Genotypic and Technological Characterization of Lactic Acid Bacteria and Coagulase-Negative Staphylococci Isolated from Sucuk: A Preliminary Screening of Potential Starter Cultures
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. DNA Isolation and 16s rRNA Amplification
2.3. Determination of Technological Properties
2.3.1. Growth at Different Temperatures
2.3.2. Growth at Different NaCl Concentrations
2.3.3. Growth at Different pH Values
2.3.4. Lipolytic Activity
2.3.5. Proteolytic Activity
2.3.6. Acetoin Formation
2.3.7. Determination of Antibiotic Sensitivities
2.3.8. D-L Lactic Acid Production
2.3.9. Amino Acid Decarboxylase Activity
2.3.10. Antagonistic Activity
2.3.11. Nitrate Reductase Activity
2.3.12. Biofilm Formation
2.4. Identification of Antibiotic Resistance Genes
3. Results and Discussion
3.1. Molecular Identification
3.2. Technological Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaban, G.; Oral, Z.F.Y.; Kaya, M. Sucuk. In Production of Traditional Mediterranean Meat Products; Springer: New York, NY, USA, 2022; pp. 133–141. ISBN 978-1-0716-2103-5. [Google Scholar]
- Kaya, M.; Kaban, G. Fermente et ürünleri. In Gıda Biyoteknolojisi; Aran, N., Ed.; Nobel Yayın Dağıtım: Ankara, Türkiye, 2019; pp. 157–195. ISBN 978-605-133-134-8. [Google Scholar]
- Fadda, S.; Castellano, P.; Terán, L.; Raya, R.; Vignolo, G. Lactic Acid Bacteria in Meat Fermentations: Role of Autochthonous Starter Cultures on Quality, Safety, and Health. In Lactic Acid Bacteria; CRC Press: Boca Raton, FL, USA, 2024; pp. 228–246. ISBN 9781003352075. [Google Scholar]
- Milani, G.; Tabanelli, G.; Barbieri, F.; Montanari, C.; Gardini, F.; Daza, M.V.B.; Castellone, V.; Bozzetti, M.; Cocconcelli, P.S.; Bassi, D. Technological traits and mitigation activity of autochthonous lactic acid bacteria from mediterranean fermented meat-products. LWT 2024, 196, 115861. [Google Scholar] [CrossRef]
- Shao, X.; Wang, H.; Song, X.; Xu, N.; Sun, J.; Xu, X. Effects of different mixed starter cultures on microbial communities, taste and aroma compounds of traditional Chinese fermented sausages. Food Chem. X 2024, 21, 101225. [Google Scholar] [CrossRef] [PubMed]
- García-López, J.D.; Barbieri, F.; Banos, A.; Madero, J.M.G.; Gardini, F.; Montanari, C.; Tabanelli, G. Use of two autochthonous bacteriocinogenic strains as starter cultures in the production of Salchichónes, a type of Spanish fermented sausages. Curr. Res. Food Sci. 2023, 7, 100615. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Wang, L.; Ge, Y.; An, Y.; Sun, X.; Xue, K.; Chen, L. Screening, identification, and application of superior starter cultures for fermented sausage production from traditional meat products. Fermentation 2025, 11, 306. [Google Scholar] [CrossRef]
- Zheng, S.S.; Wang, C.Y.; Hu, Y.Y.; Yang, L.; Xu, B.C. Enhancement of fermented sausage quality driven by mixed starter cultures: Elucidating the perspective of flavor profile and microbial communities. Food Res. Int. 2024, 178, 113951. [Google Scholar] [CrossRef]
- Gürakan, G.C.; Bozoğlu, T.F.; Weiss, N. Identification of Lactobacillus strains from Turkish-style dry fermented sausages. LWT–Food Sci. Technol. 1995, 28, 139–144. [Google Scholar] [CrossRef]
- Özdemir, H. Türk fermente sucuğunun florasındaki dominant laktobasil türlerinin sucuğun organoleptik nitelikleri ile ilişkisi. Ank. Üniv. Vet. Fak. Derg. 1999, 46, 189–198. [Google Scholar]
