The Presence of Stone Moroko (Pseudorasbora parva) Drives Divergent Sediment Resistome Profiles in Chinese Mitten Crab (Eriocheir sinensis) Polyculture Pond
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Sediment Properties Determination
2.3. DNA Extraction and Metagenomic Sequencing
2.4. Microbial Resistome Annotations
2.5. Bioinformatics Analysis and Statistics
3. Results
3.1. Resistome Profiles in Pond Sediment
3.2. Correlations Between MGEs and Resistance Genes in Pond Sediment
3.3. Correlations Between Environmental Variables and Resistome in Pond Sediment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ARG | Antibiotic resistance genes |
| MRG | Metal resistance genes |
| BRG | Biocide resistance genes |
| MGE | Mobile genetic elements |
| HGT | Horizontal gene transfer |
| TC | Total carbon |
| TN | Total nitrogen |
| TP | Total phosphorus |
References
- Wright, G.D. Antibiotic resistance in the environment: A link to the clinic? Curr. Opin. Microbiol. 2010, 13, 589–594. [Google Scholar] [CrossRef]
- Valsamatzi-Panagiotou, A.; Popova, K.B.; Penchovsky, R. Methods for prevention and constraint of antimicrobial resistance: A review. Environ. Chem. Lett. 2021, 19, 2005–2012. [Google Scholar] [CrossRef]
- Zhu, Y.-G.; Johnson, T.A.; Su, J.-Q.; Qiao, M.; Guo, G.-X.; Stedtfeld, R.D.; Hashsham, S.A.; Tiedje, J.M. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl. Acad. Sci. USA 2013, 110, 3435–3440. [Google Scholar] [CrossRef]
- Forster, S.C.; Liu, J.; Kumar, N.; Gulliver, E.L.; Gould, J.A.; Escobar-Zepeda, A.; Mkandawire, T.; Pike, L.J.; Shao, Y.; Stares, M.D.; et al. Strain-level characterization of broad host range mobile genetic elements transferring antibiotic resistance from the human microbiome. Nat. Commun. 2022, 13, 1445. [Google Scholar] [CrossRef]
- Zhang, J.; Lei, H.; Huang, J.; Wong, J.W.C.; Li, B. Co-occurrence and co-expression of antibiotic, biocide, and metal resistance genes with mobile genetic elements in microbial communities subjected to long-term antibiotic pressure: Novel insights from metagenomics and metatranscriptomics. J. Hazard. Mater. 2025, 489, 137559. [Google Scholar] [CrossRef]
- Li, C.; Zhu, Y.-X.; Shen, X.-X.; Gao, Y.; Xu, M.; Chen, M.-K.; An, M.-Y. Exploring the distribution and transmission mechanism of ARGs in crab aquaculture ponds and ditches using metagenomics. Environ. Pollut. 2025, 374, 126209. [Google Scholar] [CrossRef]
- Garlock, T.; Asche, F.; Anderson, J.; Bjorndal, T.; Kumar, G.; Lorenzen, K.; Ropicki, A.; Smith, M.D.; Tyeteras, R. A Global Blue Revolution: Aquaculture Growth Across Regions, Species, and Countries. Rev. Fish. Sci. Aquac. 2020, 28, 107–116. [Google Scholar] [CrossRef]
- Di Cesare, A.; Eckert, E.M.; D’Urso, S.; Bertoni, R.; Gillan, D.C.; Wattiez, R.; Corno, G. Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants. Water Res. 2016, 94, 208–214. [Google Scholar] [CrossRef]
- Dong, J.; Shang, M.; Feng, R.; Song, X.; Yan, D.; Xie, H. Export and risk from antibiotic remobilization from surrounding water to lake in the extreme 2020 Yangtze River basin flooding. Sci. Total Environ. 2022, 834, 155176. [Google Scholar] [CrossRef]
- Gong, W.; Guo, L.; Huang, C.; Xie, B.; Jiang, M.; Zhao, Y.; Zhang, H.; Wu, Y.; Liang, H. A systematic review of antibiotics and antibiotic resistance genes (ARGs) in mariculture wastewater: Antibiotics removal by microalgal-bacterial symbiotic system (MBSS), ARGs characterization on the metagenomic. Sci. Total Environ. 2024, 930, 172601. [Google Scholar] [CrossRef]
