological activities of extracts from different parts of sea buckthorn (Hippophae rhamnoides L.). Korean J. Food Sci. Technol. 2021, 51, 55–62. (In Korean) [Google Scholar] [CrossRef]
- Korekar, G.; Stobdan, T.; Singh, H.; Chaurasia, O.; Singh, S. Phenolic content and antioxidant capacity of various solvent extracts from sea buckthorn (Hippophae rhamnoides L.) fruit pulp, seeds, leaves and stem bark. Acta Alim. 2011, 40, 449–458. [Google Scholar] [CrossRef]
- He, N.; Wang, Q.; Huang, H.; Chen, J.; Wu, G.; Zhu, M.; Shao, F.; Yan, Z.; Sang, Z.; Cao, L.; et al. A comprehensive review on extraction, structure, detection, bioactivity, and metabolism of flavonoids from sea buckthorn (Hippophae rhamnoides L.). J. Food Biochem. 2023, 2023, 4839124. [Google Scholar] [CrossRef]
- Sharma, U.K.; Sharma, K.; Sharma, N.; Sharma, A.; Singh, H.P.; Sinha, A.K. Microwave-assisted efficient extraction of different parts of Hippophae rhamnoides for the comparative evaluation of antioxidant activity and quantification of its phenolic constituents by reverse-phase high-performance liquid chromatography (RP-HPLC). J. Agric. Food Chem. 2008, 56, 374–379. [Google Scholar] [CrossRef]
- Wagh, R.V.; Chatli, M.K. Response surface optimization of extraction protocols to obtain phenolic rich antioxidant from sea buckthorn and their potential application into model meat system. J. Food Sci. Technol. 2017, 54, 1565–1576. [Google Scholar] [CrossRef]
- Meilgaard, M.C.; Carr, B.T.; Civille, G.V. Sensory Evaluation Techniques; CRC Press: Boca Raton, FL, USA, 1999; 416p, ISBN 978-1-0030-4072-9. [Google Scholar] [CrossRef]
- King, D.A.; Hunt, M.C.; Barbut, S.; Claus, J.R.; Cornforth, D.P.; Joseph, P.; Kim, Y.H.B.; Lindahl, G.; Mancini, R.A.; Nair, M.N.; et al. American Meat Science Association guidelines for meat colour measurement. Meat Mus. Biol. 2023, 6, 12473. [Google Scholar] [CrossRef]
- Kolev, N.; Balev, D.; Dragoev, S.; Popova, T.; Petkov, E.; Dimov, K.; Suman, S.; Salim, A.P.; Vlahova-Vangelova, D. Male layer-type birds (Lohmann Brown Classic Hybrid) as a meat source for chicken pâtés. Appl. Sci. 2025, 15, 6702. [Google Scholar] [CrossRef]
- Kolev, N.D.; Vlahova-Vangelova, D.B.; Balev, D.K.; Dragoev, S.G. Stabilization of oxidative processes in cooked sausages by optimization of incorporated biologically active substances. Carp. J. Food Sci. Technol. 2022, 14, 180–188. [Google Scholar] [CrossRef]
- Khan, A.W. Extraction and fractionation of proteins in fresh chicken muscle. J. Food Sci. 1962, 27, 430–434. [Google Scholar] [CrossRef]
- ISO 660:2020; Animal and Vegetable Fats and Oils—Determination of Acid Value and Acidity. Published (Edition 4, 2020). ISO: Geneva, Switzerland, 2020. Available online: https://www.iso.org/standard/75594.html (accessed on 14 September 2025).
