Unlocking New Bioactive Peptides from Coffee Pulp: A Metagenomics and AI-Driven Discovery Paradigm
Abstract
1. Introduction
2. Colombian Coffee Pulp as a Bioresource: A National Challenge and a Unique Niche
3. The High-Value Frontier: From Bulk Products to Bioactive Molecules
4. A New Discovery Paradigm: Integrating Metagenomics and Generative AI
5. Navigating the Labyrinth: Overcoming Key Bottlenecks
6. Roadmap and Future Vision for Biointelligence in Colombia
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| AL | Active Learning |
| CAGR | Compound Annual Growth Rate |
| DBTL | Design-Build-Test-Learn |
| ESI | Electrospray Ionization |
| EFSA | European Food Safety Authority |
| FDA | Food and Drug Administration |
| GANs | Generative Adversarial Networks |
| GRAS | Generally Recognized as Safe |
| HPLC | High-Performance Liquid Chromatography |
| MAGs | Metagenome-Assembled Genomes |
| MALDI | Matrix-Assisted Laser Desorption/Ionization |
| R&D | Research and Development |
| TRL | Technology Readiness Level |
| VAEs | Variational Autoencoders |
| WPC | Whey Protein Concentrate |
| WPI | Whey Protein Isolate |
References
- Hu, S.; Gil-Ramírez, A.; Martín-Trueba, M.; Benítez, V.; Aguilera, Y.; Martín-Cabrejas, M.A. Valorization of Coffee Pulp as Bioactive Food Ingredient by Sustainable Extraction Methodologies. Curr. Res. Food Sci. 2023, 6, 100475. [Google Scholar] [CrossRef] [PubMed]
- Purohit, K.; Reddy, N.; Sunna, A. Exploring the Potential of Bioactive Peptides: From Natural Sources to Therapeutics. Int. J. Mol. Sci. 2024, 25, 1391. [Google Scholar] [CrossRef] [PubMed]
- Whitaker, R.D.; Altintzoglou, T.; Lian, K.; Fernandez, E.N. Marine Bioactive Peptides in Supplements and Functional Foods—A Commercial Perspective. Curr. Pharm. Des. 2020, 27, 1353–1364. [Google Scholar] [CrossRef] [PubMed]
- Hayes, M. Bioactive Peptides in Preventative Healthcare: An Overview of Bioactivities and Suggested Methods to Assess Potential Applications. Curr. Pharm. Des. 2021, 27, 1332–1341. [Google Scholar] [CrossRef]
- Popovic, A.; Tchigvintsev, A.; Tran, H.; Chernikova, T.N.; Golyshina, O.V.; Yakimov, M.M.; Golyshin, P.N.; Yakunin, A.F. Metagenomics as a Tool for Enzyme Discovery: Hydrolytic Enzymes from Marine-Related Metagenomes. In Prokaryotic Systems Biology; Krogan, N.J., Babu, M., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2015; Volume 883, pp. 1–20. ISBN 978-3-319-23602-5. [Google Scholar]
- Roumpeka, D.D.; Wallace, R.J.; Escalettes, F.; Fotheringham, I.; Watson, M. A Review of Bioinformatics Tools for Bio-Prospecting from Metagenomic Sequence Data. Front. Genet. 2017, 8, 23. [Google Scholar] [CrossRef]
- Goles, M.; Daza, A.; Cabas-Mora, G.; Sarmiento-Varón, L.; Sepúlveda-Yañez, J.; Anvari-Kazemabad, H.; Davari, M.D.; Uribe-Paredes, R.; Olivera-Nappa, Á.; Navarrete, M.A.; et al. Peptide-Based Drug Discovery through Artificial Intelligence: Towards an Autonomous Design of Therapeutic Peptides. Brief. Bioinform. 2024, 25, bbae275. [Google Scholar] [CrossRef]
- Liu, J.; Cui, T.; Wang, T.; Zeng, X.; Niu, Y.; Jiao, S.; Lu, D.; Wang, J.; Xiao, S.; Xie, D.; et al. A Multi-Property Optimizing Generative Adversarial Network for de Novo Antimicrobial Peptide Design. Adv. Sci. 2024, e03443. [Google Scholar] [CrossRef]
- Tan, E.C.D.; Lamers, P. Circular Bioeconomy Concepts—A Perspective. Front. Sustain. 2021, 2, 701509. [Google Scholar] [CrossRef]
- Soumati, B.; Atmani, M.; Benabderrahmane, A.; Benjelloun, M. Whey Valorization—Innovative Strategies for Sustainable Development and Value-Added Product Creation. J. Ecol. Eng. 2023, 24, 86–104. [Google Scholar] [CrossRef]
