Sensory–Chemical Co-Dynamics in Kadsura coccinea: ROAV-Driven Prioritization of Cultivar-Specific Odorants and Mechanistic Validation via Molecular Docking
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Sample Preparation
2.3. HS-SPME-GC-MS Analysis
2.4. Relative Odour Activity Value Assessment
2.5. Molecular Docking
2.6. Descriptive Sensory Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. VOCs Analysis in Fruits
3.2. ROAV-Driven Comparative Analysis of Odour Activity Characteristics Among Varieties
3.3. Molecular Docking Elucidates Binding Patterns of Key Odorants
3.4. Multivariate Analysis of Sensory Profiles and Volatile Compounds in KC Cultivars
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Wang, L.; Yang, Z.; Kitanaka, S. Kadsuralignans H-K from Kadsura coccinea and Their Nitric Oxide Production Inhibitory Effects. J. Nat. Prod. 2007, 70, 1999–2002. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, L.; Gong, Y.; Zhang, C.; Yang, Y.; Wang, W.; Qin, L. Isovaleroylbinankadsurin A Ameliorates Atherosclerosis and Restenosis by Promoting LXRα Signaling Pathway and Inhibiting TGF-Β1 and FHL1 Signaling Pathways. Phytomedicine 2025, 139, 156451. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Yu, H.; Xie, Q.; Wang, B.; Jiang, S.; Su, W.; Mao, Y.; Li, B.; Peng, C.; et al. Sesquiterpenes from Kadsura coccinea Attenuate Rheumatoid Arthritis-Related Inflammation by Inhibiting the NF-κB and JAK2/STAT3 Signal Pathways. Phytochemistry 2022, 194, 113018. [Google Scholar] [CrossRef]
- Yang, Y.; Hussain, N.; Zhang, L.; Jia, Y.; Jian, Y.; Li, B.; Iqbal Choudhary, M.; Rahman, A.; Wang, W. Kadsura coccinea: A Rich Source of Structurally Diverse and Biologically Important Compounds. Chin. Herbal Med. 2020, 12, 214–223. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, Y.; Fang, L.; Yang, A.; Luo, F.; Lu, J.; Ren, J. Physicochemical Properties, Profile of Volatiles, Fatty Acids, Lipids and Concomitants from Four Kadsura coccinea Seed Oils. Food Chem. X 2024, 23, 101765. [Google Scholar] [CrossRef]
- Gao, J.; Zhou, W.; Xiong, K.; Li, W. Profiling of nutrient metabolites in Kadsura coccinea fruitand their enrichment patterns in pulp, peel, and seed tissues. Food Ferment. Ind. 2022, 48, 268–275. [Google Scholar] [CrossRef]
- Long, H.; Xia, X.; Liao, S.; Wu, T.; Wang, L.; Chen, Q.; Wei, S.; Gu, X.; Zhu, Z. Physicochemical Characterization and Antioxidant and Hypolipidaemic Activities of a Polysaccharide from the Fruit of Kadsura coccinea (Lem.) A. C. Smith. Front. Nutr. 2022, 9, 903218. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Tian, M.; Cheng, Y.; Ji, C.; Hu, S.; Liu, H.; Lu, J.; Ren, J. Effects of Simulated in Vitro Gastrointestinal Digestion on Antioxidant Activities and Potential Bioaccessibility of Phenolic Compounds from K. coccinea Fruits. Front. Nutr. 2022, 9, 1024651. [Google Scholar] [CrossRef] [PubMed]
- Sritalahareuthai, V.; Temviriyanukul, P.; On-Nom, N.; Charoenkiatkul, S.; Suttisansanee, U. Phenolic Profiles, Antioxidant, and Inhibitory Activities of Kadsura heteroclita (Roxb.) Craib and Kadsura coccinea (Lem.) A.C. Sm. Foods 2020, 9, 1222. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Dong, H.; Zhuang, L.; Wu, X.; Wu, B.; Lan, W.; Su, M.; Tao, G.; Xu, B.; Xu, C.; et al. Multi-Omics Approach Reveals Differences in Aroma and Metabolic Characteristics of Two Types of Jackfruits. Food Chem. X 2025, 29, 102806. [Google Scholar] [CrossRef]
