The Potential of Black Soldier Fly (Hermetia illucens L.) Larvae in Whole Wheat Bread Production: Effects on Physicochemical, Antioxidative, and Sensory Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Proximate Composition
2.3. Minerals
2.3.1. Reagents and Materials
2.3.2. Determination of Minerals
2.4. Determination of Total Phenolic Content (TPC) and Antioxidant Activity
2.4.1. Extract Preparation
2.4.2. Total Phenolic Content (TPC)
2.4.3. Antioxidant Activity
2.5. Determination of Fatty Acid Profile (FAs)
2.5.1. Fat Extraction
2.5.2. Fatty Acid Profile
2.6. Texture Profile
2.7. Color Measurement
2.8. Sensory Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Insect Meal Characterization and Chemical Composition of Bread
3.1.1. Nutritional Value and Microbiological Safety of Insect Meal
3.1.2. Proximate Composition of Bread
3.2. Minerals Analysis
3.2.1. Mineral Composition of Insect Meal
3.2.2. Mineral Composition of Bread
3.3. Polyphenols and Antioxidant Properties
3.3.1. TPC and Antioxidant Activity of Insect Meal
3.3.2. TPC and Antioxidant Activity of Bread
3.4. Fatty Acid Composition
3.4.1. Fatty Acid Profile of Insect Meal
3.4.2. Fatty Acid Profile of Bread
3.5. Texture Profile Analysis
3.6. Color
3.7. Sensory Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fraser, E.D.G. The challenge of feeding a diverse and growing population. Physiol. Behav. 2020, 221, 112908. [Google Scholar] [CrossRef] [PubMed]
- Sadigov, R. Rapid growth of the world population and its socioeconomic results. Sci. World J. 2022, 2022, 8110229. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Berggren, A.; Jansson, A.; Low, M. Approaching ecological sustainability in the emerging insects as food industry. Trends. Ecol. Evol. 2018, 34, 132–138. [Google Scholar] [CrossRef]
- Onwezen, M.C.; Bouwman, E.P.; Reinders, M.J.; Dagevos, H. A systematic review on consumer acceptance of alternative proteins: Pulses, algae, insects, plant-based meat alternatives, and cultured meat. Appetite 2021, 159, 105058. [Google Scholar] [CrossRef]
- Katayama, N.; Ishikawa, Y.; Takaoki, M.; Yamashita, M.; Nakayama, S.; Kiguchi, K.; Kok, R.; Wada, H.; Mitsuhashi, J. Entomophagy: A key to space agriculture. Adv. Space Res. 2007, 41, 701–705. [Google Scholar] [CrossRef]
- Premalatha, M.; Abbasi, T.; Abbasi, T.; Abbasi, S.A. Energy-efficient food production to reduce global warming and ecodegradation: The use of edible insects. Renew. Sustain. Energy Rev. 2011, 15, 4357–4360. [Google Scholar] [CrossRef]
- Nijdam, D.; Rood, T.; Westhoek, H. The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy 2012, 37, 760–770. [Google Scholar] [CrossRef]
- Herbert, M.; Beacom, E. Exploring consumer acceptance of insect-based snack products in Ireland. J. Food Prod. Mark. 2021, 27, 267–290. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Bahmid, N.A.; Mahmud, C.M.M.; Boukid, F.; Lamri, M.; Gagaoua, M. Consumer acceptability of plant-, seaweed-, and insect-based foods as alternatives to meat: A critical compilation of a decade of research. Crit. Rev. Food Sci. Nutr. 2022, 63, 6630–6651. [Google Scholar] [CrossRef]
- Tian, H.; Chen, J. Association of food neophobia and food disgust with the willingness, benefits, and risks of insect food consumption among Chinese university students. Front. Nutr. 2025, 12, 1613932. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, I.; Farahnaky, A.; Gill, H.; Danaher, J.; Newman, L.P. Food neophobia and its association with dietary choices and willingness to eat insects. Front. Nutr. 2023, 10, 1150789. [Google Scholar] [CrossRef] [PubMed]
- Woolfa, E.; Zhua, Y.; Emoryb, K.; Zhaoc, J.; Liu, C. Willingness to consume insect-containing foods: A survey in the United States. LWT-Food Sci. Technol. 2019, 102, 100–105. [Google Scholar] [CrossRef]
- Sogari, G.; Riccioli, F.; Moruzzo, R.; Menozzi, D.; Sosa, D.A.T.; Li, J.; Liu, A.; Mancini, S. Engaging in entomophagy: The role of food neophobia and disgust between insect and non-insect eaters. Food Qual. Prefer. 2023, 104, 104764. [Google Scholar] [CrossRef]
- Poortvliet, P.M.; Van Der Pas, L.; Mulder, B.C.; Fogliano, V. Healthy, but disgusting: An investigation into consumers’ willingness to try insect meat. J. Econ. Entomol. 2019, 112, 1005–1010. [Google Scholar] [CrossRef]