- Çon, A.H.; Gökalp, H.Y. Production of bacteriocin-like metabolites by lactic acid cultures isolated from sucuk samples. Meat Sci. 2000, 55, 89–96. [Google Scholar] [CrossRef]
- Kaban, G.; Kaya, M. Identification of lactic acid bacteria and Gram-Positive catalase-positive cocci isolated from naturally fermented sausage (sucuk). J. Food Sci. 2008, 73, M385–M388. [Google Scholar] [CrossRef]
- Kaban, G.; Kaya, M. Effects of Lactobacillus plantarum and Staphylococcus xylosus on the quality characteristics of dry fermented sausage “sucuk”. J. Food Sci. 2009, 74, S58–S63. [Google Scholar] [CrossRef]
- Kaban, G.; Kaya, M. Effects of Staphylococcus carnosus on quality characteristics of sucuk (Turkish dry-fermented sausage) during ripening. Food Sci. Biotechnol. 2009, 18, 150–156. [Google Scholar]
- Kaban, G.; Sallan, S.; Çınar Topçu, K.; Sayın Börekçi, B.; Kaya, M. Assessment of technological attributes of autochthonous starter cultures in Turkish dry fermented sausage (sucuk). Int. J. Food Sci. Technol. 2022, 57, 4392–4399. [Google Scholar] [CrossRef]
- Kaban, G. Isolation and Identification of Lactic Acid Bacteria and Catalase-Positive Cocci in Traditionally-Produced Sucuk, Their Possible Uses in Production, and Their Effects on Volatile Compounds. Ph.D. Thesis, Atatürk University, Erzurum, Türkiye, 2007. [Google Scholar]
- Barış, Ö. Isolation, Characterization and Identification of the Bacteria that are Effective in Dripstone Formation in the Caves in Erzurum. Ph.D. Thesis, Atatürk University, Erzurum, Türkiye, 2009. [Google Scholar]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Drosinos, E.; Mataragas, M.; Xiraphi, N.; Moschonas, G.; Gaitis, F.; Metaxopoulos, J. Characterization of the microbial flora from a traditional Greek fermented sausage. Meat Sci. 2005, 69, 307–317. [Google Scholar] [CrossRef]
- Drosinos, E.H.; Paramithiotis, S.; Kolovos, G.; Tsikouras, I.; Metaxopoulos, I. Phenotypic and technological diversity of lactic acid bacteria and staphylococci isolated from traditionally fermented sausages in southern Greece. Food Microbiol. 2007, 24, 260–270. [Google Scholar] [CrossRef]
- Kenneally, P.; Leuschner, R.; Arendt, E. Evaluation of the lipolytic activity of starter cultures for meat fermentation purposes. J. Appl. Microbiol. 1998, 84, 839–846. [Google Scholar] [CrossRef]
- Landeta, G.; Curiel, J.A.; Carrascosa, A.V.; Muñoz, R.; De Las Rivas, B. Technological and safety properties of lactic acid bacteria isolated from Spanish dry-cured sausages. Meat Sci. 2013, 95, 272–280. [Google Scholar] [CrossRef]
- Harrigan, W.F. Laboratory Methods in Food Microbiology; Gulf Professional Publishing: Houston, TX, USA, 1998. [Google Scholar]
- Sawitzki, M.C.; Fiorentini, Â.M.; Bertol, T.M.; Sant’Anna, E.S. Lactobacillus plantarum strains isolated from naturally fermented sausages and their technological properties for application as starter cultures. Food Sci. Technol. 2009, 29, 340–345. [Google Scholar] [CrossRef]
- Schillinger, U.; Lücke, F.K. Einsatz von milchsäurebakterien als schutzkulturen bei fleischerzeugnissen. In Mitteilungsblatt der Bundesanst. für Fleischforsch; BAFF: Kulmbach, Germany, 1989; Volume 28, pp. 97–105. [Google Scholar]