- Guan, S.; Yang, F.; Yao, J.; Liu, C.; Wang, R.; Ruan, M.; Yao, Z.; Liu, C.; Wan, H.; Li, Z.; et al. Dynamic Changes in Volatile Organic Compounds of Cherry Tomato Fruits during Storage at Different Temperatures Using HS-GC-IMS. Food Res. Int. 2025, 218, 116790. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Zhang, X.; Wang, J.; Wu, C.; Wang, W.; Yan, G.; Zhou, Y.; Zhang, K.; Duan, X. Characterization of Volatile Profiles in Cherry Fruits: Integration of E-Nose and HS-SPME-GC–MS. Food Chem. X 2025, 28, 102632. [Google Scholar] [CrossRef]
- Pino, J.A.; Marbot, R. Volatile Flavor Constituents of Acerola (Malpighia Emarginata DC.) Fruit. J. Agric. Food Chem. 2001, 49, 5880–5882. [Google Scholar] [CrossRef]
- Dong, J.; Ma, J.; Yang, W.; Cai, W.; Wu, W. Characterization of the Volatile Profile and Its Estrogenic Activity in Kadsura coccinea Fruit. J. Ethnopharmacol. 2023, 309, 116341. [Google Scholar] [CrossRef]
- Zhao, T.; Ma, C.; Zhu, G. Chemical Composition and Biological Activities of Essential Oils from the Leaves, Stems, and Roots of Kadsura coccinea. Molecules 2021, 26, 6259. [Google Scholar] [CrossRef]
- Jo, S.M.; Moon, H.S.; Hong, S.J.; Yoon, S.; Jeong, H.; Park, H.; Ban, Y.; Youn, M.Y.; Lee, Y.; Park, S.-S.; et al. Exploring Flavor Patterns in the Peel of Tangor: A New Citrus Variety Based on Electronic Sensors and GC-MS/O. Food Chem. 2025, 485, 144415. [Google Scholar] [CrossRef]
- Zheng, X.-D.; Wang, Z.; Tan, M.-N.; Dong, M.; Pan, S.-X.; Cao, N.; Qin, L. A Comprehensive Study on the Mechanism of Apple Flavor Quality Formation: Comparison of Different Apple Cultivars in the Weihai Region. Food Chem. 2025, 489, 144894. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Lee, Y.-Y.; Lee, K.; Jang, H.W. Instrumental Volatile Flavor Analysis of Omija (Schisandra Chinesis Baillon) Using Headspace Stir-Bar Sorptive Extraction-Gas Chromatography-Mass Spectrometry and Its Relationship to Human Sensory Perceptions. Food Res. Int. 2019, 120, 650–655. [Google Scholar] [CrossRef]
- Barroso, A.S.; Massing, L.T.; Suemitsu, C.; Mourão, R.H.V.; Figueiredo, P.L.B.; Maia, J.G.S. Volatile Constituents of Some Myrtaceous Edible and Medicinal Fruits from the Brazilian Amazon. Foods 2024, 13, 1490. [Google Scholar] [CrossRef]
- Hanousek Čiča, K.; Mrvčić, J.; Srečec, S.; Filipan, K.; Blažić, M.; Stanzer, D. Physicochemical and Aromatic Characterization of Carob Macerates Produced by Different Maceration Conditions. Food Sci. Nutr. 2020, 8, 942–954. [Google Scholar] [CrossRef] [PubMed]
- Stashenko, E.E.; Martínez, J.R. Sampling Volatile Compounds from Natural Products with Headspace/Solid-Phase Micro-Extraction. J. Biochem. Biophys. Methods 2007, 70, 235–242. [Google Scholar] [CrossRef]
- Arango, J.P.B.; Ospina, A.P.; Ladino, J.A.F.; Ocampo, G.T. Volatilomic Analysis in Peel, Pulp and Seed of Hass Avocado (Persea americana Mill.) from the Northern Subregion of Caldas by Gas Chromatography with Mass Spectrometry. Food Sci. Nutr. 2025, 13, e70489. [Google Scholar] [CrossRef]
- Hu, Y.-Y.; Liao, J.-L.; Qian, W.-Z.; Fan, S.-J.; Xiao, X.-Y.; Yang, Y.; Guo, J.-L.; Gao, S. Metabolomics, E-Tongue and HS-SPME-GC-MS Reveal the Smoking Process of Prunus mume: Changes in Flavor and Chemical Compositions. Food Chem. 2025, 484, 144401. [Google Scholar] [CrossRef]