- Eckl, M.R.; Biesbroek, S.; Van’t Veer, P.; Geleijnse, J.M. Replacement of meat with non-meat protein sources: A review of the drivers and inhibitors in developed countries. Nutrients 2021, 13, 3602. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Waterhouse, G.I.N.; You, L.; Zhang, J.; Liu, Y.; Ma, L.; Gao, J.; Dong, Y. Transforming insect biomass into consumer wellness foods: A review. Food Res. Int. 2016, 89, 129–151. [Google Scholar] [CrossRef]
- Orkusz, A.; Wolanska, W.; Harasym, J.; Piwowar, A.; Kapelko, M. Consumers’ attitudes facing entomophagy: Polish case perspectives. Int. J. Environ. Res. Public Health 2020, 17, 2427. [Google Scholar] [CrossRef]
- Kourkouta, L.; Koukourikos, K.; Iliadis, C.; Ouzounakis, P.; Monios, A.; Tsaloglidou, A. Bread and health. J. Pharm. Pharmacol. 2017, 5, 821–826. [Google Scholar] [CrossRef]
- Roncolini, A.; Milanović, V.; Cardinali, F.; Osimani, A.; Garofalo, C.; Sabbatini, R.; Clementi, F.; Pasquini, M.; Mozzon, M.; Foligni, R.; et al. Protein fortification with mealworm (Tenebrio molitor L.) powder: Effect on textural, microbiological, nutritional and sensory features of bread. PLoS ONE 2019, 14, e0211747. [Google Scholar] [CrossRef]
- Zielińska, E.; Pankiewicz, U.; Sujka, M. Nutritional, physiochemical, and biological value of muffins enriched with edible insects flour. Antioxidants 2021, 10, 1122. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, S.; Mikulec, A.; Skotnicka, M.; Mickowska, B.; Makarewicz, M.; Sabat, R.; Gurgul, A.W.; Mazurek, A. Effect of the addition of edible insect flour from yellow mealworm (Tenebrio molitor) on the sensory acceptance, and the physicochemical and textural properties of sponge cake. Pol. J. food Nutr. Sci. 2022, 72, 393–405. [Google Scholar] [CrossRef]
- Duda, A.; Adamczak, J.; Chelminska, P.; Juszkiewicz, J.; Kowalczewski, P. Quality and nutritional/textural properties of durum wheat pasta enriched with cricket powder. Foods 2019, 8, 46. [Google Scholar] [CrossRef] [PubMed]
- Petrescu-Mag, R.M.; Kopaei, H.R.; Petrescu, D.C. Consumers’ acceptance of the first novel insect food approved in the European Union: Predictors of yellow mealworm chips consumption. Food Sci. Nutr. 2022, 10, 846–862. [Google Scholar] [CrossRef]
- Bessa, L.W.; Pieterse, E.; Marais, J.; Hoffman, L.C. Why for feed and not for human consumption? The black soldier fly larvae. Compr. Rev. Food. Sci. Food. Saf. 2020, 19, 2747–2763. [Google Scholar] [CrossRef]
- Kaczor, M.; Bulak, P.; Proc-Pietrycha, K.; Kirichenko-Babko, M.; Bieganowski, A. The Variety of Applications of Hermetia illucens in Industrial and Agricultural Areas—Review. Biology 2023, 12, 25. [Google Scholar] [CrossRef]
- Wang, Y.S.; Shelomi, M. Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods 2017, 6, 91. [Google Scholar] [CrossRef]
- Lestari, A.; Wahyuni, T.H.; Mirwandhono, E.; Ginting, N. Maggot black soldier fly (Hermetia illucens) nutritional content using various culture media. J. Integr. Anim. Sci. 2020, 8, 161–169. [Google Scholar]
- Gao, Z.; Wang, W.; Lu, X.; Zhu, F.; Liu, W.; Wang, X.; Lei, C. Bioconversion performance and life table of black soldier fly (Hermetia illucens) on fermented maize straw. J. Clean. Prod. 2019, 230, 974–980. [Google Scholar] [CrossRef]
- Chia, S.Y.; Tanga, C.M.; Osuga, I.M.; Cheseto, X.; Ekesi, S. Nutritional composition of black soldier fly larvae feeding on agro-industrial by-products. Entomol. Exp. Appl. 2020, 168, 472–481. [Google Scholar] [CrossRef]
- Ferdousi, L.; Sultana, N.; Bithi, U.H.; Lisa, S.A.; Hasan, R.; Siddique, A.B. Nutrient profile of wild black soldier fly (Hermetia illucens) prepupae reared on municipal dustbin’s organic waste substrate. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2022, 92, 351–357. [Google Scholar] [CrossRef]
- Rabani, V.; Cheatsazan, H.; Davani, S. Proteomics and lipidomics of black soldier fly (Diptera: Stratiomyidae) and blow fly (Diptera: Calliphoridae) larvae. J. Insect Sci. 2019, 19, 29. [Google Scholar] [CrossRef] [PubMed]
- Amoah, I.; Cobbinah, J.C.; Yeboah, J.A.; Essiam, F.A.; Lim, J.J.; Tandoh, M.A.; Rush, E. Edible insect powder for enrichment of bakery products—A review of nutritional, physical characteristics and acceptability of bakery products to consumers. Future Foods 2023, 8, 100251. [Google Scholar] [CrossRef]
- Ardoin, R.; Marx, B.D.; Boeneke, C.; Prinyawiwatkul, W. Effects of cricket powder on selected physical properties and US consumer perceptions of whole-wheat snack crackers. Int. J. Food Sci. Technol. 2021, 56, 4070–4080. [Google Scholar] [CrossRef]