- Chen, G.Q.; Qu, Y.; Gras, S.L.; Kentish, S.E. Separation Technologies for Whey Protein Fractionation. Food Eng. Rev. 2023, 15, 438–465. [Google Scholar] [CrossRef]
- Nath, A.; Zin, M.M.; Molnár, M.A.; Bánvölgyi, S.; Gáspár, I.; Vatai, G.; Koris, A. Membrane Chromatography and Fractionation of Proteins from Whey—A Review. Processes 2022, 10, 1025. [Google Scholar] [CrossRef]
- Huddart, J.E.A.; Crawford, A.J.; Luna-Tapia, A.L.; Restrepo, S.; Di Palma, F. EBP-Colombia and the Bioeconomy: Genomics in the Service of Biodiversity Conservation and Sustainable Development. Proc. Natl. Acad. Sci. USA 2022, 119, e2115641119. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Jimenez, H.H. Local Economic Development and the Colombian Strategy for a Sustainable and Inclusive Bioeconomy. In Science, Technology, and Higher Education; Orozco, L.A., Ordóñez-Matamoros, G., Sierra-González, J.H., García-Estévez, J., Bortagaray, I., Eds.; Palgrave Studies in Democracy, Innovation, and Entrepreneurship for Growth; Springer International Publishing: Cham, Switzerland, 2021; pp. 115–150. ISBN 978-3-030-80719-1. [Google Scholar]
- De Castro, R.J.S.; Sato, H.H. Biologically Active Peptides: Processes for Their Generation, Purification and Identification and Applications as Natural Additives in the Food and Pharmaceutical Industries. Food Res. Int. 2015, 74, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Liscano Martinez, Y.; Arenas Gómez, C.M.; Smith, J.; Delgado, J.P. A Tree Frog (Boana pugnax) Dataset of Skin Transcriptome for the Identification of Biomolecules with Potential Antimicrobial Activities. Data Brief 2020, 32, 106084. [Google Scholar] [CrossRef]
- Liscano, Y.; Medina, L.; Oñate-Garzón, J.; Gúzman, F.; Pickholz, M.; Delgado, J.P. In Silico Selection and Evaluation of Pugnins with Antibacterial and Anticancer Activity Using Skin Transcriptome of Treefrog (Boana pugnax). Pharmaceutics 2021, 13, 578. [Google Scholar] [CrossRef]
- Ocampo-Ibáñez, I.D.; Liscano, Y.; Rivera-Sánchez, S.P.; Oñate-Garzón, J.; Lugo-Guevara, A.D.; Flórez-Elvira, L.J.; Lesmes, M.C. A Novel Cecropin D-Derived Short Cationic Antimicrobial Peptide Exhibits Antibacterial Activity Against Wild-Type and Multidrug-Resistant Strains of Klebsiella pneumoniae and Pseudomonas aeruginosa. Evol. Bioinform. 2020, 16, 1176934320936266. [Google Scholar] [CrossRef]
- Rivera-Sanchez, S.P.; Ocampo-Ibáñez, I.D.; Liscano, Y.; Martínez, N.; Muñoz, I.; Manrique-Moreno, M.; Martinez-Martinez, L.; Oñate-Garzon, J. Integrating In Vitro and In Silico Analysis of a Cationic Antimicrobial Peptide Interaction with Model Membranes of Colistin-Resistant Pseudomonas aeruginosa Strains. Pharmaceutics 2022, 14, 1248. [Google Scholar] [CrossRef]
- Rivera-Sanchez, S.P.; Ocampo-Ibáñez, I.D.; Moncaleano, M.C.; Liscano, Y.; Elvira, L.J.F.; Aristizabal Salazar, Y.A.; Martínez-Martínez, L.; Oñate-Garzon, J. In Vitro and In Silico Wound-Healing Activity of Two Cationic Peptides Derived from Cecropin D in Galleria mellonella. Antibiotics 2025, 14, 651. [Google Scholar] [CrossRef]
- Trejos, M.; Aristizabal, Y.; Aragón-Muriel, A.; Oñate-Garzón, J.; Liscano, Y. Characterization and Classification In Silico of Peptides with Dual Activity (Antimicrobial and Wound Healing). Int. J. Mol. Sci. 2023, 24, 13091. [Google Scholar] [CrossRef]
- Arango-Agudelo, E.; Rendón-Muñóz, Y.; Cadena-Chamorro, E.; Santa, J.F.; Buitrago-Sierra, R. Evaluation of Colombian Coffee Waste to Produce Antioxidant Extracts. BioResources 2023, 18, 5703–5723. [Google Scholar] [CrossRef]