- Burzynski-Chang, E.A.; Ryona, I.; Reisch, B.I.; Gonda, I.; Foolad, M.R.; Giovannoni, J.J.; Sacks, G.L. HS-SPME-GC-MS Analyses of Volatiles in Plant Populations-Quantitating Compound × Individual Matrix Effects. Molecules 2018, 23, 2436. [Google Scholar] [CrossRef]
- Planonth, S.; Chantarasiri, A.; Maitip, J.; Wongkattiya, N.; Noyraksa, S.; Luangkamin, S.; Tanruean, K.; Suttiarporn, P. Green NADES-Based Pretreatment Combined with Microwave-Assisted Hydrodistillation for Enhanced Fennel Essential Oil Production. Molecules 2025, 30, 3734. [Google Scholar] [CrossRef]
- Chang, H.-T.; Lin, C.-Y.; Hsu, L.-S.; Chang, S.-T. Thermal Degradation of Linalool-Chemotype Cinnamomum Osmophloeum Leaf Essential Oil and Its Stabilization by Microencapsulation with β-Cyclodextrin. Molecules 2021, 26, 409. [Google Scholar] [CrossRef]
- Yeh, C.-H.; Chou, C.-Y.; Yang, K.-M.; Wu, C.-S.; Chu, L.-P.; Hsu, Y.-L.; Chen, H.-C. Effects of Storage Time and Temperature on the Aroma Quality and Color of Vanilla Beans (Vanilla planifolia) from Taiwan. Food Chem. X 2024, 24, 101761. [Google Scholar] [CrossRef]
- Zhao, T.; Cao, Z.; Yu, J.; Weng, X.; Benjakul, S.; Guidi, A.; Ying, X.; Ma, L.; Xiao, G.; Deng, S. Gas-Phase Ion Migration Spectrum Analysis of the Volatile Flavors of Large Yellow Croaker Oil after Different Storage Periods. Curr. Res. Food Sci. 2022, 5, 813–822. [Google Scholar] [CrossRef] [PubMed]
- López, P.L.; Enemark, G.K.G.; Grosso, N.R.; Olmedo, R.H. Oxidative Protection of Sunflower Oil Used in Industrial Process at High Temperature by Volatile Components from Origanum vulgare and Humulus lupulus Essential Oils. Food Bioprocess. Technol. 2023, 16, 2813–2824. [Google Scholar] [CrossRef]
- Pang, X.; Zhang, Y.; Qiu, J.; Cao, J.; Sun, Y.; Li, H.; Kong, F. Coupled Multidimensional GC and Odor Activity Value Calculation to Identify Off-Odors in Thermally Processed Muskmelon Juice. Food Chem. 2019, 301, 125307. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Tang, J.; Shi, W.; Wang, Z.; Xiang, Y.; Deng, T.; Gao, X.; Li, W.; Shi, S. Effects of Three Drying Methods on Polyphenol Composition and Antioxidant Activities of Litchi Chinensis Sonn. Food Sci. Biotechnol. 2019, 29, 351–358. [Google Scholar] [CrossRef]
- Chen, Y.; Tao, X.; Hu, S.; He, R.; Ju, X.; Wang, Z.; Aluko, R.E. Effects of Phytase/Ethanol Treatment on Aroma Characteristics of Rapeseed Protein Isolates. Food Chem. 2024, 431, 137119. [Google Scholar] [CrossRef]
- Ben Khemis, I.; Bouzid, M.; Mechi, N.; Ben Lamine, A. Statistical Physics Modeling and Interpretation of the Adsorption of Enantiomeric Terpenes onto the Human Olfactory Receptor OR1A1. Int. J. Biol. Macromol. 2021, 171, 428–434. [Google Scholar] [CrossRef]
- Zeng, S.; Zhang, L.; Li, P.; Pu, D.; Fu, Y.; Zheng, R.; Xi, H.; Qiao, K.; Wang, D.; Sun, B.; et al. Molecular Mechanisms of Caramel-like Odorant-Olfactory Receptor Interactions Based on a Computational Chemistry Approach. Food Res. Int. 2023, 171, 113063. [Google Scholar] [CrossRef]
- Haag, F.; Di Pizio, A.; Krautwurst, D. The Key Food Odorant Receptive Range of Broadly Tuned Receptor OR2W1. Food Chem. 2022, 375, 131680. [Google Scholar] [CrossRef]
- Ahmed, L.; Zhang, Y.; Block, E.; Buehl, M.; Corr, M.J.; Cormanich, R.A.; Gundala, S.; Matsunami, H.; O’Hagan, D.; Ozbil, M.; et al. Molecular Mechanism of Activation of Human Musk Receptors OR5AN1 and OR1A1 by (R)-Muscone and Diverse Other Musk-Smelling Compounds. Proc. Natl. Acad. Sci. USA 2018, 115, E3950–E3958. [Google Scholar] [CrossRef]