- Defloor, I.; Nys, M.; Delcour, J.A. Wheat-starch, cassava starch, and cassava flour impairment of the breadmaking potential of wheat-flour. Cereal Chem. 1993, 70, 526–530. [Google Scholar]
- Saraswati, I.G.A.K.W.; Putra, I.G.A.M.; Wrasiati, L.P. The effect of adding black soldier fly (BSF) larvae (Hermetia illucens L.) flour on the characteristics of tortilla chips. Int. J. Curr. Microbiol. Appl. Sci. 2021, 10, 369–382. [Google Scholar] [CrossRef]
- Siqueira Galvão Novo, G.; César Tondo, E.; Cruz Silveira Thys, R.; Cladera, F. Production of protein-enriched bread through the incorporation of the black soldier fly (Hermetia illucens) larvae. Food Sci. Technol. 2024, 44, 1–9. [Google Scholar] [CrossRef]
- Wrasiati, L.P.; Putra, I.G.A.M.; Yuarini, D.A.A.; Saraswati, I.G.A.K.W. Development of nutrient-rich cookies using black soldier fly (BSF) flour. J. Insects Food Feed. 2025, 11, 1919–1932. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis Method (2005a) 934.01, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- AOAC. Official Methods of Analysis Method (2005b) 2001.11, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- AOAC. Official Methods of Analysis Method (2006) 991.36, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- AOAC. Official Methods of Analysis Method (2005c) 945.16, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Draszanowska, A.; Kurp, L.; Starowicz, M.; Paszczyk, B.; Czarnowska-Kujawska, M.; Olszewska, M.A. Effect of the Addition of Yellow Mealworm (Tenebrio molitor) on the Physicochemical, Antioxidative, and Sensory Properties of Oatmeal Cookies. Foods 2024, 13, 3166. [Google Scholar] [CrossRef]
- Starowicz, M.; Arpaci, S.; Topolska, J.; Wronkowska, M. Phytochemicals and antioxidant activity in oat-buckwheat. Molecules 2021, 226, 2267. [Google Scholar] [CrossRef]
- Christie, W.W. Lipid Analysis; Isolation, Separation, Identification, and Structural Analysis of Lipids, 1st ed.; Pergamon Press: Oxford, NY, USA, 1973. [Google Scholar]
- Żegarska, Z.; Jaworski, J.; Borejszo, Z. Evaluation of the Peisker modified method for extracting methyl esters from fatty acids. Acta Acad. Agri. Techn. Olst. 1991, 24, 25–33. [Google Scholar]
- Kowalski, S.; Mikulec, A.; Mickowska, B.; Skotnicka, M.; Mazurek, A. Wheat bread supplementation with various edible insect flours. Influence of chemical composition on nutritional and technological aspects. LWT 2022, 159, e113220. [Google Scholar] [CrossRef]
- ISO 8586:2012; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. International Organization for Standardization: Geneva, Switzerland, 2012.
- Gonzalez, C.M.; Garzon, R.; Rosell, C.M. Insects as ingredients for bakery goods. A comparison study of H. illucens, A. domestica and T. molitor flours. Innov. Food. Sci. Emerg. Technol. 2019, 51, 205–210. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Ragadhita, R.; Ana, A.; Hammouti, B. Effect of starch, lipid, and protein components in flour on the physical and mechanical properties of Indonesian biji ketapang cookies. Int. J. Technol. 2022, 13, 432–443. [Google Scholar] [CrossRef]
- Lu, S.; Taethaisong, N.; Meethip, W.; Surakhunthod, J.; Sinpru, B.; Sroichak, T.; Archa, P.; Thongpea, S.; Paengkoum, S.; Purba, R.A.P.; et al. Nutritional Composition of Black Soldier Fly Larvae (Hermetia illucens L.) and Its Potential Uses as Alternative Protein Sources in Animal Diets: A Review. Insects 2022, 13, 831. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, X.; Wang, H.; Yang, Q.; ur Rehman, K.; Li, W.; Cai, M.; Li, Q.; Mazza, L.; Zhang, J. Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS ONE 2017, 12, e0182601. [Google Scholar] [CrossRef]
- Diener, S.; Zurbrügg, C.; Tockner, K. Conversion of organic material by black soldier fly larvae: Establishing optimal feeding rates. Waste Manag. Res. 2009, 27, 603–610. [Google Scholar] [CrossRef]
- Myers, H.M.; Tomberlin, J.K.; Lambert, B.D.; Kattes, D. Development of black soldier fly (Diptera: Stratiomyidae) larvae fed dairy manure. Environ. Entomol. 2014, 37, 11–15. [Google Scholar] [CrossRef]
- World Health Organization. Global Status Report on Noncommunicable Diseases 2014; WHO: Geneva, Switzerland, 2015; Available online: https://www.who.int/publications/i/item/9789241564854 (accessed on 13 June 2025).
