The Effect of Storage Time on the Quality of Low-Sugar Apple Jams with Steviol Glycosides
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Apple Jams
2.2. Sensory Analysis
2.3. Instrumental Color Measurement
- -
- C*—chroma (color intensity), according to the formula: C* = √[(a*)2 + (b*)2],
- -
- (Δ)—the differences between individual coordinates were determined by subtracting the measurement results between trials: the value of jams and the raw apple pulp value;
- -
- (ΔC)—color saturation value, according to the formula: (ΔC) = √(Δa*)2 + (Δb*)2);
- -
- (ΔE)—total color difference value according to the formula:
| 0 < ΔE* < 1 | visually non-recognizable by a standard observer |
| 1 < ΔE* < 2 | visually recognizable only by an experienced observer |
| 2 < ΔE* < 3.5 | visually recognizable by an inexperienced observer |
| 3.5 < ΔE* < 5 | every observer can easily see the difference |
| ΔE* > 5 | an observer recognizes two different colors |
2.4. Evaluation of Physicochemical Parameters
2.5. Microbiological Quality Evaluation
2.6. Statistical Analysis
3. Results
3.1. Sensory Analysis of Low-Sugar Apple Jams with Steviol Glycosides
3.2. The Effect of Storage on the Sensory Quality of Low-Sugar Apple Jams with Added SGs
3.3. The Effect of Storage on the Physicochemical Parameters of Low-Sugar Apple Jams with Added SGs
3.4. The Effect of Storage on the Microbiological Quality of Low-Sugar Apple Jams with Added Steviol Glycosides
3.5. Summary
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yahia, E.M.; García-Solís, P.; Celis, M.E.M. Contribution of fruits and vegetables to human nutrition and health. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Woodhead Publishing: Sawston, UK, 2019; pp. 19–45. ISBN 978-0-12-813278-4. [Google Scholar] [CrossRef]
- Hodgson, J.M.; Prince, R.L.; Woodman, R.J.; Bondonno, C.P.; Ivey, K.L.; Bondonno, N.; Rimm, E.B.; Ward, E.C.; Croft, K.D.; Lewis, J.R. Apple intake is inversely associated with all cause and disease specific mortality in elderly women. Br. J. Nutr. 2016, 115, 860–867. [Google Scholar] [CrossRef]
- Guo, X.F.; Yang, B.; Tang, J.; Jiang, J.J.; Li, D. Apple and pear consumption and type 2 diabetes mellitus risk: A meta-analysis of prospective cohort studies. Food Funct. 2017, 8, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Xu, G.; Jin, W.; Gu, Y.; Huang, X.; Ge, L. Apple or apple polyphenol consumption improves cardiovascular disease risk factors: A systematic review and meta-analysis. Rev. Cardiovasc. Med. 2021, 22, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Lecerf, J.M.; Périquet, A.; Carlin, F.; Lanckriet, S.; Paris, N.; Robaglia, C.; Gleizer, B.; Belzunces, L.; Cravedi, J.P.; Calvarin, J. Comparison of pesticide residue and specific nutrient levels in peeled and unpeeled apples. J. Sci. Food Agric. 2023, 103, 496–505. [Google Scholar] [CrossRef]
- Zhong, W.; Yuan, W.; Wang, J.; Wu, Z.; Du, H.; Huang, X.; Liu, Y. Antioxidant and preservation effects of tea polyphenols on apple juice. Food Biosci. 2024, 60, 104288. [Google Scholar] [CrossRef]
- GUS. Crop Production in 2017; GUS, Statistics Poland, Agriculture Department: Warszawa, Poland, 2018. [Google Scholar]
- Jąder, K. Production, Consumption and Export in Poland in the years 2005–2016. Probl. Agric. Econ. 2018, 18, 209–221. (In Polish) [Google Scholar] [CrossRef]
- Kraciński, P.; Wicki, L. Pozycja Konkurencyjna Jabłek i Zagęszczonego Soku Jabłkowego na Rynkach Zagranicznych; Wydawnictwo SGGW: Warszawa, Poland, 2020; ISBN 978-83-7583-960-9. (In Polish). [Google Scholar] [CrossRef]
- Statistical Poland. Household Budget Survey in 2022; GUS–Statistics Poland: Warsaw, Poland, 2023. [Google Scholar]