- Martineau, F.; Picard, F.J.; Lansac, N.; Ménard, C.; Roy, P.H.; Ouellette, M.; Bergeron, M.G. Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob. Agents Chemother. 2000, 44, 231–238. [Google Scholar] [CrossRef]
- Maynou, G.; Migura-Garcia, L.; Chester-Jones, H.; Ziegler, D.; Bach, A.; Terré, M. Effects of feeding pasteurized waste milk to dairy calves on phenotypes and genotypes of antimicrobial resistance in fecal Escherichia coli strains before and after weaning. J. Dairy Sci. 2017, 100, 7967–7979. [Google Scholar] [CrossRef] [PubMed]
- Bozdogan, B.; Berrezouga, L.; Kuo, M.S.; Yurek, D.A.; Farley, K.A.; Stockman, B.J.; Leclercq, R. A new resistance gene, linB, conferring resistance to lincosamides by nucleotidylation in Enterococcus faecium HM1025. Antimicrob. Agents Chemother. 1999, 43, 925–929. [Google Scholar] [CrossRef] [PubMed]
- Ouoba, L.I.I.; Lei, V.; Jensen, L.B. Resistance of potential probiotic lactic acid bacteria and Bifidobacteria of African and European origin to antimicrobials: Determination and transferability of the resistance genes to other bacteria. Int. J. Food Microbiol. 2008, 121, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Sáenz, Y.; Vinué, L.; Ruiz, E.; Somalo, S.; Martínez, S.; Rojo-Bezares, B.; Torres, C. Class 1 integrons lacking qacEΔ1 and sul1 genes in Escherichia coli isolates of food, animal and human origins. Vet. Microbiol. 2010, 144, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Jafari, E.; Mostaan, S.; Bouzari, S. Characterization of antimicrobial susceptibility, extended-spectrum β-Lactamase genes and phylogenetic groups of enteropathogenic Escherichia coli isolated from patients with diarrhea. Osong Public Health Res. Perspect. 2020, 11, 327–333. [Google Scholar] [CrossRef]
- Dezfulian, A.; Aslani, M.M.; Oskoui, M.; Farrokh, P.; Azimirad, M.; Dabiri, H.; Zali, M.R. Identification and characterization of a high vancomycin-resistant Staphylococcus aureus harboring vana gene cluster isolated from diabetic foot ulcer. Iran. J. Basic. Med. Sci. 2012, 15, 803–806. [Google Scholar]
- Aymerich, T.; Martin, B.; Garriga, M.; Hugas, M. Microbial quality and direct PCR identification of lactic acid bacteria and nonpathogenic staphylococci from artisanal low-acid sausages. Appl. Environ. Microbiol. 2003, 69, 4583–4594. [Google Scholar] [CrossRef]
- Adigüzel, G.; Atasever, M. Phenotypic and genotypic characterization of lactic acid bacteria isolated from Turkish dry fermented sausage. Rom. Biotechnol. Lett. 2009, 14, 4130–4138. [Google Scholar]
- Milićević, B.; Danilović, B.; Zdolec, N.; Kozachinski, L.; Dobranic, V.; Savić, D. Microbiota of the fermented sausages: Influence on product quality and safety. Bulg. J. Agric. Sci. 2014, 20, 1061–1078. [Google Scholar]
- Yaman, A.; Gökalp, H.; Çon, A.H. Some characteristics of lactic acid bacteria present in commercial sucuk samples. Meat Sci. 1998, 49, 387–397. [Google Scholar] [CrossRef]
- Borović, B.; Velebit, B.; Vesković, S.; Lakićević, B.; Baltić, T. The characterization of lactic acid bacteria isolated during the traditional production of Užička sausage. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2017; Volume 85, p. 012022. [Google Scholar] [CrossRef]
- Bungenstock, L.; Abdulmawjood, A.; Reich, F. Evaluation of antibacterial properties of lactic acid bacteria from traditionally and industrially produced fermented sausages from Germany. PLoS ONE 2020, 15, e0230345. [Google Scholar] [CrossRef]