- Fernández-Cortés, Y.; Sotto-Rodríguez, K.D.; Vargas-Marín, L.A. Impactos ambientales de la producción del café, y el aprovechamiento sustentable de los residuos generados. Prod. Limpia 2020, 15, 93–110. [Google Scholar] [CrossRef]
- Lache Chacon, J.J. Federación Nacional de Cafeteros de Colombia; BDO Audit S.A.S. BIC: Bogotá, Colombia, 2023. [Google Scholar]
- Hussein, O.; Ibrahim, J. Leachates Recirculation Impact on the Stabilization of the Solid Wastes—A Review. J. Ecol. Eng. 2023, 24, 172–183. [Google Scholar] [CrossRef]
- Qian, Y.; Hu, P.; Lang-Yona, N.; Xu, M.; Guo, C.; Gu, J.-D. Global Landfill Leachate Characteristics: Occurrences and Abundances of Environmental Contaminants and the Microbiome. J. Hazard. Mater. 2023, 461, 132446. [Google Scholar] [CrossRef] [PubMed]
- Pérez Calvo, A.; Paz Ruiz, N.; Delgado Espinoza, Z. Coffee Pulp: A Sustainable and Affordable Source for Developing Functional Foods. Processes 2023, 11, 1693. [Google Scholar] [CrossRef]
- Carmen, M.-T.; Lorena, Z.-C.; Alexander, V.-A.; Amandio, V.; Raúl, S. Coffee Pulp: An Industrial By-Product with Uses in Agriculture, Nutrition and Biotechnology. Rev. Agric. Sci. 2020, 8, 323–342. [Google Scholar] [CrossRef]
- Rahmah, D.M.; Mardawati, E.; Kastaman, R.; Pujianto, T.; Pramulya, R. Coffee Pulp Biomass Utilization on Coffee Production and Its Impact on Energy Saving, CO2 Emission Reduction, and Economic Value Added to Promote Green Lean Practice in Agriculture Production. Agronomy 2023, 13, 904. [Google Scholar] [CrossRef]
- Thaha, A.N.; Ghamari, M.; Jothiprakash, G.; Velusamy, S.; Karthikeyan, S.; Ramesh, D.; Sundaram, S. High Impact Biomass Valorization for Second Generation Biorefineries in India: Recent Developments and Future Strategies for Sustainable Circular Economy. Biomass 2025, 5, 16. [Google Scholar] [CrossRef]
- Setiawan, A.; Faisal, F.; Anshar, K.; Hasibuan, R.; Riskina, S.; Alchalil. Techno-Economic Assessment of Densified Arabica Coffee Pulp Pyrolysis in a Pilot-Scale Reactor. Biomass Convers. Biorefin. 2025, 15, 9299–9309. [Google Scholar] [CrossRef]
- Pathak, P.; Sharma, C. Processes and Problems of Pulp and Paper Industry: An Overview. Phys. Sci. Rev. 2021, 8, 299–325. [Google Scholar] [CrossRef]
- Louw, J.; Dogbe, E.S.; Yang, B.; Görgens, J.F. Prioritisation of Biomass-Derived Products for Biorefineries Based on Economic Feasibility: A Review on the Comparability of Techno-Economic Assessment Results. Renew. Sustain. Energy Rev. 2023, 188, 113840. [Google Scholar] [CrossRef]
- Kamusoko, R.; Jingura, R.M.; Parawira, W.; Chikwambi, Z. Strategies for Valorization of Crop Residues into Biofuels and Other Value-added Products. Biofuels Bioprod. Biorefin. 2021, 15, 1950–1964. [Google Scholar] [CrossRef]
- Machado, M.; Espírito Santo, L.; Machado, S.; Lobo, J.C.; Costa, A.S.G.; Oliveira, M.B.P.P.; Ferreira, H.; Alves, R.C. Bioactive Potential and Chemical Composition of Coffee By-Products: From Pulp to Silverskin. Foods 2023, 12, 2354. [Google Scholar] [CrossRef]
- Sharma, V.; Tsai, M.-L.; Nargotra, P.; Chen, C.-W.; Kuo, C.-H.; Sun, P.-P.; Dong, C.-D. Agro-Industrial Food Waste as a Low-Cost Substrate for Sustainable Production of Industrial Enzymes: A Critical Review. Catalysts 2022, 12, 1373. [Google Scholar] [CrossRef]
- Pandey, A.; Soccol, C.R.; Nigam, P.S.; Brand, D.; Mohan, R.; Roussos, S. Biotechnological Potential of Coffee Pulp and Coffee Husk for Bioprocesses. Biochem. Eng. J. 2000, 6, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Tramontina, R.; Brenelli, L.B.; Sodré, V.; Cairo, J.P.L.F.; Travália, B.M.; Egawa, V.Y.; Goldbeck, R.; Squina, F.M. Enzymatic Removal of Inhibitory Compounds from Lignocellulosic Hydrolysates for Biomass to Bioproducts Applications. World J. Microbiol. Biotechnol. 2020, 36, 166. [Google Scholar] [CrossRef] [PubMed]