- Zhu, W.L.; Chang, C.K.; Tsai, S.Y.; Gavahian, M.; Santoso, S.P.; Hsieh, C.W. High voltage electric field as a green technology preserves the appearance of apple juice during cold storage. Sustain. Chem. Pharm. 2024, 41, 101676. [Google Scholar] [CrossRef]
- Alaguthevar, R.; Packialakshmi, J.S.; Murugesan, B.; Rhim, J.W.; Thiyagamoorthy, U. In-package cold plasma treatment to extend the shelf life of food. Compr. Rev. Food Sci. Food Saf. 2024, 23, 13318. [Google Scholar] [CrossRef] [PubMed]
- United Nations Department of Economic and Social Affairs. The Sustainable Development Goals Report 2025; United Nations: New York, NY, USA, 2025. [Google Scholar]
- Noguerol, A.T.; Pagán, M.J.; García-Segovia, P.; Varela, P. Green or clean? Perception of clean label plant-based products by omnivorous, vegan, vegetarian and flexitarian consumers. Food Res. Int. 2021, 149, 110652. [Google Scholar] [CrossRef]
- Saulais, L.; Corcuff, R.; Boonefaes, E. Natural and healthy? Consumers knowledge, understanding and preferences regarding naturalness and healthiness of processed foods. Int. J. Gastron. Food Sci. 2023, 31, 100662. [Google Scholar] [CrossRef]
- Chauhan, K.; Rao, A. Clean-Label Alternatives for Food Preservation: An Emerging Trend. Heliyon 2024, 10, 35815. [Google Scholar] [CrossRef]
- Balasubramaniam, V.M.; Lee, J.; Serventi, L. Understanding new foods: Development of next generation of food processing, packaging, and ingredients technologies for clean label foods. In Sustainable Food Innovation; Springer International Publishing: Cham, Switzerland, 2023; pp. 157–167. ISBN 978-3-031-12357-3. [Google Scholar] [CrossRef]
- Li, Y.T.; Wang, Z.Y.; Song, H. Research Progress of Application and Biosynthesis of Steviol Glycosides. China Biotechnol. 2023, 43, 104–114. [Google Scholar] [CrossRef]
- Suckling, J.; Morse, S.; Murphy, R.; Astley, S.; Halford, J.C.; Harrold, J.A.; Harrold, J.A.; Le-Bail, A.; Koukona, E.; Musinovic, H.; et al. Environmental life cycle assessment of production of the high intensity sweetener steviol glycosides from Stevia rebaudiana leaf grown in Europe: The SWEET project. Int. J. Life Cycle Assess. 2023, 28, 221–233. [Google Scholar] [CrossRef]
- Mora, M.R.; Dando, R. The sensory properties and metabolic impact of natural and synthetic sweeteners. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1554–1583. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Correa-Delgado, M.; Córdova-Almeida, R.; Lara-Nava, D.; Chávez-Muñoz, M.; Velásquez-Chávez, V.F.; Hernández-Torres, C.E.; Gontarek-Castro, E.; Ahmad, M.Z. Natural sweeteners: Sources, extraction and current uses in foods and food industries. Food Chem. 2020, 370, 130991. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Ma, R.; Zhu, J.; Zhan, J.; Li, J.; Tian, Y. Physicochemical properties, in vitro digestibility, and pH-dependent release behavior of starch–steviol glycoside composite hydrogels. Food Chem. 2024, 434, 137420. [Google Scholar] [CrossRef]
- de Andrade, M.V.S.; Lucho, S.R.; de Castro, R.D.; Ribeiro, P.R. Alternative for natural sweeteners: Improving the use of stevia as a source of steviol glycosides. Ind. Crops Prod. 2024, 208, 117801. [Google Scholar] [CrossRef]
- Pielak, M.; Czarniecka-Skubina, E.; Głuchowski, A. Effect of Sugar Substitution with Steviol Glycosides on Sensory Quality and Physicochemical Composition of Low-Sugar Apple Preserves. Foods 2020, 9, 293. [Google Scholar] [CrossRef]
- Pielak, M.; Czarniecka-Skubina, E. Effect of Processing and Storage of Very-Low-Sugar Apple Jams Prepared with Sugar Substitution by Steviol Glycosides on Chosen Physicochemical Attributes and Sensory and Microbiological Quality. Appl. Sci. 2024, 14, 8219. [Google Scholar] [CrossRef]