- Shantha, N.C.; Decker, E.A. Rapid, sensitive, iron-based spectrophotometric methods for determination of peroxide values of food lipids. J. AOAC Int. 1994, 77, 421–424. [Google Scholar] [CrossRef]
- Botsoglou, N.A.; Fletouris, D.J.; Papageorgiou, G.E.; Vassilopoulos, V.N.; Mantis, A.J.; Trakatellis, A.G. Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food, and feedstuff samples. J. Agric. Food Chem. 1994, 42, 709–712. [Google Scholar] [CrossRef]
- Moraru Manea, A.I.; Cocan, I.; Dumbrava, D.G.; Poiana, M.A. Effect of fruit powders as natural alternatives to sodium nitrite on lipid oxidation in clean-label salami. Foods 2025, 14, 2262. [Google Scholar] [CrossRef]
- Vassilev, K.; Ivanov, G.; Balev, D.; Dobrev, G. Protein changes of chicken light and dark muscles during chilled storage. J. EcoAgriTourism 2012, 8, 263–268. [Google Scholar]
- Mercier, Y.; Gatellier, P.; Renerre, M. Lipid and protein oxidation in vitro, and antioxidant potential in meat from Charolais cows finished on pasture or mixed diet. Meat Sci. 2004, 66, 467–473. [Google Scholar] [CrossRef]
- Vardakas, A.; Kechagias, A.; Penov, N.; Giannakas, A.E. Optimization of enzymatic-assisted extraction of bioactive compounds from Olea europaea leaves. Biomass 2024, 4, 647–657. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Dinkova, R.; Heffels, P.; Shikov, V.; Weber, F.; Schieber, A.; Mihalev, K. Effect of enzyme-assisted extraction on the chilled storage stability of bilberry (Vaccinium myrtillus L.) anthocyanins in skin extracts and freshly pressed juices. Food Res. Int. 2014, 65, 35–41. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Drake, M.A.; Watson, M.E.; Liu, Y. Sensory analysis and consumer preference: Best practices Ann. Rev. Food Sci. Technol. 2023, 14, 427–448. [Google Scholar] [CrossRef]
- GOST R 54354-2011; Meat and Meat Products. General Requirements and Methods of Microbiological Testing. RussianGost, TR CU, Technical Regulation of the Customs Union: Moskow, Russia. Available online: https://www.russiangost.com/p-72038-gost-r-54354-2011.aspx (accessed on 14 September 2025). (In Russian)
- GOST 10444.15-94; Food Products. Methods for Determination Quantity of Mesophilic Aerobes and Facultative Anaerobes. RussianGost, TR CU, Technical Regulation of the Customs Union: Moskow, Russia. Available online: https://www.russiangost.com/p-21387-gost-1044415-94.aspx (accessed on 14 September 2025). (In Russian)
- GOST 31747-2012; Food Products. Methods for Detection and Quantity Determination of Coliforms. RussianGost, TR CU, Technical Regulation of the Customs Union: Moskow, Russia. Available online: https://www.russiangost.com/p-65997-gost-31747-2012.aspx (accessed on 14 September 2025). (In Russian)
- GOST 10444.15-94; Food Products. Methods for the Detection of Salmonella spp. RussianGost, TR CU, Technical Regulation of the Customs Union: Moskow, Russia. Available online: https://www.russiangost.com/p-68638-gost-31659-2012.aspx (accessed on 14 September 2025). (In Russian)
- Kolev, N.; Vlahova-Vangelova, D.; Balev, D.; Dragoev, S. Quality changes of cooked sausages influenced by the incorporation of a three-component natural antioxidant blend. BIO Web Conf. 2022, 45, 01006, EDP Sciences. [Google Scholar] [CrossRef]