- Serna-Jiménez, J.A.; Siles, J.A.; De Los Ángeles Martín, M.; Chica, A.F. A Review on the Applications of Coffee Waste Derived from Primary Processing: Strategies for Revalorization. Processes 2022, 10, 2436. [Google Scholar] [CrossRef]
- Yafetto, L.; Odamtten, G.T.; Wiafe-Kwagyan, M. Valorization of Agro-Industrial Wastes into Animal Feed through Microbial Fermentation: A Review of the Global and Ghanaian Case. Heliyon 2023, 9, e14814. [Google Scholar] [CrossRef]
- Coherent Market Insights. Bioactive Protein and Peptides Market Analysis and Forecast 2032. Available online: https://www.coherentmarketinsights.com/market-insight/bioactive-protein-and-peptides-market-3402 (accessed on 15 September 2025).
- Kussmann, M. Prediction, Discovery, and Characterization of Plant- and Food-Derived Health-Beneficial Bioactive Peptides. Nutrients 2022, 14, 4810. [Google Scholar] [CrossRef]
- Liceaga, A.M.; Aguilar-Toalá, J.E.; Vallejo-Cordoba, B.; González-Córdova, A.F.; Hernández-Mendoza, A. Insects as an Alternative Protein Source. In Proteins in Food Processing; Woodhead Publishing: Cambridge, UK, 2021. [Google Scholar]
- Zaky, A.A.; Simal-Gandara, J.; Eun, J.-B.; Shim, J.-H.; Abd El-Aty, A.M. Bioactivities, Applications, Safety, and Health Benefits of Bioactive Peptides from Food and By-Products: A Review. Front. Nutr. 2022, 8, 815640. [Google Scholar] [CrossRef]
- Ferreras, J.M.; Clemencia, M.C.M.; Hizon-Fradejas, A.; Uy, L.Y.; Torio, M.A. Isolation, Purification and Characterization of Proteins in “Señorita” Banana (Musa acuminata (AAA) ‘Señorita’) Pulp with Bioactive Peptides Exhibiting Antihypertensive and Antioxidant Activities. Appl. Sci. 2021, 11, 2190. [Google Scholar] [CrossRef]
- Orts, A.; Revilla, E.; Rodriguez-Morgado, B.; Castaño, A.; Tejada, M.; Parrado, J.; García-Quintanilla, A. Protease Technology for Obtaining a Soy Pulp Extract Enriched in Bioactive Compounds: Isoflavones and Peptides. Heliyon 2019, 5, e01958. [Google Scholar] [CrossRef]
- Laophongphit, A.; Wichiansri, S.; Siripornadulsil, S.; Siripornadulsil, W. Enhancing the Nutritional Value and Functional Properties of Mango Pulp via Lactic Acid Bacteria Fermentation. LWT 2024, 197, 115878. [Google Scholar] [CrossRef]
- Cruz-Casas, D.E.; Aguilar, C.N.; Ascacio-Valdés, J.A.; Rodríguez-Herrera, R.; Chávez-González, M.L.; Flores-gallegos, A.C. Enzymatic Hydrolysis and Microbial Fermentation: The Most Favorable Biotechnological Methods for the Release of Bioactive Peptides. Food Chem. Mol. Sci. 2021, 3, 100047. [Google Scholar] [CrossRef] [PubMed]
- Guerra-Fajardo, L.D.; Pavón-Pérez, J.; Vallejos-Almirall, A.; Jorquera-Pereira, D. Advances in Analytical Techniques Coupled to in Vitro Bioassays in the Search for New Peptides with Functional Activity in Effect-Directed Analysis. Food Chem. 2022, 397, 133784. [Google Scholar] [CrossRef] [PubMed]
- Acquah, C.; Chan, Y.W.; Pan, S.; Agyei, D.; Udenigwe, C.C. Structure-Informed Separation of Bioactive Peptides. J. Food Biochem. 2019, 43, e12765. [Google Scholar] [CrossRef]
- Thomas, S.L.; Thacker, J.B.; Schug, K.A.; Maráková, K. Sample Preparation and Fractionation Techniques for Intact Proteins for Mass Spectrometric Analysis. J. Sep. Sci. 2020, 44, 211–246. [Google Scholar] [CrossRef]
- Sharin, M.D.; Floro, G.M.; Clark, K.D. Advances in Nucleic Acid Sample Preparation for Electrospray Ionization and Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. Int. J. Mass Spectrom. 2023, 494, 117138. [Google Scholar] [CrossRef]