- Murray, L.M.; Hayes, A.; Snape, J.; Kasprzyk-Hordern, B.; Gaze, W.H.; Murray, A.K. Co-selection for antibiotic resistance by environmental contaminants. NPJ Antimicrob. Resist. 2024, 2, 9. [Google Scholar] [CrossRef]
- Su, H.; Liu, S.; Hu, X.; Xu, X.; Xu, W.; Xu, Y.; Li, Z.; Wen, G.; Liu, Y.; Cao, Y. Occurrence and temporal variation of antibiotic resistance genes (ARGs) in shrimp aquaculture: ARGs dissemination from farming source to reared organisms. Sci. Total Environ. 2017, 607–608, 357–366. [Google Scholar] [CrossRef]
- Feng, Y.; Lu, Y.; Chen, Y.; Xu, J.; Jiang, J. Microbial community structure and antibiotic resistance profiles in sediments with long-term aquaculture history. J. Environ. Manag. 2023, 341, 118052. [Google Scholar] [CrossRef]
- Wang, L.; Hu, T.; Li, Y.; Zhao, Z.; Zhu, M. Unraveling the interplay between antibiotic resistance genes and microbial communities in water and sediments of the intensive tidal flat aquaculture. Environ. Pollut. 2023, 339, 122734. [Google Scholar] [CrossRef]
- Huang, L.; Xu, Y.-B.; Xu, J.-X.; Ling, J.-Y.; Chen, J.-L.; Zhou, J.-L.; Zheng, L.; Du, Q.-P. Antibiotic resistance genes (ARGs) in duck and fish production ponds with integrated or non-integrated mode. Chemosphere 2017, 168, 1107–1114. [Google Scholar] [CrossRef]
- Muziasari, W.I.; Managaki, S.; Parnanen, K.; Karkman, A.; Lyra, C.; Tamminen, M.; Suzuki, S.; Virta, M. Sulphonamide and Trimethoprim Resistance Genes Persist in Sediments at Baltic Sea Aquaculture Farms but Are Not Detected in the Surrounding Environment. PLoS ONE 2014, 9, e92702. [Google Scholar] [CrossRef]
- Muziasari, W.I.; Pärnänen, K.; Johnson, T.A.; Lyra, C.; Karkman, A.; Stedtfeld, R.D.; Tamminen, M.; Tiedje, J.M.; Virta, M. Aquaculture changes the profile of antibiotic resistance and mobile genetic element associated genes in Baltic Sea sediments. FEMS Microbiol. Ecol. 2016, 92, fiw052. [Google Scholar] [CrossRef]
- Li, C.; Chen, H.-q.; Gao, P.; Huang, X.-h.; Zhu, Y.-x.; Xu, M.; Yuan, Q.; Gao, Y.; Shen, X.-x. Distribution and drivers of antibiotic resistance genes in brackish water aquaculture sediment. Sci. Total Environ. 2023, 860, 160475. [Google Scholar] [CrossRef]
- Xu, M.; Huang, X.-H.; Shen, X.-X.; Chen, H.-Q.; Li, C.; Jin, G.-Q.; Cao, J.-S.; Xue, Z.-X. Metagenomic insights into the spatiotemporal responses of antibiotic resistance genes and microbial communities in aquaculture sediments. Chemosphere 2022, 307, 135596. [Google Scholar] [CrossRef]
- Hou, Y.; Diao, W.; Jia, R.; Sun, W.; Feng, W.; Li, B.; Zhu, J. Variations in antibiotic resistomes associated with archaeal, bacterial, and viral communities affected by integrated rice-fish farming in the paddy field ecosystem. Environ. Res. 2024, 251, 118717. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.; Li, L.; Deng, C.; Chen, Y.; Ding, H.; Yu, Z. Do microplastic biofilms promote the evolution and co-selection of antibiotic and metal resistance genes and their associations with bacterial communities under antibiotic and metal pressures? J. Hazard. Mater. 2022, 424, 127285. [Google Scholar] [CrossRef]