- Kurek, M.A.; Karp-Paździerska, S. In Steviol Glycosides; Galanakis Chris, M., Ed.; Stability in food matrices. Academic Press: Cambridge, MA, USA, 2021; pp. 221–242. [Google Scholar] [CrossRef]
- Scrob, T.; Varodi, S.M.; Vintila, G.A. Effects of sweeteners and storage on the acidity, soluble solids and sensorial profile of lingonberry jams. Stud. Univ. Babes-Bolyai Chem. 2021, 66, 97–107. [Google Scholar] [CrossRef]
- Goyal, S.K.; Samsher, G.R.; Goyal, R.K. Stevia (Stevia rebaudiana) a biosweetener: A review. Int. J. Food Sci. Nutr. 2010, 6, 1–10. [Google Scholar] [CrossRef]
- Liu, Y.; Tello, E.; Peterson, D.G. Impact of rebaudioside A degradation compounds on flavor perception. Food Res. Int. 2023, 173, 113353. [Google Scholar] [CrossRef]
- Rybczyński, R. Jędrność jabłek w warunkach obrotu handlowego. Acta Agrophysica 2007, 10, 152. [Google Scholar]
- Catharino, R.R.; Santos, L.S. On-line monitoring of stevioside sweetener hydrolysis to steviol in acidic aqueous solutions. Food Chem. 2012, 133, 1632–1635. [Google Scholar] [CrossRef]
- Lemus-Mondaca, R.; Vega-Gálvez, A.; Zura-Bravo, L.; Ah-Hen, K. Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chem. 2012, 132, 1121–1132. [Google Scholar] [CrossRef]
- Prakash, I.; Clos, J.F.; Chaturvedula, V.S.P. Stability of rebaudioside A under acidic conditions and its degradation products. Food Res. Int. 2012, 48, 65–75. [Google Scholar] [CrossRef]
- Abou-Arab, E.A.; Abou-Arab, A.A.; Abu-Salem, M.F. Physicochemical assessment to natural sweeteners steviosides produced from Stevia rebaudiana bertoni plants. Afr. J. Food Sci. 2010, 4, 269–281. [Google Scholar] [CrossRef]
- PN-EN ISO 13299:2016-05; Sensory Analysis-Methodology-General Guidelines for Determining the Sensory Profile. International Organization for Standardization: Geneva, Switzerland, 2016.
- ISO 8589:2007; Sensory Analysis—General Guidance for the Design of Test Rooms. ISO: Geneva, Switzerland, 2007.
- PN-ISO 3972:2016-07; Analiza Sensoryczna-Metodyka-Metoda Sprawdzania Wrażliwości Sensorycznej. Polish Committee for Standardization: Warsaw, Poland, 2016. (In Polish)
- ISO 8586; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. ISO: Geneva, Switzerland, 2012.
- Mokrzycki, W.; Tatol, M. Colour diference Delta E—A survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- PN-A-75101-02:1990; Przetwory Owocowe i Warzywne: Przygotowanie Próbek i Metody Badań Fizykochemicznych. Polish Committee for Standardization: Warsaw, Poland, 1990. (In Polish)
- PN-90/A-75101-08/Az1:2002; Przetwory Owocowe i Warzywne: Przygotowanie Próbek i Metody Badań Fizykochemicznych, Oznaczanie Zawartości Popiołu Ogólnego i Jego Alkaliczności. Polish Committee for Standardization: Warsaw, Poland, 2002. (In Polish)
- ISO 750:1998; Fruit and Vegetable Products—Determination of Titratable Acidity. International Organization for Standardization: Geneva, Switzerland, 1998.
- PN-EN 1132:1999; Fruit and Vegetable Juices—Determination of the pH Value. Committee Europeen de Normalisation: Brussels, Belgium, 1999.
- PN-EN ISO 4833-1:2013-12; Mikrobiologia Łańcucha Żywnościowego-Horyzontalna Metoda Oznaczania Liczby Drobnoustrojów—Część 2: Oznaczanie Liczby Metodą Posiewu Zalewowego w Temperaturze 30 °C. Polish Committee for Standardization: Warsaw, Poland, 2013. (In Polish)
- PN-EN ISO 11290-2:2000+A1:2005+Ap1:2006+Ap2:2007; Mikrobiologia Żywności i Pasz—Horyzontalna Metoda Wykrywania Obecności i Oznaczania Liczby Listeria Monocytogenes Część 2: Metoda Oznaczania Liczby. Polish Committee for Standardization: Warsaw, Poland, 2006. (In Polish)
- PN-EN-ISO 11290-2:2017-07; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria Monocytogenes and of Listeria spp. Part 2: Enumeration Method. International Organization for Standardization: Geneva, Switzerland, 2017.