- Dallas, D.C.; Guerrero, A.; Parker, E.A.; Robinson, R.C.; Gan, J.; German, J.B.; Barile, D.; Lebrilla, C.B. Current Peptidomics: Applications, Purification, Identification, Quantification, and Functional Analysis. Proteomics 2015, 15, 1026–1038. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Zhang, Z.; Ou, C.; Cho, Y.; Akiyama, Y.; Ovchinnikov, S. Artificial Intelligence methods for Protein Folding and Design. Curr. Opin. Struct. Biol. 2025, 93, 103066. [Google Scholar] [CrossRef]
- Ariaeenejad, S.; Gharechahi, J.; Foroozandeh Shahraki, M.; Fallah Atanaki, F.; Han, J.-L.; Ding, X.-Z.; Hildebrand, F.; Bahram, M.; Kavousi, K.; Hosseini Salekdeh, G. Precision Enzyme Discovery through Targeted Mining of Metagenomic Data. Nat. Prod. Bioprospect. 2024, 14, 7. [Google Scholar] [CrossRef]
- Martinez, S.J.; Simão, J.B.P.; Pylro, V.S.; Schwan, R.F. The Altitude of Coffee Cultivation Causes Shifts in the Microbial Community Assembly and Biochemical Compounds in Natural Induced Anaerobic Fermentations. Front. Microbiol. 2021, 12, 671395. [Google Scholar] [CrossRef]
- De Carvalho Neto, D.P.; De Melo Pereira, G.V.; De Carvalho, J.C.; Soccol, V.T.; Soccol, C.R. High-Throughput rRNA Gene Sequencing Reveals High and Complex Bacterial Diversity Associated with Brazilian Coffee Beans Fermentation. Food Technol. Biotechnol. 2018, 56, 90. [Google Scholar] [CrossRef]
- Pothakos, V.; De Vuyst, L.; Zhang, S.J.; De Bruyn, F.; Verce, M.; Torres, J.; Callanan, M.; Moccand, C.; Weckx, S. Temporal Shotgun Metagenomics of an Ecuadorian Coffee Fermentation Process Highlights the Predominance of Lactic Acid Bacteria. Curr. Res. Biotechnol. 2020, 2, 1–15. [Google Scholar] [CrossRef]
- De Oliveira Junqueira, A.C.; De Melo Pereira, G.V.; Coral Medina, J.D.; Alvear, M.C.R.; Rosero, R.; De Carvalho Neto, D.P.; Enríquez, H.G.; Soccol, C.R. First Description of Bacterial and Fungal Communities in Colombian Coffee Beans Fermentation Analysed Using Illumina-Based Amplicon Sequencing. Sci. Rep. 2019, 9, 8794. [Google Scholar] [CrossRef] [PubMed]
- Cruz-O’Byrne, R.; Piraneque-Gambasica, N.; Aguirre-Forero, S. Microbial Diversity Associated with Spontaneous Coffee Bean Fermentation Process and Specialty Coffee Production in Northern Colombia. Int. J. Food Microbiol. 2021, 354, 109282. [Google Scholar] [CrossRef] [PubMed]
- Vale, A.D.S.; Pereira, C.M.T.; De Dea Lindner, J.; Rodrigues, L.R.S.; Kadri, N.K.E.; Pagnoncelli, M.G.B.; Kaur Brar, S.; Soccol, C.R.; Pereira, G.V.D.M. Exploring Microbial Influence on Flavor Development during Coffee Processing in Humid Subtropical Climate through Metagenetic–Metabolomics Analysis. Foods 2024, 13, 1871. [Google Scholar] [CrossRef]
- Clagnan, E.; Costanzo, M.; Visca, A.; Di Gregorio, L.; Tabacchioni, S.; Colantoni, E.; Sevi, F.; Sbarra, F.; Bindo, A.; Nolfi, L.; et al. Culturomics- and Metagenomics-Based Insights into the Soil Microbiome Preservation and Application for Sustainable Agriculture. Front. Microbiol. 2024, 15, 1473666. [Google Scholar] [CrossRef]
- Xu, J.; Sun, L.; Xing, X.; Sun, Z.; Gu, H.; Lu, X.; Li, Z.; Ren, Q. Culturing Bacteria from Fermentation Pit Muds of Baijiu with Culturomics and Amplicon-Based Metagenomic Approaches. Front. Microbiol. 2020, 11, 1223. [Google Scholar] [CrossRef]
- Coughlan, L.M.; Cotter, P.D.; Hill, C.; Alvarez-Ordóñez, A. Biotechnological Applications of Functional Metagenomics in the Food and Pharmaceutical Industries. Front. Microbiol. 2015, 6, 672. [Google Scholar] [CrossRef]