- Li, M.; Mao, C.; Li, X.; Jiang, L.; Zhang, W.; Li, M.; Liu, H.; Fang, Y.; Liu, S.; Yang, G.; et al. Edible Insects: A New Sustainable Nu-tritional Resource Worth Promoting. Foods 2023, 12, 4073. [Google Scholar] [CrossRef]
- Mwangi, M.N.; Oonincx, D.G.A.B.; Hummel, M.; Utami, D.A.; Gunawan, L.; Veenenbos, M.; Zeder, C.; Cercamondi, C.I.; Zim-mermann, M.B.; van Loon, J.J.A.; et al. Absorption of iron from edible house crickets: A randomized crossover stable-isotope study in humans. Am. J. Clin. Nutr. 2022, 116, 1146–1156. [Google Scholar] [CrossRef]
- Herdeiro, F.M.; Carvalho, M.O.; Nunes, M.C.; Raymundo, A. Development of healthy snacks incorporating meal from Tenebrio molitor and Alphitobius diaperinus using 3D printing technology. Foods 2024, 13, 179. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Zhang, X.; Mu, Q.; Tian, J.; Yan, J.; Guo, L.; Wang, Y.; Song, L.; Yu, X. Differences in Total Phenolics, Antioxidant Activity and Metabolic Characteristics in Peach Fruits at Different Stages of Ripening. LWT 2023, 178, 114586. [Google Scholar] [CrossRef]
- Fan, X.; Jiao, W.; Wang, X.; Cao, J.; Jiang, W. Polyphenol Composition and Antioxidant Capacity in Pulp and Peel of Apricot Fruits of Various Varieties and Maturity Stages at Harvest. Int. J. Food Sci. Technol. 2018, 53, 327–336. [Google Scholar] [CrossRef]
- Bogusz, R.; Bryś, J.; Onopiuk, A.; Rybak, K.; Witrowa-Rajchert, D.; Nowacka, M. Effect of Pulsed Electric Field Technology on the Composition and Bioactive Compounds of Black Soldier Fly Larvae Dried with Convective and Infrared–Convective Methods. Molecules 2023, 28, 8121. [Google Scholar] [CrossRef]
- Zielińska, E.; Baraniak, B.; Karaś, M. Identification of antioxidant and anti-inflammatory peptides obtained by simulated gastrointestinal digestion of three edible insects species (Gryllodes sigillatus, Tenebrio molitor, Schistocerca gragaria). Int. J. Food Sci. Technol. 2018, 53, 2542–2551. [Google Scholar] [CrossRef]
- Džima, M.; Ivanišová, E.; Gálik, B.; Šimko, M.; Rolinec, M.; Hanušovský, O.; Kapusniaková, M.; Madajová, V.; Bíro, D.; Juráček, M. Antioxidant activity and total polyphenol content of insects used as feed and food. J. Microbiol. Biotechnol. Food Sci. 2025, 15, e12684. [Google Scholar] [CrossRef]
- Kowalczewski, P.Ł.; Gumienna, M.; Rybicka, I.; Górna, B.; Sarbak, P.; Dziedzic, K.; Kmiecik, D. Nutritional Value and Biological Activity of Gluten-Free Bread Enriched with Cricket Powder. Molecules 2021, 26, 1184. [Google Scholar] [CrossRef]
- Shahidi, F.; de Camargo, A.C. Tocopherols and Tocotrienols in Common and Emerging Dietary Sources: Occurrence, Applications, and Health Benefits. Int. J. Mol. Sci. 2016, 17, 1745. [Google Scholar] [CrossRef]
- Morand-Laffargue, L.; Vairo, D.; Halimi, C.; Chiarello, E.; Creton, B.; Sabatier, D.; Borel, P. Ability of black soldier fly larvae to bioaccumulate tocopherols from different substrates and measurement of larval tocopherol bioavailability in vitro. J. Insects Food Feed 2023, 10, 795–807. [Google Scholar] [CrossRef]
- Djouadi, A.; Sales, J.R.; Carvalho, M.O.; Raymundo, A. Development of Healthy Protein-Rich Crackers Using Tenebrio molitor Flour. Foods 2022, 11, 702. [Google Scholar] [CrossRef]
- Pecova, M.; Tauferova, A.; Pospiech, M.; Bartlova, M.; Tremlova, B. Evaluation of gluten-free bars made with house cricket (Acheta domesticus) powder. J. Microbiol. Biotechnol. Food Sci. 2023, 13, e9873. [Google Scholar] [CrossRef]
- Dayrit, F.M. The properties of lauric acid and their significance in coconut oil. J. Am. Oil Chem. Soc. 2015, 92, 1–15. [Google Scholar] [CrossRef]
- Ebeneezar, S.; Tejpal, C.S.; Jeena, N.S.; Summaya, R.; Chandrasekar, S.; Sayooj, P.; Vijayagopal, P. Nutritional evaluation, bioconversion performance and phylogenetic assessment of black soldier fly (Hermetia illucens, Linn. 1758) larvae valorized from food waste. Environ. Technol. Innov. 2021, 23, 101783. [Google Scholar] [CrossRef]