- Kesmen, Z.; Yarimcam, B.; Aslan, H.; Özbekar, E.; Yetim, H. Application of different molecular techniques for characterization of catalase-positive cocci isolated from sucuk. J. Food Sci. 2014, 79, M222–M229. [Google Scholar] [CrossRef] [PubMed]
- Comi, G.; Citterio, B.; Manzano, M.; Cantoni, C.; Bertoldi, M. Evaluation and characterization of Micrococcaceae strains in Italian dry fermented sausages. Fleischwirtschaft 1992, 72, 1679–1683. [Google Scholar]
- Coppola, R.; Lorizzo, M.; Saotta, R.; Sorrentino, E.; Grazia, L. Characterization of Micrococci and Staphylococci isolated from soppressata molisana, a Southern Italy fermented sausage. Food Microbiol. 1997, 14, 47–53. [Google Scholar] [CrossRef]
- Cocolin, L.; Manzano, M.; Aggio, D.; Cantoni, C.; Comi, G. A Novel polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) for the identification of Micrococcaceae strains involved in meat fermentations: Its application to naturally fermented Italian sausages. Meat Sci. 2001, 57, 59–64. [Google Scholar] [CrossRef]
- Blaiotta, G.; Pennacchia, C.; Villani, F.; Ricciardi, A.; Tofalo, R.; Parente, E. Diversity and dynamics of communities of coagulase-negative staphylococci in traditional fermented sausages. J. Appl. Microbiol. 2004, 97, 271–284. [Google Scholar] [CrossRef]
- Miralles, M.C.; Flores, J.; Perez-Martinez, G. Biochemical tests for the selection of Staphylococcus strains as potential meat starter cultures. Food Microbiol. 1996, 13, 227–236. [Google Scholar] [CrossRef]
- García-Varona, M.; Santos, E.M.; Jaime, I.; Rovira, J. Characterisation of Micrococcaceae isolated from different varieties of Chorizo. Int. J. Food Microbiol. 2000, 54, 189–195. [Google Scholar] [CrossRef]
- Martín, B.; Garriga, M.; Hugas, M.; Bover-Cid, S.; Veciana-Nogués, M.; Aymerich, T. Molecular, technological and safety characterization of Gram-positive catalase-positive cocci from slightly fermented sausages. Int. J. Food Microbiol. 2006, 107, 148–158. [Google Scholar] [CrossRef]
- Samelis, J.; Metaxopoulos, J.; Vlassi, M.; Pappa, A. Stability and safety of traditional Greek salami—A microbiological ecology study. Int. J. Food Microbiol. 1998, 44, 69–82. [Google Scholar] [CrossRef]
- Papamanoli, E.; Kotzekidou, P.; Tzanetakis, N.; Litopoulou-Tzanetaki, E. Characterization of Micrococcaceae isolated from dry fermented sausage. Food Microbiol. 2002, 19, 441–449. [Google Scholar] [CrossRef]
- Mauriello, G.; Casaburi, A.; Blaiotta, G.; Villani, F. Isolation and technological properties of coagulase-negative staphylococci from fermented sausages of Southern Italy. Meat Sci. 2004, 67, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Montel, M.C.; Talon, R.; Cantonnet, M.; Fournaud, J. Identification of Staphylococcus from French dry sausage. Lett. Appl. Microbiol. 1992, 15, 73–77. [Google Scholar] [CrossRef]
- Hammes, W.P.; Hertel, C. New developments in meat starter cultures. Meat Sci. 1998, 49, 125–138. [Google Scholar] [CrossRef]
- Iacumin, L.; Manzano, M.; Comi, G. Catalase-positive cocci in fermented sausage: Variability due to different pork breeds, breeding systems and sausage production technology. Food Microbiol. 2012, 29, 178–186. [Google Scholar] [CrossRef]