- PN-EN ISO 6888-2:2001+A1:2004; Mikrobiologia Żywności i Pasz—Horyzontalna Metoda Oznaczania Liczby Gronkowców Koagulazo-Dodatnich (Staphylococcus Aureus i Innych Gatunków)—Część 2: Metoda z Zastosowaniem Pożywki Agarowej z Plazmą Króliczą i Fibrynogenem. Polish Committee for Standardization: Warsaw, Poland, 2004. (In Polish)
- PN-EN ISO 21527-2:2009; Mikrobiologia Żywności i Pasz—Horyzontalna Metoda Oznaczania Liczby Drożdży i Pleśni—Część 2: Metoda Liczenia Kolonii w Produktach o Aktywności Wody Niższej lub Równej 0.95. Polish Committee for Standardization: Warsaw, Poland, 2009. (In Polish)
- Rozporządzenie Komisji (WE) NR 1441/2007 z Dnia 5 Grudnia 2007 r. Zmieniające Rozporządzenie (WE) nr 2073/2005 w Sprawie Kryteriów Mikrobiologicznych Dotyczących Środków Spożywczych (Tekst Mający Znaczenie dla EOG) (Dz.U. L 322 z 7.12.2007, p. 12). Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/PDF/?uri=CELEX:02007R1441-20071227 (accessed on 7 July 2024). (In Polish).
- Cadena, R.S.; Cruz, A.G.; Netto, R.R.; Castro, W.F.; Faria, J.D.A.F.; Bolini, H.M.A. Sensory profile and physicochemical characteristics of mango nectar sweetened with high intensity sweeteners throughout storage time. Food Res. Int. 2013, 54, 1670–1679. [Google Scholar] [CrossRef]
- Prisacaru, A.E.; Ghinea, C.; Albu, E.; Pădure¸t, S. Storage Impact on the Physicochemical and Microbiological Stability of Apricot, Cherry, Raspberry, and Strawberry Jams. Foods 2025, 14, 1695. [Google Scholar] [CrossRef]
- Touati, N.; Tarazona-Díaz, M.P.; Aguayo, E.; Louaileche, H. Effect of storage time and temperature on the physicochemical and sensory characteristics of commercial apricot jam. Food Chem. 2014, 145, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Djaoudene, O.; Bachir-Bey, M.; Djebari, S. Stability Study on Physicochemical Composition, Bioactive Compounds and Antioxidant Potential of Apple Jam: Influence of Daily Storage Conditions. Acta Univ. Cinbinesis Ser. E Food Technol. 2024, 28, 41–54. [Google Scholar] [CrossRef]
- Haroon, M.; Khan, I.; Ejaz, A.; Afzaal, M.; Saeed, F.; Farooq, M.U.; Ehsan, M.; Ahmed, F.; Akram, N.; Hailu, G.G. Preparation and quality evaluation of mixed fruit jam made from natural and artificial sweetener. eFood 2024, 5, e70022. [Google Scholar] [CrossRef]
- Ali, K.; Khan, M.I.; Akram, M.; Ali, M.; Ujjan, J.A.; Jamali, F.H.; Sitara, K.; Iqbal, T.; Ali, Z.; Saeed, N.; et al. Addition of black cumin in stevia apple jam and to check effect on its nutrition profile on storage. Pak. J. Med. Health Sci. 2022, 16, 467. [Google Scholar] [CrossRef]