- Dean, S.N.; Walper, S.A. Variational Autoencoder for Generation of Antimicrobial Peptides. ACS Omega 2020, 5, 20746–20754. [Google Scholar] [CrossRef] [PubMed]
- Preiksaitis, C.; Rose, C. Opportunities, Challenges, and Future Directions of Generative Artificial Intelligence in Medical Education: Scoping Review. JMIR Med. Educ. 2023, 9, e48785. [Google Scholar] [CrossRef]
- Ferrara, E. The Butterfly Effect in Artificial Intelligence Systems: Implications for AI Bias and Fairness. Mach. Learn. Appl. 2024, 15, 100525. [Google Scholar] [CrossRef]
- Kucharska, K.; Rybarczyk, P.; Hołowacz, I.; Łukajtis, R.; Glinka, M.; Kamiński, M. Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes. Molecules 2018, 23, 2937. [Google Scholar] [CrossRef] [PubMed]
- Feehan, R.; Montezano, D.; Slusky, J.S.G. Machine Learning for Enzyme Engineering, Selection and Design. Protein Eng. Des. Sel. 2021, 34, gzab019. [Google Scholar]
- Madhu, M.; Kumar, D.; Sirohi, R.; Tarafdar, A.; Dhewa, T.; Aluko, R.E.; Badgujar, P.C.; Awasthi, M.K. Bioactive Peptides from Meat: Current Status on Production, Biological Activity, Safety, and Regulatory Framework. Chemosphere 2022, 307, 135650. [Google Scholar] [CrossRef]
- Patil, P.J.; Usman, M.; Zhang, C.; Mehmood, A.; Zhou, M.; Teng, C.; Li, X. An Updated Review on Food-Derived Bioactive Peptides: Focus on the Regulatory Requirements, Safety, and Bioavailability. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1732–1776. [Google Scholar] [CrossRef]
- Duffuler, P.; Bhullar, K.S.; de Campos Zani, S.C.; Wu, J. Bioactive Peptides: From Basic Research to Clinical Trials and Commercialization. J. Agric. Food Chem. 2022, 70, 3585–3595. [Google Scholar] [CrossRef]
- Faustino, M.; Veiga, M.; Sousa, P.; Costa, E.M.; Silva, S.; Pintado, M. Agro-Food Byproducts as a New Source of Natural Food Additives. Molecules 2019, 24, 1056. [Google Scholar] [CrossRef]
- Currie, G.M.; Hawk, K.E.; Rohren, E.M. Generative Artificial Intelligence Biases, Limitations and Risks in Nuclear Medicine: An Argument for Appropriate Use Framework and Recommendations. Semin. Nucl. Med. 2025, 55, 423–436. [Google Scholar] [CrossRef]
- Reshmy, R.; Philip, E.; Thomas, D.; Madhavan, A.; Sindhu, R.; Binod, P.; Varjani, S.; Awasthi, M.K.; Pandey, A. Bacterial Nanocellulose: Engineering, Production, and Applications. Bioengineered 2021, 12, 11463–11483. [Google Scholar] [CrossRef]
- Chen, L.; Guttieres, D.; Koenigsberg, A.L.; Barone, P.W.; Sinskey, A.J.; Springs, S.L. Large-Scale Cultured Meat Production: Trends, Challenges and Promising Biomanufacturing Technologies. Biomaterials 2021, 280, 121274. [Google Scholar] [CrossRef]
- Verma, A.; Allen, T. A Sociotechnical Readiness Level Framework for the Development of Advanced Nuclear Technologies. Nucl. Technol. 2024, 210, 1722–1739. [Google Scholar] [CrossRef]
- Yfanti, S.; Sakkas, N. Technology Readiness Levels (TRLs) in the Era of Co-Creation. Appl. Syst. Innov. 2024, 7, 32. [Google Scholar] [CrossRef]



| Parameter | Value/Range | Implication for Bioprocessing | Reference(s) |
|---|---|---|---|
| Annual Generation (Colombia) | >1,600,000 tons (2023) | Concentrated, large-scale raw material source | Federación Nacional de Cafeteros de Colombia (2023) [24] |
| % of Cherry Weight | 29–43% (wet basis) | Main byproduct, available in predictable quantities | Fernández Cortés et al. (2020) [23] |
| Moisture Content | 80–85% | Requires wet processing or energy-intensive drying | Setiawan et al. (2025) [31] |
| Protein | 4–12% (dry basis) | Potential nitrogen source for fermentation; peptide raw material | Hua et al. (2023) [1] |