- Franco, A.; Scieuzo, C.; Salvia, R.; Petrone, A.M.; Tafi, E.; Moretta, A.; Schmitt, E.; Falabella, P. Lipids from Hermetia illecens, an innovative and sustainable source. Sustainability 2021, 13, 10198. [Google Scholar] [CrossRef]
- Almeida, C.; Murta, D.; Nunes, R.; Baby, A.R.; Fernandes, A.; Barros, L.; Rijo, P.; Rosado, C. Characterization of lipid extracts from the Hermetia illucans larvae and their bioactivities for potential use as pharmaceutical and cosmetic ingredients. Heliyon 2022, 8, e09455. [Google Scholar] [CrossRef]
- Flori, L.; Donnini, S.; Calderone, V.; Zinnai, A.; Taglieri, I.; Venturi, F.; Testai, L. The nutraceutical value of olive oil and its bioactive constituents on the cardiovascular system. Focusing on main strategies to slow down its quality decay during production and storage. Nutrients 2019, 11, 1962. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Osmari, E.K.; Cecato, U.; Macedo, F.A.F.; Souza, N.E. Nutritional quality indices of milk fat from goats on diets supplemented with different roughages. Small Rumin. Res. 2011, 98, 128–132. [Google Scholar] [CrossRef]
- Ivanova, A.; Hadzhinikolova, L. Evaluation of nutritional quality of common carp (Cyprinus carpio L.) lipidsthrough fatty acid ratios and lipid indices. Bulg. J. Agric. Sci. 2015, 21, 180–185. [Google Scholar]
- Badawy, S.; Liu, Y.; Guo, M.; Liu, Z.; Xie, C.; Marawan, M.A.; Ares, I.; Lopez-Torres, B.; Martínez, M.; Maximiliano, J.-E.; et al. Conjugated linoleic acid (CLA) as a functional food: Is it beneficial or not? Food Res. Int. 2023, 172, 113158. [Google Scholar] [CrossRef]
- Bishehkolaei, M.; Pathak, Y. Influence of omega n-6/n-3 ratio on cardiovascular disease and nutritional interventions. Hum. Nutr. Metab. 2024, 37, 200275. [Google Scholar] [CrossRef]
- Mihaly Cozmuta, A.; Uivarasan, A.; Peter, A.; Nicula, C.; Kovacs, D.E.; Mihaly Cozmuta, L. Yellow Mealworm (Tenebrio molitor) Powder Promotes a High Bioaccessible Protein Fraction and Low Glycaemic Index in Biscuits. Nutrients 2023, 15, 997. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Ghosh, A.; Ray, M.; Sarkar, S. Lauric acid modulates cancer-associated microRNA expression and inhibits the growth of the cancer cell. Anticancer Agents Med. Chem. 2020, 20, 834–844. [Google Scholar] [CrossRef] [PubMed]
- Alfhili, M.A.; Aljuraiban, G.S. Lauric Acid, a Dietary Saturated Medium-Chain Fatty Acid, Elicits Calcium-Dependent Eryptosis. Cells 2021, 10, 3388. [Google Scholar] [CrossRef] [PubMed]
- Srisuksai, K.; Limudomporn, P.; Kovitvadhi, U.; Thongsuwan, K.; Imaram, W.; Lertchaiyongphanit, R.; Sareepoch, T.; Kovitvadhi, A.; Fungfuang, W. Physicochemical properties and fatty acid profile of oil extracted from black soldier fly larvae (Hermetia illucens). Vet. World 2024, 17, 518–526. [Google Scholar] [CrossRef]
- Nakatsuji, T.; Kao, M.C.; Fang, J.; Zouboulis, C.C.; Zhang, L.; Gallo, R.L.; Huang, C. Antimicrobial property of lauric acid against Propionibacterium acnes: Its therapeutic potential for inflammatory acne vulgaris. J. Investig. Dermatol. 2009, 129, 2480–2488. [Google Scholar] [CrossRef]
- Anzaku, A.A.; Akyala, J.I.; Juliet, A.; Obianuju, C. Antibacterial activity of lauric acid on some selected clinical isolates. Ann. Clin. Lab. Res. 2017, 5, 170. [Google Scholar] [CrossRef]
- Suryati, T.; Julaeha, E.; Farabi, K.; Ambarsari, H.; Hidayat, A.T. Lauric acid from the black soldier fly (Hermetia illucens) and its potential applications. Sustainability 2023, 15, 10383. [Google Scholar] [CrossRef]
- Radzikowska, U.; Rinaldi, A.O.; Çelebi, Z.C.; Karaguzel, D.; Wojcik, M.; Cypryk, K.; Akdis, M.; Akdis, C.A.; Sokolowska, M. The influence of dietary fatty acids on immune responses. Nutrients 2019, 11, 2990. [Google Scholar] [CrossRef]
- Nishinari, K.; Kohyama, K.; Kumagai, H.; Funami, T.; Bourne, M.C. Parameters of texture profile analysis. Food Sci. Technol. Res. 2013, 19, 519–521. [Google Scholar] [CrossRef]