- Djaoudene, O.; Louaileche, H. Effect of storage time and temperature on the nutritional quality of commercial orange jam. SDRP J. Food Sci. Technol. 2016, 1, 78–84. [Google Scholar] [CrossRef]
- Wang, T.; Liu, L.; Rakhmanova, A.; Wang, X.; Shan, Y.; Yi, Y.; Bianfang, L.; Yuan, Z.; Lü, X. Stability of bioactive compounds and in vitro gastrointestinal digestion of red beetroot jam: Effect of processing and storage. Food Biosci. 2020, 38, 100788. [Google Scholar] [CrossRef]
| Variant Low-Sugar (L) Jam | Sugar (%) | Steviol Glycosides | Pectin (g 100 g−1) | Citric Acid (g 100 g−1) | |
|---|---|---|---|---|---|
| [g 100 g−1] | (% *) | ||||
| Control sample (L0) | 50 | 0 | 0 | 0.3 | 1.00 |
| L10 | 45 | 0.05 | 10 | 0.3 | 0.94 |
| L20 | 40 | 0.10 | 20 | 0.3 | 0.89 |
| L30 | 35 | 0.15 | 30 | 0.3 | 0.83 |
| L40 | 30 | 0.20 | 40 | 0.3 | 0.77 |
| SGs (%) | Storage (Month) | Average Value (c.u.) ± SE | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Taste | Flavor | Odor | Color | Consistency | Overall Quality | ||||
| Sweet | Bitter | Apple | Apple | Metallic | |||||
| 0 | 0 3 6 | 8.80 ± 0.40 a 8.50 ± 0.50 a 8.40 ± 0.10 a | 0.30 ± 0.03 a 0.20 ± 0.05 b 0.30 ± 0.02 a | 7.30 ± 0.20 a 7.20 ± 0.20 a 7.00 ± 0.40 a | 6.32 ± 0.08 a 6.35 ± 0.05 a 6.40 ± 0.02 a | 0.12 ± 0.02 a 0.15 ± 0.05 ab 0.20 ± 0.05 b | 3.80 ± 0.10 a 3.90 ± 0.10 ab 4.20 ± 0.20 b | 8.50 ± 0.10 a 8.00 ± 0.20 b 7.80 ± 0.10 b | 8.50 ± 0.30 a 8.20 ± 0.20 a 8.00 ± 0.40 a |
| 10 | 0 3 6 | 8.80 ± 0.20 a 8.60 ± 0.30 a 8.50 ± 0.10 a | 0.30 ± 0.03 a 0.40 ± 0.04 b 0.40 ± 0.04 b | 7.20 ± 0.20 a 7.00 ± 0.30 a 7.00 ± 0.20 a | 6.25 ± 0.05 a 6.20 ± 0.02 a 6.25 ± 0.05 a | 0.66 ± 0.03 a 0.65 ± 0.03 a 0.68 ± 0.03 a | 3.70 ± 0.10 a 3.80 ± 0.10 a 4.00 ± 0.40 a | 6.50 ± 0.30 a 6.30 ± 0.1 ab 6.00 ± 0.20 b | 7.00 ± 0.20 a 6.70 ± 0.50 ab 6.50 ± 0.40 b |
| 20 | 0 3 6 | 6.86 ± 0.40 a 6.52 ± 0.30 a 6.30 ± 0.30 a | 0.13 ± 0.02 a 0.20 ± 0.02 a 0.20 ± 0.04 a | 7.70 ± 0.20 a 7.20 ± 0.20 a 7.00 ± 0.30 a | 8.23 ± 0.05 a 8.21 ± 0.02 a 8.19 ± 0.02 a | 0.43 ± 0.03 a 0.41 ± 0.02 a 0.40 ± 0.02 a | 4.63 ± 0.40 a 4.50 ± 0.50 a 4.50 ± 0.40 a | 6.60 ± 0.20 a 6.50 ± 0.30 a 6.30 ± 0.10 a | 7.00 ± 0.20 a 6.80 ± 0.20 ab 6.50 ± 0.30 b |