- Nunes, R.S.C.; Del Aguila, E.M.; Paschoalin, V.M.F. Safety evaluation of the coagulase-negative staphylococci microbiota of salami: Superantigenic toxin production and antimicrobial resistance. Biomed. Res. Int. 2015, 2015, 483548. [Google Scholar] [CrossRef]
- Nei, M.; Kumar, S. Molecular Evolution and Phylogenetics; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Felsenstein, J. Confidence Limits on Phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Santos Cruxen, C.E.; Funck, G.D.; Haubert, L.; da Silva Dannenberg, G.; de Lima Marques, J.; Chaves, F.C.; Fiorentini, Â.M. Selection of native bacterial starter culture in the production of fermented meat sausages: Application potential, safety aspects, and emerging technologies. Food Res. Int. 2019, 122, 371–382. [Google Scholar] [CrossRef]
- Kamiloğlu, A.; Kaban, G.; Kaya, M. Contribution of catalase-positive cocci on flavour formation in fermented sausages. Br. J. Appl. Sci. Technol. 2016, 17, 1–8. [Google Scholar] [CrossRef]
- Kamiloğlu, A.; Kaban, G.; Kaya, M. Technological properties of autochthonous Lactobacillus plantarum strains isolated from sucuk (Turkish dry-fermented sausage). Braz. J. Microbiol. 2020, 51, 1279–1287. [Google Scholar] [CrossRef]
- Coenye, T.; Peeters, E.; Nelis, H.J. Biofilm formation by Propionibacterium acnes is associated with increased resistance to antimicrobial agents and increased production of putative virulence factors. Res. Microbiol. 2007, 158, 386–392. [Google Scholar] [CrossRef]
- Dalié, D.; Deschamps, A.; Richard-Forget, F. Lactic acid bacteria—Potential for control of mould growth and mycotoxins: A review. Food Control. 2010, 21, 370–380. [Google Scholar] [CrossRef]
- Álvarez-Cisneros, Y.M.; Ponce-Alquicira, E. Antibiotic resistance in lactic acid bacteria. In Antimicrobial Resistance—A Global Threat; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Wang, J.; Li, M.; Liu, M.; Yang, K.; Zhang, J.; Fan, M.; Wei, X. Antibiotic resistance of coagulase-negative staphylococci and lactic acid bacteria isolated from naturally fermented Chinese cured beef. J. Food Prot. 2018, 81, 2054–2063. [Google Scholar] [CrossRef]
Antibiotic | Primers | References | |
---|---|---|---|
Penicillin G | blaZ | 5′-ACTTCAACACCTGCTG TTTC-3′/5′-TGACCACTTTTATCAGCAACC-3′ | Martineau et al. [27] |
Ampicillin | blaTEM | 5′-GCGGAACCCCTATTTG-3′/5′-ACC AAT GCT TAA TCA GTG AG-3′ | Maynou et al. [28] |
Clindamycin | linB | 5′-CCTACCTATTGTTTGTGGAA-3′/5′-ATAACGTTACTCTCCTATTC-3′ | Bozdogan et al. [29] |
Erythromycin | erm (A) | 5′-AAGCGGTAAAACCCCTCTGAG-3′/5′-TCA AAG CCT GTC GGA ATT GG-3′ | Ouoba et al. [30] |
Gentamicin | aac(3″)IV | 5′-AGTTGACCCAGGGCTGTCGC-3′/5′-GTG TGC TGC TGG TCC ACA GC-3′ | Ouoba et al. [30] |
Kanamycin | aph(3″)-I | 5′-AACGTCTTGCTCGAGGCCGCG-3′/5′-GGCAAGATCCTGGTATCGGTCTGCG-3′ | Ouoba et al. [30] |
Tetracycline | tetA | 5′-GTAATTCTGAGCACTGTCGC-3′/5′-CTGCCTGGACAACATTGCTT-3′ | Sáenz et al. [31] |
Streptomycin | strA | 5′-CCAATCGCAGATAGAAGG C-3′/5′-CTT GGT GAT AAC GGC AAT TC-3′ | Ouoba et al. [30] |
Cephalotin | blaCTX-M9 | 5′-GTGACAAAGAGAGTGCAACGG-3′/5′-ATGATTCTCGCCGCTGAAGCC-3′ | Jafari et al. [32] |
Vancomycin | vanR | 5′-AGCGATAAAATACTTATTGTGGA-3′/5′-CGGATTATCAATGGTGTCGTT-3′ | Dezfulian et al. [33] |
Isolates | |||||||||||||||
L1 | L2 | L3 | P1 | P2 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | ||