- Li, Z.; Junaid, M.; Chen, G.; Wang, J. Interactions and associated resistance development mechanisms between microplastics, antibiotics and heavy metals in the aquaculture environment. Rev. Aquac. 2022, 14, 1028–1045. [Google Scholar] [CrossRef]
- Buck, B.H.; Troell, M.F.; Krause, G.; Angel, D.L.; Grote, B.; Chopin, T. State of the Art and Challenges for Offshore Integrated Multi-Trophic Aquaculture (IMTA). Front. Mar. Sci. 2018, 5, 165. [Google Scholar] [CrossRef]
- Zhang, M.-Q.; Yang, J.-L.; Lai, X.-X.; Li, W.; Zhan, M.-J.; Zhang, C.-P.; Jiang, J.-Z.; Shu, H. Effects of integrated multi-trophic aquaculture on microbial communities, antibiotic resistance genes, and cultured species: A case study of four mariculture systems. Aquaculture 2022, 557, 738322. [Google Scholar] [CrossRef]
- Wang, M.; Lu, M. Tilapia polyculture: A global review. Aquac. Res. 2016, 47, 2363–2374. [Google Scholar] [CrossRef]
- Thomas, M.; Pasquet, A.; Aubin, J.; Nahon, S.; Lecocq, T. When more is more: Taking advantage of species diversity to move towards sustainable aquaculture. Biol. Rev. 2020, 96, 767–784. [Google Scholar] [CrossRef]
- Liu, X.; Wu, H.; Wang, Y.; Liu, Y.; Zhu, H.; Li, Z.; Shan, P.; Yuan, Z. Comparative assessment of Chinese mitten crab aquaculture in China: Spatiotemporal changes and trade-offs. Environ. Pollut. 2023, 337, 122544. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture 2022; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022. [Google Scholar]
- Shi, C.C.; Lin, T.H.; Qu, C. The role of pattern recognition receptors in the innate immune system of Chinese mitten crab (Eriocheir sinensis). Fish Shellfish Immunol. 2024, 154, 109946. [Google Scholar] [CrossRef]
- Cui, W.; Ning, B. Development and application of crab culture in the development of Chinese mitten crab industry of Shanghai. Aquac. Res. 2019, 50, 367–375. [Google Scholar] [CrossRef]
- Li, L.; Xiaowen, L.; Deng, D.; Yongxu, C.; Xugan, W.; Loor, J.J. Molecular characterization and tissue distribution of carnitine palmitoyltransferases in Chinese mitten crab Eriocheir sinensis and the effect of dietary fish oil replacement on their expression in the hepatopancreas. PLoS ONE 2018, 13, e0201324. [Google Scholar] [CrossRef]
- Fisheries Bureau of the Ministry of Agriculture and Rural Affairs; People’s Republic of China; National Fisheries Technology Extension Center; China Society of Fisheries. 2024 China Fishery Statistical Yearbook; China Agriculture Press: Beijing, China, 2024. [Google Scholar]
- Gao, F. A Brief Discussion on Healthy and Ecological Farming Techniques for Polyculture of Mandarin Fish in Crab Ponds. Fish. Guide Be Rich 2010, 19, 43–44. [Google Scholar]
- Huang, H. Pond Polyculture Techniques for Crabs and Mandarin Fish. Curr. Fish. 2020, 45, 77. [Google Scholar]
- Liu, K.; Jing, L.; Chen, Y.; Xu, D. Growth and mortality of topmouth gudgeon Pseudorasbora parva and evaluation on resource utilization in Taihu Lake. J. Dalian Ocean Univ. 2016, 31, 368–373. [Google Scholar] [CrossRef]
- Bao, Y.; Li, B.; Jia, R.; Zhou, L.; Hou, Y.; Zhu, J. Effects of Different River Crab Eriocheir sinensis Polyculture Practices on Bacterial, Fungal and Protist Communities in Pond Water. Biomolecules 2025, 15, 31. [Google Scholar] [CrossRef]
- HJ 632-2011; Soil-Determination of Total Phosphorus by Alkali Fusion–Mo-Sb Anti Spectrophotometric Method. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2011.