- Ma, Q.-G.; He, N.-X.; Huang, H.-L.; Fu, X.-M.; Zhang, Z.-L.; Shu, J.-C.; Wang, Q.-Y.; Chen, J.; Wu, G.; Zhu, M.-N.; et al. Hippophae rhamnoides L.: A comprehensive review on the botany, traditional uses, phytonutrients, health benefits, quality markers, and applications. J. Agric. Food Chem. 2023, 71, 4769–4788. [Google Scholar] [CrossRef]







| Ethanol Concentration | Ratio | Output, g/40 g Liquid Extract | Output, % | 
|---|---|---|---|
| 50% | 1:5 | 5.2 | 13.00 | 
| 70% | 1:5 | 7.2 | 18.00 | 
| 90% | 1:5 | 3.6 | 9.00 | 
| 50% | 1:10 | 3.9 | 9.75 | 
| 70% | 1:10 | 2.0 | 5.00 | 
| 90% | 1:10 | 1.3 | 3.25 | 
| 50% | 1:15 | 2.0 | 5.00 | 
| 70% | 1:15 | 1.9 | 4.75 | 
| 90% | 1:15 | 1.1 | 2.75 | 
| Parameter | Control Sample | Experimental Sample | ||
|---|---|---|---|---|
| L*-1d | 50.56 bx ± 0.20 | 43.43 dy ± 0.17 | ||
| L*-30d | 48.70 cy ± 0.28 | 53.07 ax ± 0.24 | ||
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Factor interaction | |
| <0.001 | <0.001 | <0.001 | ||
| a*-1d | 20.77 ax ± 0.30 | 20.10 bx ± 0.23 | ||
| a*-30d | 20.84 ax ± 0.26 | 16.09 cy ± 0.17 | ||
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Factor interaction | |
| <0.001 | <0.001 | <0.001 | ||
| b*-1d | 7.29 bx ± 0.18 | 7.35 bx ± 0.20 | ||
| b*-30d | 6.59 cy ± 0.20 | 9.32 ax ± 0.14 | ||
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Factor interaction | |
| <0.001 | <0.001 | <0.001 | ||
| Parameter | Control Sample | Experimental Sample | |
|---|---|---|---|
| Hardness, N-1d | 55.43 b ± 0.56 | 39.17 c ± 0.61 | |
| Hardness, N-30d | 60.99 a ± 0.81 | 26.07 d ± 0.83 | |
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Factor interaction | 
| 0.296 | <0.001 | 0.025 | |
| Cohesiveness-1d | 0.57 ax ± 0.05 | 0.47 ax ± 0.08 | |
| Cohesiveness-30d | 0.48 bx ± 0.05 | 0.34 bx ± 0.06 | |
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Factor interaction | 
| 40.00 | 0.003 | 0.436 | |
| Springiness-1d | 0.66 ax ± 0.03 | 0.55 ax ± 0.09 | |
| Springiness-30d | 0.57 ax ± 0.07 | 0.47 bx ± 0.07 | |
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Factor interaction | 
| 0.040 | 0.017 | 0.914 | |
| Gumminess, N-1d | 33.22 a ± 0.37 | 23.53 b ± 0.63 | |
| Gumminess, N-30d | 32.43 a ± 0.68 | 10.05 c ± 0.46 | |
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Interactor interaction | 
| 0.010 | <0.001 | 0.017 | |
| Chewiness, N * cm 1d | 22.90 ax ± 0.31 | 16.75 bx ± 0.68 | |
| Chewiness, N * cm 30d | 20.65 ax ± 0.67 | 5.41 by ± 0.30 | |
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Factor interaction | 
| 0.012 | <0.001 | 0.062 | |
| Resilience-1d | 0.20 ax ± 0.03 | 0.20 ax ± 0.08 | |
| Resilience-30d | 0.15 ay ± 0.02 | 0.10 ay ± 0.02 | |
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Factor interaction | 
| 0.003 | 0.238 | 0.306 | |
| Parameter | Control Sample | Experimental Sample | |
|---|---|---|---|
| AV, mg KOH/g-1d | 0.28 b ± 0.07 | 0.35 b ± 0.05 | |
| AV, mg KOH/g-30d | 0.33 b ± 0.04 | 0.59 a ± 0.09 | |
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Factor interaction | 
| 0.002 | <0.001 | 0.018 | |
| POV, meqO2/kg-1d | 0.11 b ± 0.02 | 0.11 b ± 0.02 | |
| POV, meqO2/kg–30d | 0.55 a ± 0.03 | 0.45 a ± 0.05 | |
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Factor interaction | 
| <0.001 | 0.063 | 0.047 | |
| TBARS, mg MDA/kg-1d | 0.47 ax ± 0.04 | 0.26 bx ± 0.02 | |
| TBARS, mg MDA/kg-30d | 0.49 ax ± 0.06 | 0.36 bx ± 0.02 | |
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Factor interaction | 