Number of Isolates | |||||||||||||||
60 | 18 | 13 | 3 | 1 | 24 | 10 | 6 | 3 | 2 | 2 | 1 | 1 | 1 | ||
4 °C | N | - | - | - | - | - | 21 | 9 | 4 | 3 | 1 | 2 | - | 1 | 1 |
P | 60 | 18 | 13 | 3 | 1 | 3 | 1 | 2 | - | 1 | - | 1 | - | - | |
15 °C | N | - | - | - | - | - | 1 | - | - | - | - | - | - | - | - |
P | - | - | - | - | - | 3 | 1 | 3 | 3 | - | 1 | - | - | - | |
G | 1 | 2 | 13 | 1 | - | 20 | 9 | 3 | - | 1 | 1 | 1 | 1 | 1 | |
VG | 59 | 16 | - | 2 | 1 | - | - | - | - | 1 | - | - | - | - | |
25 °C | P | - | - | - | - | - | 2 | - | 2 | - | - | - | - | - | - |
G | - | - | 4 | 1 | - | 22 | 10 | 4 | 3 | 2 | 2 | 1 | 1 | 1 | |
VG | 60 | 18 | 9 | 2 | 1 | - | - | - | - | - | - | - | - | - | |
45 °C | N | 1 | - | - | - | - | 13 | 7 | 4 | - | 1 | 1 | - | 1 | 1 |
P | 7 | - | 11 | - | - | 11 | 3 | 2 | 3 | 1 | 1 | 1 | - | - | |
G | 52 | 18 | 2 | 3 | 1 | - | - | - | - | - | - | - | - | - | |
6.5% NaCl | N | 2 | - | - | - | - | - | - | - | - | - | - | - | - | - |
P | - | - | 8 | - | - | 4 | 1 | - | - | - | - | - | - | - | |
G | - | - | 4 | 2 | - | 20 | 9 | 6 | 3 | 2 | 2 | 1 | 1 | 1 | |
VG | 58 | 18 | 1 | 1 | 1 | - | - | - | - | - | - | - | - | - | |
10% NaCl | N | 10 | 1 | 13 | - | - | 1 | - | - | - | - | - | - | - | - |
P | 47 | 17 | - | 3 | 1 | 4 | 1 | - | 1 | - | 1 | - | - | 1 | |
G | 3 | - | - | - | - | 19 | 9 | 6 | 2 | 2 | 1 | 1 | 1 | - | |
pH 4.5 | N | - | - | 7 | - | - | 6 | 1 | 2 | - | - | - | - | - | - |
P | 3 | - | 2 | 2 | - | 14 | 3 | 3 | 3 | 2 | 2 | 1 | 1 | - | |
G | 57 | 18 | 4 | 1 | 1 | 4 | 6 | 1 | - | - | - | - | - | 1 | |
pH 5.0 | N | - | - | - | - | - | 3 | - | 2 | - | - | - | - | - | - |
P | 2 | - | 8 | - | - | 7 | 3 | 2 | - | 1 | 1 | 1 | 1 | - | |
G | 57 | 18 | 5 | 3 | 1 | 14 | 7 | 2 | 3 | 1 | 1 | - | - | 1 | |
VG | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | |
pH 5.5 | P | 1 | - | - | - | - | 5 | - | 3 | - | - | 1 | - | - | - |
G | - | - | 10 | 2 | - | 19 | 10 | 3 | 3 | 2 | 1 | 1 | 1 | 1 | |
VG | 59 | 18 | 3 | 1 | 1 | - | - | - | - | - | - | - | - | - | |
pH 6.0 | P | - | - | - | - | - | 4 | - | 2 | - | - | - | - | - | - |
G | - | - | 8 | 2 | - | 20 | 10 | 4 | 3 | 2 | 2 | 1 | 1 | 1 | |
VG | 60 | 18 | 5 | 1 | 1 | - | - | - | - | - | - | - | - | - | |
pH 6.5 | P | - | - | - | - | - | 2 | - | 2 | - | - | - | - | - | - |
G | - | - | 8 | 2 | - | 22 | 10 | 4 | 3 | 2 | 2 | 1 | 1 | 1 | |
VG | 60 | 18 | 5 | 1 | 1 | - | - | - | - | - | - | - | - | - |
Isolates | Total Number | DL Lactic Acid | Acetoin Formation | Proteolytic Activity | Lipolytic Activity | Nitrate Reductase Activity | Decarboxylase Activity | Biofilm Formation |
L1 | 60 | 57 | 47 | 7 | 0 | 6 | 1 | NT |
L2 | 18 | 18 | 18 | 0 | 0 | 2 | 0 | NT |
L3 | 13 | 11 | 12 | 1 | 0 | 1 | 0 | NT |
P1 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | NT |
P2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | NT |
S1 | 24 | NT | 22 | 10 | 0 | 19 | NT | 0 |
S2 | 10 | NT | 10 | 0 | 0 | 10 | NT | 0 |
S3 | 6 | NT | 4 | 0 | 0 | 6 | NT | 1 |
S4 | 3 | NT | 3 | 0 | 0 | 3 | NT | 0 |
S5 | 2 | NT | 2 | 0 | 0 | 2 | NT | 0 |
S6 | 2 | NT | 2 | 0 | 0 | 1 | NT | 0 |
S7 | 1 | NT | 1 | 0 | 0 | 1 | NT | 0 |
S8 | 1 | NT | 1 | 0 | 0 | 1 | NT | 0 |
S9 | 1 | NT | 1 | 0 | 0 | 1 | NT | 0 |
Isolates | Number | L. monocytogenes ATCC 7644 | S. aureus ATCC 25923 | S. aureus ATCC 29213 | |||||||||