- Srilakshmi, A. Texture Profile Analysis of Food and TPA Measurements: A Review Article. Int. J. Eng. Res. Technol. 2020, 7, 708–711. [Google Scholar]
- Bawa, M.; Songsermpong, S.; Kaewtapee, C.; Chanput, W. Nutritional, sensory, and texture quality of bread and cookie enriched with house cricket (Acheta domesticus) powder. J. Food Process. Preserv. 2020, 44, e14601. [Google Scholar] [CrossRef]
- Bresciani, A.; Cardone, G.; Jucker, C.; Savoldelli, S.; Marti, A. Technological performance of cricket powder (Acheta domesticus L.) in wheat-based formulations. Insects 2022, 13, 546. [Google Scholar] [CrossRef] [PubMed]
- Mafu, A.; Ketnawa, S.; Phongthai, S.; Schonlechner, R.; Rawdkuen, S. Whole wheat bread enriched with cricket powder as an alternative protein. Foods 2022, 11, 2142. [Google Scholar] [CrossRef] [PubMed]
- Trinh, K.T.; Glasgow, S. On the texture profile analysis test. In Proceedings of the Chemeca, Wellington, New Zealand, 23 September 2012; pp. 23–26. [Google Scholar]
- García-Segovia, P.; Igual, M.; Martinez-Monzo, J. Physicochemical properties and consumer acceptance of bread enriched with alternative proteins. Foods 2020, 9, 933. [Google Scholar] [CrossRef]
- Villarino, C.B.J.; Jayasena, V.; Coorey, R.; Chakrabarti-Bell, S.; Johnson, S.K. Nutritional, health, and technological functionality of lupin flour addition to bread and other baked products: Benefits and challenges. Crit. Rev. Food Sci. Nutr. 2016, 56, 835–857. [Google Scholar] [CrossRef] [PubMed]
- Ribas-Agusti, A.; Martin-Belloso, O.; Soliva-Fortuny, R.; Elez-Martinez, P. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Crit. Rev. Food Sci. Nutr. 2017, 58, 2531–2548. [Google Scholar] [CrossRef]
- Da Rosa Machado, C.; Thys, R.C.S. Cricket powder (Gryllus assimilis) as a new alternative protein source for gluten-free breads. Innov. Food Sci. Emerg. Technol. 2019, 56, e102180. [Google Scholar] [CrossRef]
- Bottle, E.; Espinosa-Ramírez, J.; Serna-Saldívar, S.O.; Tejada-Ortigoza, V. Effect of full fat and defatted insect meals in breadmaking quality. LWT 2024, 191, 115602. [Google Scholar] [CrossRef]
- Alemu, M.H.; Olsen, S.B.; Vedel, S.E.; Kinyuru, J.N.; Pambo, K.O. Can insects increase food security in developing countries? An analysis of Kenyan consumer preferences and demand for cricket flour buns. Food Secur. 2017, 9, 471–484. [Google Scholar] [CrossRef]
- Wilkinson, K.; Muhlhausler, B.; Motley, C.; Crump, A.; Bray, H.; Ankeny, R. Australian consumers’ awareness and acceptance of insects as food. Insects 2018, 9, 44. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis Method (1985) 985.29, 18th ed.; AOAC International: Gaithersburg, MD, USA, 1985. [Google Scholar]
- AOAC. Official Methods of Analysis Method (2022) 940.26, 21st ed.; AOAC International: Gaithersburg, MD, USA, 2022. [Google Scholar]
- European Commission. Commission Implementing Regulation (EU) 2022/169 of 8 February 2022 Authorising the Placing on the Market of Frozen, Dried and Powder Forms of Yellow Mealworm (Tenebrio molitor Larva) as a Novel Food Under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and amending Commission Implementing Regulation (EU) 2017/2470. European Commission. 2022. Available online: http://data.europa.eu/eli/reg_impl/2022/169/oj (accessed on 18 September 2025).
- ISO 4833-1:2013; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms. ISO: Geneva, Switzerland, 2013.
- ISO 21527-2:2008; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds. ISO: Geneva, Switzerland, 2008.
- ISO 21528-2:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae. ISO: Geneva, Switzerland, 2017.
- PN-ISO 16649-2:2004; Plate Method (Depth Plating). Polish Committee for Standardization: Warsaw, Poland, 2004.
- ISO 6579-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella. ISO: Geneva, Switzerland, 2017.