| 0.057 | <0.001 | 0.248 | |
| FAN, mg Ala/g-1d | 1.02 ± 0.19 | 1.14 ± 0.14 | |
| FAN, mg Ala/g-30d | 1.09 ± 0.14 | 1.21 ± 0.09 | |
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Factor interaction | 
| 0.631 | 0.444 | 0.983 | |
| Protein carbonyls, nmol DNPH/g protein-1d | <LoD | <LoD | |
| Protein carbonyls, nmol DNPH/g protein-30d | <LoD | <LoD | |
| p-value | Factor Time of storage | Factor Addition of sea buckthorn extract | Factor interaction | 
| - | - | - | |
| Parameter | Control Sample | Experimental Sample | p-Value | 
|---|---|---|---|
| TPC, mg GAE/kg | 2458.22 b ± 13.00 | 3014.62 a ± 4.77 | 0.0140 | 
| % Inhibition of DPPH | 37.09 b ± 1.31 | 41.03 a ± 1.05 | 0.0329 | 
| FRAP, mmol TE/kg | 4456.30 b ± 17.80 | 5235.94 a ± 6.36 | 0.0231 | 
| Samples | Time of Storage at 0–+4 °C | |||
|---|---|---|---|---|
| Day 5 | Day 10 | Day 15 | Day 30 | |
| Total aerobic plate count (TAPC), CFU/g | ||||
| Control sample | Not detected | Not detected | Not detected | Not detected | 
| Experimental sample | Not detected | Not detected | Not detected | Not detected | 
| Moulds, yeasts, and other spore-forming microorganisms, CFU/g | ||||
| Control sample | Not detected | Not detected | 1 × 102 | 1 × 103 | 
| Experimental sample | Not detected | Not detected | Not detected | Not detected | 
| Presence of coliforms in 1.0 g of product, CFU/g | ||||
| Control sample | Not detected | Not detected | Not detected | Not detected | 
| Experimental sample | Not detected | Not detected | Not detected | Not detected | 
| Presence of Salmonella spp. in 25 g of product, CFU/g | ||||
| Control sample | Not detected | Not detected | Not detected | Not detected | 
| Experimental sample | Not detected | Not detected | Not detected | Not detected | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alimardanova, M.K.; Abzhanova, S.A.; Kurmanali, A.N.; Kolev, N.D.; Yankova-Nikolova, A.D.; Nacheva-Dimitrova, N.N.; Vlahova-Vangelova, D.B.; Balev, D.K.; Dragoev, S.G. Effect of Hippophae rhamnoides Extract Addition on the Quality and Safety of Traditional Kazakh Chunked Delicacy “Jaya”. Foods 2025, 14, 3698. https://doi.org/10.3390/foods14213698
Alimardanova MK, Abzhanova SA, Kurmanali AN, Kolev ND, Yankova-Nikolova AD, Nacheva-Dimitrova NN, Vlahova-Vangelova DB, Balev DK, Dragoev SG. Effect of Hippophae rhamnoides Extract Addition on the Quality and Safety of Traditional Kazakh Chunked Delicacy “Jaya”. Foods. 2025; 14(21):3698. https://doi.org/10.3390/foods14213698
Chicago/Turabian StyleAlimardanova, Mariam K., Sholpan A. Abzhanova, Aktoty N. Kurmanali, Nikolay D. Kolev, Anastasya D. Yankova-Nikolova, Nevena N. Nacheva-Dimitrova, Desislava B. Vlahova-Vangelova, Dessislav K. Balev, and Stefan G. Dragoev. 2025. "Effect of Hippophae rhamnoides Extract Addition on the Quality and Safety of Traditional Kazakh Chunked Delicacy “Jaya”" Foods 14, no. 21: 3698. https://doi.org/10.3390/foods14213698
APA StyleAlimardanova, M. K., Abzhanova, S. A., Kurmanali, A. N., Kolev, N. D., Yankova-Nikolova, A. D., Nacheva-Dimitrova, N. N., Vlahova-Vangelova, D. B., Balev, D. K., & Dragoev, S. G. (2025). Effect of Hippophae rhamnoides Extract Addition on the Quality and Safety of Traditional Kazakh Chunked Delicacy “Jaya”. Foods, 14(21), 3698. https://doi.org/10.3390/foods14213698
 
        


 
       