| 30 | 0 3 6 | 8.50 ± 0.20 a 8.60 ± 0.20 a 9.00 ± 0.50 a | 0.20 ± 0.02 a 0.20 ± 0.04 a 0.20 ± 0.03 a | 7.60 ± 0.10 a 7.30 ± 0.10 b 7.20 ± 0.10 b | 7.37 ± 0.03 a 7.30 ± 0.01 a 7.25 ± 0.05 b | 0.58 ± 0.02 a 0.62 ± 0.02 a 0.65 ± 0.03 b | 4.40 ± 0.40 a 4.50 ± 0.50 a 4.50 ± 0.30 a | 7.00 ± 0.40 a 6.80 ± 0.5 ab 6.50 ± 0.30 b | 7.00 ± 0.20 a 6.80 ± 0.20 ab 6.50 ± 0.40 b |
| 40 | 0 3 6 | 7.90 ± 0.30 a 7.80 ± 0.20 a 7.70 ± 0.10 a | 1.90 ± 0.04 a 1.80 ± 0.05 b 1.8 ± 0.40 ba | 6.80 ± 0.30 a 6.50 ± 0.40 ab 6.40 ± 0.10 b | 6.56 ± 0.04 a 6.45 ± 0.05 b 6.40 ± 0.05 b | 0.93 ± 0.05 ab 0.87 ± 0.05 a 0.95 ± 0.05 b | 3.80 ± 0.20 a 3.90 ± 0.20 a 4.00 ± 0.10 a | 6.50 ± 0.50 a 6.10 ± 0.1 ab 5.90 ± 0.30 b | 6.80 ± 0.30 a 6.50 ± 0.50 ab 6.30 ± 0.10 b |
| Color (L*a*b*) | Addition of SGs (%) to Low-Sugar (L) Jams | ||||
|---|---|---|---|---|---|
| 0 | 10 | 20 | 30 | 40 | |
| Color at the Beginning of Storage * | |||||
| L* | 17.19 ± 0.60 | 22.27 ± 0.18 | 23.03 ± 0.60 | 23.94 ± 0.70 | 24.73 ± 2.29 |
| ΔL | - | 5.08 | 5.84 | 6.75 | 7.54 |
| a* | 0.23 ± 0.24 | −0.39 ± 0.02 | −0.42 ± 0.04 | −0.47 ± 0.04 | −0.49 ± 0.06 |
| Δa | - | −0.62 | −0.65 | −0.7 | −0.72 |
| b* | 7.56 ± 0.28 | 13.22 ± 0.24 | 13.35 ± 0.42 | 13.37 ± 0.39 | 13.55 ± 0.82 |
| Δb | - | 5.66 | 5.79 | 5.81 | 5.99 |
| C | 7.56 | 13.22 | 13.36 | 13.38 | 13.56 |
| ΔC | - | 5.69 | 5.83 | 5.85 | 6.03 |
| (ΔE) | - | 7.63 | 8.25 | 8.93 | 9.66 |
| Color changes after 3 months of storage ** | |||||
| L* | 17.12 ± 0.49 | 22.11 ± 0.17 | 22.70 ± 0.41 | 23.74 ± 0.36 | 24.13 ± 0.03 |
| ΔL | −0.07 | −0.16 | −0,33 | −0.20 | −0.60 |
| a* | 0.20 ± 0.07 | −0.36 ± 0.09 | −0.40 ± 0.05 | −0.44 ± 0.01 | −0.47 ± 0.02 |
| Δa | −0.03 | 0.03 | 0.02 | −0.05 | 0.02 |
| b* | 7.24 ± 0.28 | 13.16 ± 0.13 | 13.22 ± 0.13 | 13.27 ± 0.26 | 13.42 ± 0.26 |
| Δb | −0.32 | −0.06 | −0.13 | −0.10 | −0.13 |
| C | 7.56 | 13.16 | 13.23 | 13.28 | 13.43 |
| ΔC | 0.03 | 0.07 | 0.13 | 0.11 | 0.11 |
| (ΔE) | 0.03 | 0.17 | 0.36 | 0.23 | 0.23 |
| (ΔE) *** | - | 7.74 | 8.18 | 8.89 | 9.35 |
| Color changes after 6 months of storage ** | |||||
| L* | 17.10 ± 0.15 | 21.8 ± 0.58 | 22.30 ± 0.25 | 23.14 ± 0.7 | 23.70 ± 0.22 |
| ΔL | −0.09 | −0.47 | −0.73 | −0.8 | −1.03 |
| a* | 0.18 ± 0.03 | −0.35 ± 0.15 | −0.40 ± 0.20 | −0.42 ± 0.21 | −0.46 ± 0.04 |
| Δa | −0.05 | 0.04 | 0.00 | −0.03 | 0.03 |
| b* | 7.21 ± 0.04 | 13.12 ± 0.04 | 13.2 ± 0.04 | 13.23 ± 0.05 | 13.3 ± 0.05 |
| Δb | −0.35 | −0.10 | −0.02 | −0.14 | −0.14 |
| C | 7.56 | 13.12 | 13.21 | 13.24 | 13.31 |
| ΔC | 0.35 | 0.11 | 0.02 | 0.14 | 0.25 |
| (ΔE) | 0.36 | 0.48 | 0.73 | 0.81 | 1.06 |
| (ΔE) *** | - | 7.55 | 7.94 | 8.53 | 8.98 |
| SGs (%) | Time of Storage | Average Value ± SD | |||||