| Ingredient (g)/1000 g | Formulation and Coding | ||
|---|---|---|---|
| (Ratio of HI *) | |||
| HI0 (0%) | HI10 (10%) | HI30 (30%) | |
| Dried black soldier | 0 | 100 | 300 | 
| Whole wheat flour | 460 | 360 | 160 | 
| Wheat flour | 240 | 240 | 240 | 
| Milk powder | 8 | 8 | 8 | 
| Sugar | 10 | 10 | 10 | 
| Salt | 9 | 9 | 9 | 
| Baker’s yeast | 4 | 4 | 4 | 
| Oil | 10 | 10 | 10 | 
| Water | 259 | 259 | 259 | 
| Samples | % Water | % Crude Protein | % Crude Fat | |
|---|---|---|---|---|
| Raw material | HI meal | 1.98 ± 0.02 | 36.70 ± 1.84 | 47.70 ± 2.39 | 
| Bread | HI0 | 32.36 ± 0.20 a | 9.94 ± 0.06 a | 0.30 ± 0.06 a | 
| HI10 | 32.61 ± 0.07 ab | 12.00 ± 0.07 b | 1.10 ± 0.01 b | |
| HI30 | 33.03 ± 0.27 b | 15.57 ± 0.05 c | 1.81 ± 0.11 c | 
| Samples | Microelements (mg/100 g) | Macroelements (mg/100 g) | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Cu | Mn | Fe | Zn | Mg | Ca | Na | K | P | ||
| Raw material | HI meal | 0.56 ± 0.01 | 8.77 ± 0.30 | 7.72 ± 0.33 | 7.95 ± 0.79 | 205.58 ± 4.54 | 410.09 ± 10.39 | 74.48 ± 1.59 | 945.68 ± 24.81 | 636.01 ± 16.30 | 
| Bread | HI0 | 0.24 ± 0.00 a | 1.66 ± 0.00 a | 1.97 ± 0.02 a | 1.98 ± 0.02 a | 50.78 ± 0.52 a | 41.73 ± 1.31 a | 335.94 ± 4.51 a | 232.36 ± 0.57 a | 221.19 ± 0.50 a | 
| HI10 | 0.25 ± 0.00 b | 2.22 ± 0.01 b | 2.46 ± 0.05 b | 2.38 ± 0.03 b | 64.37 ± 3.66 b | 71.16 ± 0.57 b | 365.99 ± 7.74 b | 263.87 ± 3.61 b | 247.02 ± 1.75 b | |
| HI30 | 0.28 ± 0.00 c | 3.39 ± 0.03 c | 3.25 ± 0.02 c | 3.12 ± 0.02 c | 85.11 ± 3.87 c | 134.80 ± 1.93 c | 369.22 ± 4.46 b | 333.69 ± 2.73 c | 308.77 ± 3.38 c | |
| Samples | TPC | ACW | ACL | PCL | |
|---|---|---|---|---|---|
| [mg GAE/ 100 g d. m.] | [µmol TE/100 g d. m.] | ||||
| Raw material | HI meal | 81.79 ± 0.57 | 41.74 ± 0.91 | 199.43 ± 8.41 | 241.17 ± 7.58 | 
| Bread | HI0 | 76.78 ± 3.28 a | 53.95 ± 1.33 a | 190.95 ± 0.95 a | 244.90 ± 18.29 a | 
| HI10 | 88.61 ± 1.07 b | 68.12 ± 3.06 b | 201.90 ± 6.05 b | 270.02 ± 8.18 a | |
| HI30 | 97.16 ± 2.54 c | 67.03 ± 0.92 b | 217.14 ± 3.52 c | 284.17 ± 4.29 b | |
| Raw Material | Bread | |||
|---|---|---|---|---|
| Samples | HI Meal | HI0 | HI10 | HI30 | 
| Fatty Acids | % of the Total Detected Fatty Acids | |||
| C8:0 | n.d. | 0.25 ± 0.02 c | 0.08 ± 0.00 b | 0.04 ± 0.00 a | 
| C10:0 | 1.32 ± 0.04 | 0.61 ± 0.02 a | 1.08 ± 0.01 b | 1.21 ± 0.02 c | 
| C12:0 | 52.90 ± 0.57 | 0.85 ± 0.01 a | 37.90 ± 0.31 b | 47.30 ± 0.34 c | 
| C14:0 | 10.42 ± 0.12 | 2.44 ± 0.02 a | 8.10 ± 0.00 b | 9.64 ± 0.03 c | 
| C14:1 | 0.37 ± 0.01 | 0.21 ± 0.01 a | 0.30 ± 0.02 b | 0.35 ± 0.00 c | 
| C15:0 | 0.06 ± 0.01 | 0.35 ± 0.00 c | 0.14 ± 0.02 b | 0.10 ± 0.00 a | 
| C16:0 | 13.04 ± 0.22 | 14.28 ± 0.10 b | 13.42 ± 0.06 a | 13.35 ± 0.13 a | 
| C16:1 | 3.89 ± 0.06 | 0.62 ± 0.04 a | 2.96 ± 0.01 b | 3.58 ± 0.03 c | 
| C17:0 | 0.08 ± 0.01 | 0.15 ± 0.01 c | 0.10 ± 0.00 b | 0.09 ± 0.00 a | 
| C17:1 | 0.05 ± 0.01 | 0.12 ± 0.02 b | 0.05 ± 0.01 a | 0.04 ± 0.00 a | 
| C18:0 | 1.73 ± 0.02 | 3.15 ± 0.01 c | 2.18 ± 0.02 b | 1.98 ± 0.01 a | 
| C18:1 cis9 (n-9) | 8.37 ± 0.09 | 42.65 ± 0.12 c | 17.81 ± 0.11 b | 12.14 ± 0.09 a | 
| C18:1 cis11 | 0.17 ± 0.01 | 2.12 ± 0.05 c | 0.70 ± 0.00 b | 0.38 ± 0.00 a | 
| C18:2 (n-6) | 6.04 ± 0.07 | 26.15 ± 0.06 c | 12.24 ± 0.08 b | 8.09 ± 0.06 a | 
| C18:3 (n-3) | 0.51 ± 0.01 | 4.77 ± 0.01 c | 1.70 ± 0.01 b | 0.94 ± 0.01 a | 
| C18:2 cis9 trans11 | 0.26 ± 0.01 | n.d. | 0.19 ± 0.01 a | 0.21 ± 0.01 b | 
| C20:0 | 0.09 ± 0.01 | 0.39 ± 0.06 c | 0.17 ± 0.01 b | 0.13 ± 0.00 a | 
| C20:1 | 0.06 ± 0.01 | 0. 87± 0.02 c | 0.32 ± 0.01 b | 0.14 ± 0.03 a | 
| C22:0 | 0.12 ± 0.01 | n.d. | n.d. | n.d. | 
| C22:5 (n-6) | 0.26 ± 0.01 | n.d. | 0.56 ± 0.02 b | 0.30 ± 0.01 a | 
| ΣSFAs | 79.76 ± 0.25 | 22.48 ± 0.19 a | 63.17 ± 0.25 b | 73.83 ± 0.18 c | 
| ΣMUFAs | 12.90 ± 0.16 | 46.60 ± 0.13 c | 22.14 ± 0.15 b | 16.64 ± 0.11 a | 
| ΣPUFAs | 7.08 ± 0.09 | 30.93 ± 0.06 c | 14.69 ± 0.10 b | 9.54 ± 0.06 a | 