| Total Carbohydrates | 45–89% (dry basis) | Primary carbon source for microbial growth | Hua et al. (2023) [1] |
| Lignin | ~20–26% | Recalcitrant component; potential source of aromatic compounds | Arango-Agudelo et al. (2023) [22] |
| Caffeine | ~1.3% (dry basis) | Known inhibitor of many microorganisms; selective pressure | Hua et al. (2023) [1] |
| Total Phenols/Tannins | High content | Hydrolytic enzyme inhibitors; selective pressure; antioxidant source | Hua et al. (2023) [1] |
| Reference and Country | Processing and Sequencing | Key Microbes Identified | Main Findings | Biotechnological Potential |
|---|---|---|---|---|
| Martínez et al. (2021), Brazil (Caparaó) [57] | Natural, Self-Induced Anaerobic Fermentation (SIAF); Illumina MiSeq (16S V3–V4, ITS) | Bacteria: Gluconobacter, Weissella (800–1000 m); Sphingomonas, Methylobacterium (1200–1400 m). Fungi: Cystofilobasidium dominant at all altitudes. | Altitude strongly shapes microbiota and volatile profile. Low altitudes → higher bacterial richness and alcohols. High altitudes → more esters, aldehydes, organic acids. First report of Sphingomonas and Nakamurella in natural coffee. | Yeasts (M. caribbica, W. anomalus) proposed as starters. Supports terroir-driven quality control. |
| de Carvalho Neto et al. (2018), Brazil (Cerrado Mineiro) [58] | Wet fermentation; Illumina 16S (V4) | LAB dominated (>97%), esp. Leuconostoc, Lactococcus. New: Fructobacillus, Pseudonocardia, Pedobacter, Sphingomonas. | >80 bacterial genera identified (diversity underestimated before). Clear microbial succession with LAB dominance. High lactic acid linked to LAB abundance. | Fructobacillus may reduce residual sugars. Newly reported genera may serve as functional starters. |
| Pothakos et al. (2020), Ecuador (Nanegal) [59] | Wet fermentation; Shotgun Metagenomics | Succession: 1. Early: Tatumella, Acetobacter, Hanseniaspora. 2. Mid: Leuc. pseudomesenteroides. 3. Late: Acid-tolerant LAB (L. vaccinostercus, L. brevis). | >150 species detected. 22 near-complete bacterial genomes reconstructed. Functional shift: plant cell-wall degradation → sugar metabolism by LAB. | Novel hexose-phosphate transport in Leuc. pseudomesenteroides. Genomic inventory enables targeted starter design (e.g., GABA producers). |
| de Oliveira Junqueira et al. (2019), Colombia (Nariño) [60] | Traditional wet method; Illumina (16S and 18S) | Bacteria: >160 genera, LAB > 60%. Fungi: Pichia nakasei dominant. | First report of Colombian coffee microbiome. 56 new genera reported. Strong terroir influence (soil, insects, humans). Lactic acid linked to LAB; acetaldehyde to Pichia. | Rich diversity may serve as flavor modulation. Endemic microbes as origin markers for certification. |
| Cruz-O’Byrne et al. (2021), Colombia (Sierra Nevada) [61] | Wet fermentation; Illumina MiSeq (16S V3–V4, ITS2) | Bacteria: LAB (Leuconostoc), AAB (Acetobacter). Fungi: Kazachstania (first dominant report in coffee mucilage), others. | Highest microbial richness reported (695 bacterial, 156 fungal genera). Specialty cup quality correlated with fungal richness, Pichia, Pseudomonas. Network analysis: LAB–AAB and yeast–AAB co-occurrence. | Balance of LAB–AAB–yeasts key for quality. High native diversity useful for regional starter cultures. |
| Vale et al. (2024), Brazil (Santa Catarina) [62] | Wet fermentation in humid subtropical climate; Illumina (16S, ITS) | Bacteria: Enterobacteriaceae (Enterobacter, Pantoea, Kluyvera). Fungi: Filamentous (Fusarium, Cladosporium, Penicillium). Notably absent: LAB, yeasts. | Microbiota differs from tropical regions. Final coffee scored as specialty (80.8) but with low complexity. High residual sugars → inefficient fermentation. | Highlights need for tailored starters (LAB, yeasts) in non-traditional regions. Relevant for adapting coffee to climate change. |