- Park, S.J.; Kwon, O.S.; Lee, S.H.; Song, H.S.; Park, T.H.; Jang, J. Ultrasensitive Flexible Graphene Based Field-Effect Transistor (FET)-Type Bioelectronic Nose. Nano Lett. 2012, 12, 5082–5090. [Google Scholar] [CrossRef]
- Mainland, J.D.; Keller, A.; Li, Y.R.; Zhou, T.; Trimmer, C.; Snyder, L.L.; Moberly, A.H.; Adipietro, K.A.; Liu, W.L.L.; Zhuang, H.; et al. The Missense of Smell: Functional Variability in the Human Odorant Receptor Repertoire. Nat. Neurosci. 2014, 17, 114–120. [Google Scholar] [CrossRef]
- Billesbølle, C.B.; de March, C.A.; van der Velden, W.J.C.; Ma, N.; Tewari, J.; Del Torrent, C.L.; Li, L.; Faust, B.; Vaidehi, N.; Matsunami, H.; et al. Structural Basis of Odorant Recognition by a Human Odorant Receptor. Nature 2023, 615, 742–749. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, X.; Tian, H.; Li, Z. Integrated Characterization of Arabica Coffee Husk Tea Using Flavoromics, Targeted Screening, and in Silico Approaches. Food Chem. X 2024, 23, 101556. [Google Scholar] [CrossRef]
- de March, C.A.; Topin, J.; Bruguera, E.; Novikov, G.; Ikegami, K.; Matsunami, H.; Golebiowski, J. Odorant Receptor 7D4 Activation Dynamics. Angew. Chem. Int. Ed. Engl. 2018, 57, 4554–4558. [Google Scholar] [CrossRef]
- Audouze, K.; Tromelin, A.; Le Bon, A.M.; Belloir, C.; Petersen, R.K.; Kristiansen, K.; Brunak, S.; Taboureau, O. Identification of Odorant-Receptor Interactions by Global Mapping of the Human Odorome. PLoS ONE 2014, 9, e93037. [Google Scholar] [CrossRef]
- He, X.-H.; You, C.-Z.; Jiang, H.-L.; Jiang, Y.; Xu, H.E.; Cheng, X. AlphaFold2 versus Experimental Structures: Evaluation on G Protein-Coupled Receptors. Acta Pharmacol. Sin. 2023, 44, 1–7. [Google Scholar] [CrossRef]
- Schake, P.; Bolz, S.N.; Linnemann, K.; Schroeder, M. PLIP 2025: Introducing Protein–Protein Interactions to the Protein–Ligand Interaction Profiler. Nucleic Acids Res. 2025, 53, W463–W465. [Google Scholar] [CrossRef]
- Rodrigo, M.J.; Zacarías, L. Biosynthesis and Esterification of Carotenoids During Fruit Ripening. In Carotenoid Esters in Foods: Physical, Chemical and Biological Properties; Mercadante, A.Z., Ed.; Food Chemistry, Function and Analysis; The Royal Society of Chemistry: London, UK, 2019; pp. 137–159. ISBN 978-1-78801-242-3. [Google Scholar]
- George, J.; Nguyen, T.; Williams, D.; Hardner, C.; Sanewski, G.; Smyth, H.E. Review of the Aroma Chemistry of Pineapple (Ananas comosus). J. Agric. Food Chem. 2023, 71, 4069–4082. [Google Scholar] [CrossRef]
- Ma, N.; Zhu, J.; Wang, H.; Qian, M.C.; Xiao, Z. Comparative Investigation of Aroma-Active Volatiles in (“Ruixue”, “Liangzhi”, “Crystal Fuji,” and “Guifei”) Apples by Application of Gas Chromatography-Mass Spectrometry-Olfactometry (GC-MS-O) and Two-Dimensional Gas Chromatography-Quadrupole Mass Spectrometry (GC × GC-qMS) Coupled with Sensory Molecular Science. J. Agric. Food Chem. 2024, 72, 25229–25250. [Google Scholar] [CrossRef]
- Xing, R.; Wang, Y.; Dai, J.; Zhang, C.; Hua, Y.; Chen, Y.; Kong, X. Volatile Flavor Characterization of Raw Coconut Milk and the Impact of Sterilization: A Comparative Analysis for Coconut Flavor Preservation. Food Chem. 2025, 490, 145123. [Google Scholar] [CrossRef]
- Motooka, R.; Usami, A.; Nakahashi, H.; Koutari, S.; Nakaya, S.; Shimizu, R.; Tsuji, K.; Marumoto, S.; Miyazawa, M. Characteristic Odor Components of Essential Oils from Eurya japonica. J. Oleo Sci. 2015, 64, 577–584. [Google Scholar] [CrossRef]