| n-6/n-3 ratio DFAs OFAs | 12.28 ± 0.04 21.71 ± 0.26 78.03 ± 0.27 | 5.48 ± 0.01 a 80.68 ± 0.21 c 19.32 ± 0.21 a | 7.53 ± 0.04 b 39.01 ± 0.26 b 60.99 ± 0.27 b | 8.93 ± 0.08 c 28.15 ± 0.19 a 71.85 ± 0.19 c | 
| AI | 5.46 ± 0.06 | 0.32 ± 0.00 a | 2.28 ± 0.02 b | 3.82 ± 0.03 c | 
| TI | 2.24 ± 0.01 | 0.39 ± 0.00 a | 1.04 ± 0.00 b | 1.62 ± 0.00 c | 
| H/H ratio | 0.20 ± 0.001 | 4.19 ± 0.04 c | 0.54 ± 0.01 b | 0.31 ± 0.00 a | 
| Samples | Hardness [N] | Springiness [-] | Cohesiveness [-] | Gumminess [N] | Chewiness [J] | 
|---|---|---|---|---|---|
| HI0 | 24.49 ± 1.65 a | 0.70 ± 0.01 c | 0.50 ± 0.02 c | 12.53 ± 1.35 b | 9.05 ± 1.19 b | 
| HI10 | 30.86 ± 3.64 b | 0.65 ± 0.02 b | 0.40 ± 0.02 b | 15.28 ± 3.66 b | 10.02 ± 3.33 b | 
| HI30 | 39.84 ± 3.93 c | 0.37 ± 0.08 a | 0.23 ± 0.03 a | 9.28 ± 2.18 a | 3.59 ± 1.53 a | 
| Bread Crust | ||||||
|---|---|---|---|---|---|---|
| Samples | L* | a* | b* | C* | h° | BI | 
| HI0 | 45.65 ± 1.75 c | 11.70 ± 0.88 b | 26.42 ± 0.87 c | 28.90 ± 1.02 c | 66.13 ± 1.39 b | 101.71 ± 6.32 b | 
| HI10 | 41.19 ± 2.01 b | 12.23 ± 0.91 b | 21.76 ± 2.24 b | 24.97 ± 2.30 b | 60.59 ± 1.73 a | 94.51 ± 9.10 ab | 
| HI30 | 35.15 ± 1.79 a | 10.01 ± 0.96 a | 17.56 ± 1.60 a | 20.24 ± 1.45 a | 60.21 ± 3.34 a | 88.17 ± 4.95 a | 
| Bread Crumb | ||||||
| HI0 | 56.33 ± 1.50 b | 4.46 ± 0.29 b | 20.07 ± 0.39 b | 20.57 ± 0.40 b | 77.46 ± 0.76 a | 49.06 ± 2.06 a | 
| HI10 | 54.85 ± 2.09 b | 4.04 ± 0.34 a | 19.71 ± 0.50 b | 20.12 ± 0.52 b | 78.42 ± 0.87 b | 49.17 ± 3.43 a | 
| HI30 | 51.35 ± 1.41 a | 3.85 ± 0.24 a | 18.12 ± 0.23 a | 18.52 ± 0.23 a | 77.99 ± 0.74 ab | 48.21 ± 1.91 a | 
| Attributes | Samples | |||
|---|---|---|---|---|
| HI0 | HI10 | HI30 | ||
| Overall appearance | 9.20 ± 0.92 b | 8.80 ± 1.23 b | 6.00 ± 0.82 a | |
| Intensity of | insects aroma | 0.20 ± 0.42 a | 1.10 ± 1.10 a | 2.60 ± 0.84 b | 
| foreign aroma | 0.10 ± 0.32 a | 0.20 ± 0.42 a | 0.70 ± 1.06 a | |
| Aroma acceptability | 8.90 ± 1.29 b | 9.00 ± 0.94 b | 7.30 ± 0.95 a | |
| Crumb porosity | 8.60 ± 0.84 b | 8.20 ± 0.79 b | 4.00 ± 0.82 a | |
| Crumb elasticity | 8.80 ± 0.92 b | 8.50 ± 1.18 b | 3.40 ± 1.07 a | |
| Intensity of | insects taste | 0.40 ± 0.52 a | 1.60 ± 1.17 b | 6.50 ± 1.27 c | 
| foreign taste | 0.20 ± 0.42 a | 0.70 ± 0.82 a | 1.80 ± 1.03 b | |
| Taste acceptability | 9.00 ± 0.94 b | 8.90 ± 1.20 b | 4.40 ± 1.58 a | |
| Overall acceptability | 8.80 ± 0.79 b | 8.90 ± 1.20 b | 6.10 ± 1.37 a | |
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Draszanowska, A.; Czarnowska-Kujawska, M.; Paszczyk, B.; Starowicz, M.; Olszewska, M.A. The Potential of Black Soldier Fly (Hermetia illucens L.) Larvae in Whole Wheat Bread Production: Effects on Physicochemical, Antioxidative, and Sensory Properties. Foods 2025, 14, 3686. https://doi.org/10.3390/foods14213686
Draszanowska A, Czarnowska-Kujawska M, Paszczyk B, Starowicz M, Olszewska MA. The Potential of Black Soldier Fly (Hermetia illucens L.) Larvae in Whole Wheat Bread Production: Effects on Physicochemical, Antioxidative, and Sensory Properties. Foods. 2025; 14(21):3686. https://doi.org/10.3390/foods14213686
Chicago/Turabian StyleDraszanowska, Anna, Marta Czarnowska-Kujawska, Beata Paszczyk, Małgorzata Starowicz, and Magdalena Anna Olszewska. 2025. "The Potential of Black Soldier Fly (Hermetia illucens L.) Larvae in Whole Wheat Bread Production: Effects on Physicochemical, Antioxidative, and Sensory Properties" Foods 14, no. 21: 3686. https://doi.org/10.3390/foods14213686
APA StyleDraszanowska, A., Czarnowska-Kujawska, M., Paszczyk, B., Starowicz, M., & Olszewska, M. A. (2025). The Potential of Black Soldier Fly (Hermetia illucens L.) Larvae in Whole Wheat Bread Production: Effects on Physicochemical, Antioxidative, and Sensory Properties. Foods, 14(21), 3686. https://doi.org/10.3390/foods14213686
 
         
                                                



 
       