- Chen, J.; Zhao, S.; Gan, Y.; Wu, J.; Dai, J.; Chao, H.-J.; Yan, D. Dichlorodiphenyltrichloroethane inhibits soil ammonia oxidation by altering ammonia-oxidizing archaeal and bacterial communities. Environ. Pollut. 2023, 333, 122063. [Google Scholar] [CrossRef]
- Qian, L.; Yu, X.L.; Gu, H.; Liu, F.; Fan, Y.J.; Wang, C.; He, Q.; Tian, Y.; Peng, Y.S.; Shu, L.F.; et al. Vertically stratified methane, nitrogen and sulphur cycling and coupling mechanisms in mangrove sediment microbiomes. Microbiome 2023, 11, 71. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.K.; Jain, M. NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLoS ONE 2012, 7, e30619. [Google Scholar] [CrossRef]
- Yin, X.; Zheng, X.; Li, L.; Zhang, A.-N.; Jiang, X.-T.; Zhang, T. ARGs-OAP v3.0: Antibiotic-Resistance Gene Database Curation and Analysis Pipeline Optimization. Engineering 2023, 27, 234–241. [Google Scholar] [CrossRef]
- Pärnänen, K.; Karkman, A.; Hultman, J.; Lyra, C.; Bengtsson-Palme, J.; Larsson, D.G.J.; Rautava, S.; Isolauri, E.; Salminen, S.; Kumar, H.; et al. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Nat. Commun. 2018, 9, 3891. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.-N.; Gaston, J.M.; Dai, C.L.; Zhao, S.; Poyet, M.; Groussin, M.; Yin, X.; Li, L.-G.; van Loosdrecht, M.C.M.; Topp, E.; et al. An omics-based framework for assessing the health risk of antimicrobial resistance genes. Nat. Commun. 2021, 12, 4765. [Google Scholar] [CrossRef]
- Hu, H.; Huang, Y.; Shi, C.; Li, A.; Mi, Q.; Wang, K.; Zhao, Z.; Bai, X.; Pan, H. Comparison of Chinese medicine additives for antibiotic resistance risks in the Wuding chickens under high stocking density: Advantages and drawbacks. J. Clean. Prod. 2024, 469, 143152. [Google Scholar] [CrossRef]
- Sang, Y.; Mo, S.; Zeng, S.; Wu, X.; Kashif, M.; Song, J.; Yu, D.; Bai, L.; Jiang, C. Model of shrimp pond-mediated spatiotemporal dynamic distribution of antibiotic resistance genes in the mangrove habitat of a subtropical gulf. Sci. Total Environ. 2023, 905, 167199. [Google Scholar] [CrossRef]
- Wang, Z.; Han, M.; Li, E.; Liu, X.; Wei, H.; Yang, C.; Lu, S.; Ning, K. Distribution of antibiotic resistance genes in an agriculturally disturbed lake in China: Their links with microbial communities, antibiotics, and water quality. J. Hazard. Mater. 2020, 393, 122426. [Google Scholar] [CrossRef]
- Gyles, C.; Boerlin, P. Horizontally Transferred Genetic Elements and Their Role in Pathogenesis of Bacterial Disease. Vet. Pathol. 2014, 51, 328–340. [Google Scholar] [CrossRef]
- Wu, Y.; Li, S.; Yu, K.; Hu, J.; Chen, Q.; Sun, W. Wastewater treatment plant effluents exert different impacts on antibiotic resistome in water and sediment of the receiving river: Metagenomic analysis and risk assessment. J. Hazard. Mater. 2023, 460, 132528. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, Z.; Sun, L.; Dong, C.; Jin, Y.; Hu, B.; Cheng, D. Mobile genetic elements mediate the cross-media transmission of antibiotic resistance genes from pig farms and their risks. Sci. Total Environ. 2024, 926, 172115. [Google Scholar] [CrossRef]
- Pal, C.; Bengtsson-Palme, J.; Kristiansson, E.; Larsson, D.G.J. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genom. 2015, 16, 964. [Google Scholar] [CrossRef]
- Baker-Austin, C.; Wright, M.S.; Stepanauskas, R.; McArthur, J.V. Co-selection of antibiotic and metal resistance. Trends Microbiol. 2006, 14, 176–182. [Google Scholar] [CrossRef]
- Amarasekara, N.R. Microbial Prevalence and Antibiotic Resistance Associated with Urban Food Production Systems. Ph.D. Thesis, Wayne State University, Detroit, MI, USA, 2024. [Google Scholar]
- Li, L.-G.; Xia, Y.; Zhang, T. Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection. Isme J. 2017, 11, 651–662. [Google Scholar] [CrossRef]