|---|---|---|---|---|---|---|---|
| Dry Matter (%) | Vitamin C (mg/100 g) | Total Ash (%) | pH | Titratable Acidity (°) | Malic Acid (g/100 g) | ||
| 0 | 0 3 6 | 41.4 ± 0.2 aA 40.6 ± 0.5 b 40.2 ± 0.7 b | 0.56 ± 0.02 aA 0.37 ± 0.002 b 0.19 ± 0.01 c | 0.161 ± 0.02 aA 0.129 ± 0.03 b 0.221 ± 0.138 c | 3.29 ± 0.02 aA 3.22 ± 0.01 b 3.20 ± 0.01 b | 10.69 ± 0.04 aA 12.70 ± 0.03 b 16.72 ± 0.02 c | 0.71 ± 0.00 aA 0.85 ± 0.01 b 1.12 ± 0.02 c |
| 10 | 0 3 6 | 40.4 ± 0.1 aB 40.3 ± 0.3 a 40.0 ± 0.7 a | 0.54 ± 0.02 aA 0.33 ± 0.01 b 0.20 ± 0.01 c | 0.163 ± 0.01 aA 0.160 ± 0.01 a 0.143 ± 0.02 b | 3.26 ± 0.01 aA 3.20 ± 0.01 b 3.17 ± 0.01 c | 12.12 ± 0.04 aB 14.13 ± 0.12 b 18.17 ± 0.28 c | 0.81 ± 0.00 aB 0.95 ± 0.01 b 1.22 ± 0.03 c |
| 20 | 0 3 6 | 40.4 ± 0.2 aB 39.2 ± 0.2 a 39.6 ± 0.1 b | 0.54 ± 0.01 aA 0.35 ± 0.02 b 0.23 ± 0.01 c | 0.164 ± 0.01 aA 0.160 ± 0.01 a 0.155 ± 0.02 b | 3.25 ± 0.01 aA 3.20 ± 0.01 b 3.15 ± 0.01 c | 13.20 ± 0.14 aB 14.00 ± 0.11 b 17.27 ± 0.38 c | 0.87 ± 0.01 aB 0.99 ± 0.01 b 1.12 ± 0.02 c |
| 30 | 0 3 6 | 38.6 ± 0.3 aC 38.4 ± 0.5 a 40.1 ± 0.1 b | 0.53 ± 0.01 aA 0.33 ± 0.01 b 0.22 ± 0.02 c | 0.167 ± 0.00 aA 0.174 ± 0.02 a 0.214 ± 0.01 b | 3.21 ± 0.01 aB 3.17 ± 0.01 b 3.15 ± 0.01 b | 14.98 ± 0.02 aC 15.77 ± 0.17 b 17.34 ± 0.48 c | 1.00 ± 0.00 aC 1.06 ± 0.01 b 1.11 ± 0.08 c |
| 40 | 0 3 6 | 34.7 ± 0.3 aD 35.0 ± 0.2 ab 35.6 ± 0.4 b | 0.54 ± 0.30 aA 0.29 ± 0.01 b 0.24 ± 0.02 c | 0.169 ± 0.01 aA 0.185 ± 0.01 b 0.200 ± 0.01 c | 3.23 ± 0.00 aC 3.23 ± 0.01 a 3.23 ± 0.01 a | 15.10 ± 0.10 aD 15.65 ± 0.07 b 16.73 ± 0.15 c | 1.01 ± 0.01 aD 1.05 ± 0.01 b 1.12 ± 0.02 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pielak, M.; Czarniecka-Skubina, E. The Effect of Storage Time on the Quality of Low-Sugar Apple Jams with Steviol Glycosides. Foods 2025, 14, 3678. https://doi.org/10.3390/foods14213678
Pielak M, Czarniecka-Skubina E. The Effect of Storage Time on the Quality of Low-Sugar Apple Jams with Steviol Glycosides. Foods. 2025; 14(21):3678. https://doi.org/10.3390/foods14213678
Chicago/Turabian StylePielak, Marlena, and Ewa Czarniecka-Skubina. 2025. "The Effect of Storage Time on the Quality of Low-Sugar Apple Jams with Steviol Glycosides" Foods 14, no. 21: 3678. https://doi.org/10.3390/foods14213678
APA StylePielak, M., & Czarniecka-Skubina, E. (2025). The Effect of Storage Time on the Quality of Low-Sugar Apple Jams with Steviol Glycosides. Foods, 14(21), 3678. https://doi.org/10.3390/foods14213678