Agar spot | |||||||||||||
N | P | G | VG | N | P | G | VG | N | P | G | VG | ||
L. plantarum | 60 | - | - | 53 | 7 | 15 | 3 | 42 | - | 15 | 1 | 44 | - |
L. paraplantarum | 18 | - | - | 18 | - | - | 1 | 17 | - | - | 1 | 17 | - |
L. sakei | 13 | - | - | - | 13 | 5 | 6 | - | 2 | 13 | - | - | - |
P. acidilactici | 3 | - | - | 3 | - | - | - | 3 | - | - | - | 3 | - |
P. pentosaceus | 1 | - | - | 1 | - | - | - | 1 | - | - | - | 1 | - |
Well diffusion | |||||||||||||
N | P | G | VG | N | P | G | VG | N | P | G | VG | ||
L. plantarum | 60 | 59 | - | 1 | - | 60 | - | - | - | 60 | - | - | - |
L. paraplantarum | 18 | 18 | - | - | - | 18 | - | - | - | 18 | - | - | - |
L. sakei | 13 | 12 | 1 | - | - | 13 | - | - | - | 13 | - | - | - |
P. acidilactici | 3 | 3 | - | - | - | 3 | - | - | - | 3 | - | - | - |
P. pentosaceus | 1 | 1 | - | - | - | 1 | - | - | - | 1 | - | - | - |
Isolates | Antibiotic Susceptibility | ||||||||||
Number of Isolates | A | Cl | E | G | K | T | V | S | C | P | |
L. plantarum | 60 | 55 | 60 | 58 | - | - | 54 | 1 | 1 | 52 | 54 |
L. paraplantarum | 18 | 11 | 18 | 18 | - | - | 13 | - | - | 8 | 8 |
L. sakei | 13 | 13 | 13 | 13 | - | 1 | 13 | - | - | 13 | 13 |
P. acidilactici | 3 | 2 | 3 | 3 | - | - | 1 | - | - | - | 2 |
P. pentosaceus | 1 | 1 | 1 | 1 | - | - | 1 | - | - | - | - |
S. xylosus | 24 | 24 | 24 | 24 | 22 | 22 | 24 | 24 | 19 | 24 | 24 |
S. saprophyticus | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 9 | 10 | 10 |
S. equorum | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
S. simulans | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
S. succinus | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
S. carnosus | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 |
S. hominis | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
S. caprea | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
S. vitulinus | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaya, M.; Sayın, B.; Topçu, K.Ç.; Karadayı, M.; Kamiloğlu, A.; Güllüce, M.; Kaban, G. Genotypic and Technological Characterization of Lactic Acid Bacteria and Coagulase-Negative Staphylococci Isolated from Sucuk: A Preliminary Screening of Potential Starter Cultures. Foods 2025, 14, 3495. https://doi.org/10.3390/foods14203495
Kaya M, Sayın B, Topçu KÇ, Karadayı M, Kamiloğlu A, Güllüce M, Kaban G. Genotypic and Technological Characterization of Lactic Acid Bacteria and Coagulase-Negative Staphylococci Isolated from Sucuk: A Preliminary Screening of Potential Starter Cultures. Foods. 2025; 14(20):3495. https://doi.org/10.3390/foods14203495
Chicago/Turabian StyleKaya, Mükerrem, Bilge Sayın, Kübra Çinar Topçu, Mehmet Karadayı, Aybike Kamiloğlu, Medine Güllüce, and Güzin Kaban. 2025. "Genotypic and Technological Characterization of Lactic Acid Bacteria and Coagulase-Negative Staphylococci Isolated from Sucuk: A Preliminary Screening of Potential Starter Cultures" Foods 14, no. 20: 3495. https://doi.org/10.3390/foods14203495
APA StyleKaya, M., Sayın, B., Topçu, K. Ç., Karadayı, M., Kamiloğlu, A., Güllüce, M., & Kaban, G. (2025). Genotypic and Technological Characterization of Lactic Acid Bacteria and Coagulase-Negative Staphylococci Isolated from Sucuk: A Preliminary Screening of Potential Starter Cultures. Foods, 14(20), 3495. https://doi.org/10.3390/foods14203495