- Peng, S.; Zheng, H.; Herrero-Fresno, A.; Olsen, J.E.; Dalsgaard, A.; Ding, Z. Co-occurrence of antimicrobial and metal resistance genes in pig feces and agricultural fields fertilized with slurry. Sci. Total Environ. 2021, 792, 148259. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, J.; Chen, X.; Guo, B.; Liu, J.; Qiu, G.; Li, H. The connection between the antibiotic resistome and nitrogen-cycling microorganisms in paddy soil is enhanced by application of chemical and plant-derived organic fertilizers. Environ. Res. 2024, 243, 117880. [Google Scholar] [CrossRef] [PubMed]
- Dadeh Amirfard, K.; Moriyama, M.; Suzuki, S.; Sano, D. Effect of environmental factors on conjugative transfer of antibiotic resistance genes in aquatic settings. J. Appl. Microbiol. 2024, 135, lxae129. [Google Scholar] [CrossRef]
- Li, W.; Zhang, G. Detection and various environmental factors of antibiotic resistance gene horizontal transfer. Environ. Res. 2022, 212, 113267. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Yang, Q.; Lu, X.; Zheng, X.; Xu, Y. Environmental factors dominate microbial community puppet-like driving the distribution of antibiotic resistance genes in different utilization lands. Environ. Technol. Innov. 2024, 34, 103553. [Google Scholar] [CrossRef]
- Wanyan, R.; Pan, M.; Mai, Z.; Xiong, X.; Wang, S.; Han, Q.; Yu, Q.; Wang, G.; Wu, S.; Li, H. Fate of high-risk antibiotic resistance genes in large-scale aquaculture sediments: Geographical differentiation and corresponding drivers. Sci. Total Environ. 2023, 905, 167068. [Google Scholar] [CrossRef] [PubMed]
- Su, H.-C.; Pan, C.-G.; Ying, G.-G.; Zhao, J.-L.; Zhou, L.-J.; Liu, Y.-S.; Tao, R.; Zhang, R.-Q.; He, L.-Y. Contamination profiles of antibiotic resistance genes in the sediments at a catchment scale. Sci. Total Environ. 2014, 490, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Hu, X.; Wang, L.; Xu, W.; Xu, Y.; Wen, G.; Li, Z.; Cao, Y. Contamination of antibiotic resistance genes (ARGs) in a typical marine aquaculture farm: Source tracking of ARGs in reared aquatic organisms. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2020, 55, 220–229. [Google Scholar] [CrossRef]
- Zhang, D.; Liang, J.; Wang, Y.; Xing, C.; Song, Y.; Wang, C.; Liu, Z.; Yang, X.; Gong, L.; Shi, H.; et al. Impact of phosphorus on the transfer of extracellular antibiotic resistance genes in water-sediment systems. J. Environ. Chem. Eng. 2025, 13, 118147. [Google Scholar] [CrossRef]
- Guo, R.; Yao, Y.; Zhang, Z.; Hong, C.; Zhu, F.; Hong, L.; Zhu, W. Body size: A hidden trait of the organisms that influences the distribution of antibiotic resistance genes in soil. J. Hazard. Mater. 2024, 472, 134474. [Google Scholar] [CrossRef]
- Lin, Q.; Li, L.; Adams, J.M.; Hedenec, P.; Tu, B.; Li, C.; Li, T.; Li, X. Nutrient resource availability mediates niche differentiation and temporal co-occurrence of soil bacterial communities. Appl. Soil Ecol. 2021, 163, 103965. [Google Scholar] [CrossRef]
- Kolukirik, M.; Ince, O.; Cetecioglu, Z.; Celikkol, S.; Ince, B.K. Spatial and temporal changes in microbial diversity of the Marmara Sea Sediments. Mar. Pollut. Bull. 2011, 62, 2384–2394. [Google Scholar] [CrossRef] [PubMed]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Y.; Jia, R.; Zhou, L.; Li, B.; Zhu, J. The Presence of Stone Moroko (Pseudorasbora parva) Drives Divergent Sediment Resistome Profiles in Chinese Mitten Crab (Eriocheir sinensis) Polyculture Pond. Foods 2025, 14, 3626. https://doi.org/10.3390/foods14213626
Hou Y, Jia R, Zhou L, Li B, Zhu J. The Presence of Stone Moroko (Pseudorasbora parva) Drives Divergent Sediment Resistome Profiles in Chinese Mitten Crab (Eriocheir sinensis) Polyculture Pond. Foods. 2025; 14(21):3626. https://doi.org/10.3390/foods14213626
Chicago/Turabian StyleHou, Yiran, Rui Jia, Linjun Zhou, Bing Li, and Jian Zhu. 2025. "The Presence of Stone Moroko (Pseudorasbora parva) Drives Divergent Sediment Resistome Profiles in Chinese Mitten Crab (Eriocheir sinensis) Polyculture Pond" Foods 14, no. 21: 3626. https://doi.org/10.3390/foods14213626
APA StyleHou, Y., Jia, R., Zhou, L., Li, B., & Zhu, J. (2025). The Presence of Stone Moroko (Pseudorasbora parva) Drives Divergent Sediment Resistome Profiles in Chinese Mitten Crab (Eriocheir sinensis) Polyculture Pond. Foods, 14(21), 3626. https://doi.org/10.3390/foods14213626