| Paradigm | Primary Mechanism | Key Strength | Primary Limitation | Reference(s) |
|---|---|---|---|---|
| Traditional Discovery (Screening-Based) | Laboratory screening of natural extracts | Finds naturally occurring molecules with proven activity | Slow, low throughput, expensive; ignores non-cultivable diversity | Purohit et al. (2024) [2] |
| Functional Metagenomics | Screening of environmental DNA gene libraries without cultivation | Accesses non-cultivable biodiversity; discovers completely new genes/pathways | Only finds what already exists; functional screening can be laborious | Popovic et al. (2015) [5] |
| Generative AI (Independent) | De novo sequence generation from learning existing databases | Vast design space, high novelty, capability to optimize properties in silico | “Validation bottleneck”: cost of testing generated candidates is prohibitive | Dean & Walper (2020) [66] |
| Proposed Integrated Pipeline (Metagenomics + Generative AI + Active Learning) | Iterative AI-guided experimental design, fed by unique metagenomic data | Maximizes discovery efficiency, minimizes experimental cost, combines novelty with biological relevance | Requires complex integration of multiple technologies and interdisciplinary expertise | Ariaeenejad et al. (2024) [56] |
| Identified Bottleneck | Negative Consequence If Unaddressed | Proposed Mitigation Strategy Within Framework | Reference(s) |
|---|---|---|---|
| Raw Material Inhibitors (Caffeine, Tannins) | Low fermentation/hydrolysis yields; need for costly pretreatment | Metagenomic bioprospecting of pulp microbiome to discover inherently inhibitor-tolerant enzymes and metabolic pathways | Popovic et al. (2015) [5] |
| Experimental Validation Cost | Prohibitive R&D costs; inability to explore AI’s vast design space | Implementation of Active Learning loop to guide synthesis and screening, reducing necessary experiments | Goles et al. (2024) [7] |
| Data Scarcity for AI Models | Poor-performing AI models or limited generalization capability to truly novel sequences | Creation of coffee microbiome database to provide rich, contextually relevant training data | Liu et al. (2024) [8] |
| Bioprocess Scalability | Laboratory-scale success that does not translate to viable industrial production | Use of robust, industrially relevant microbial chassis (e.g., S. cerevisiae) from the start for heterologous expression | Thaha et al. (2025) [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liscano, Y.; Caicedo, N.; Oñate-Garzón, J. Unlocking New Bioactive Peptides from Coffee Pulp: A Metagenomics and AI-Driven Discovery Paradigm. Foods 2025, 14, 3682. https://doi.org/10.3390/foods14213682
Liscano Y, Caicedo N, Oñate-Garzón J. Unlocking New Bioactive Peptides from Coffee Pulp: A Metagenomics and AI-Driven Discovery Paradigm. Foods. 2025; 14(21):3682. https://doi.org/10.3390/foods14213682
Chicago/Turabian StyleLiscano, Yamil, Nicolás Caicedo, and Jose Oñate-Garzón. 2025. "Unlocking New Bioactive Peptides from Coffee Pulp: A Metagenomics and AI-Driven Discovery Paradigm" Foods 14, no. 21: 3682. https://doi.org/10.3390/foods14213682
APA StyleLiscano, Y., Caicedo, N., & Oñate-Garzón, J. (2025). Unlocking New Bioactive Peptides from Coffee Pulp: A Metagenomics and AI-Driven Discovery Paradigm. Foods, 14(21), 3682. https://doi.org/10.3390/foods14213682