- Liu, G.; Chen, Q.; Gou, M.; Bi, J. Formation of Key Aroma-Active and off-Flavor Components in Concentrated Peach Puree. Food Chem. 2024, 439, 138105. [Google Scholar] [CrossRef]
- Wei, Y.; Yin, X.; Wu, H.; Zhao, M.; Huang, J.; Zhang, J.; Li, T.; Ning, J. Improving the Flavor of Summer Green Tea (Camellia sinensis L.) Using the Yellowing Process. Food Chem. 2022, 388, 132982. [Google Scholar] [CrossRef]
- Chen, S.; Rui, R.; Wang, S.; He, X. Comparative Analysis of the Floral Fragrance Compounds of Panax Notoginseng Flowers under the Panax Notoginseng-Pinus Agroforestry System Using SPME-GC-MS. Molecules 2022, 27, 3565. [Google Scholar] [CrossRef]
- Liu, M.; Su, Y.; Guo, Y. Headspace-Low Water Absorption Trap Technique: Analysis of Low-Abundance Volatile Compounds from Fresh Artemisia annua L. with GC-MS. J. Chromatogr. Sci. 2022, 60, 907–915. [Google Scholar] [CrossRef]
- Fan, Z.; Hasing, T.; Johnson, T.S.; Garner, D.M.; Schwieterman, M.L.; Barbey, C.R.; Colquhoun, T.A.; Sims, C.A.; Resende, M.F.R.; Whitaker, V.M. Strawberry Sweetness and Consumer Preference Are Enhanced by Specific Volatile Compounds. Hortic. Res. 2021, 8, 66. [Google Scholar] [CrossRef]
- Deshpande, A.B.; Chidley, H.G.; Oak, P.S.; Pujari, K.H.; Giri, A.P.; Gupta, V.S. Isolation and Characterization of 9-Lipoxygenase and Epoxide Hydrolase 2 Genes: Insight into Lactone Biosynthesis in Mango Fruit (Mangifera Indica L.). Phytochemistry 2017, 138, 65–75. [Google Scholar] [CrossRef]
- Leonardou, V.K.; Doudoumis, E.; Tsormpatsidis, E.; Vysini, E.; Papanikolopoulos, T.; Papasotiropoulos, V.; Lamari, F.N. Quality Traits, Volatile Organic Compounds, and Expression of Key Flavor Genes in Strawberry Genotypes over Harvest Period. Int. J. Mol. Sci. 2021, 22, 13499. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sevilla, J.F.; Cruz-Rus, E.; Valpuesta, V.; Botella, M.A.; Amaya, I. Deciphering Gamma-Decalactone Biosynthesis in Strawberry Fruit Using a Combination of Genetic Mapping, RNA-Seq and eQTL Analyses. BMC Genom. 2014, 15, 218. [Google Scholar] [CrossRef] [PubMed]
- Zeliou, K.; Papasotiropoulos, V.; Manoussopoulos, Y.; Lamari, F.N. Physical and Chemical Quality Characteristics and Antioxidant Properties of Strawberry Cultivars (Fragaria × ananassa Duch.) in Greece: Assessment of Their Sensory Impact. J. Sci. Food Agric. 2018, 98, 4065–4073. [Google Scholar] [CrossRef] [PubMed]
- Bosman, R.N.; Lashbrooke, J.G. Grapevine Mono- and Sesquiterpenes: Genetics, Metabolism, and Ecophysiology. Front. Plant Sci. 2023, 14, 1111392. [Google Scholar] [CrossRef]
- Gao, F.; Liu, B.; Li, M.; Gao, X.; Fang, Q.; Liu, C.; Ding, H.; Wang, L.; Gao, X. Identification and Characterization of Terpene Synthase Genes Accounting for Volatile Terpene Emissions in Flowers of Freesia x hybrida. J. Exp. Bot. 2018, 69, 4249–4265. [Google Scholar] [CrossRef]
- Wang, F.; Park, Y.-L.; Gutensohn, M. Epidermis-Specific Metabolic Engineering of Sesquiterpene Formation in Tomato Affects the Performance of Potato Aphid Macrosiphum euphorbiae. Front. Plant Sci. 2021, 12, 793313. [Google Scholar] [CrossRef]
- Gutensohn, M.; Henry, L.K.; Gentry, S.A.; Lynch, J.H.; Nguyen, T.T.H.; Pichersky, E.; Dudareva, N. Overcoming Bottlenecks for Metabolic Engineering of Sesquiterpene Production in Tomato Fruits. Front. Plant Sci. 2021, 12, 691754. [Google Scholar] [CrossRef]
- Ma, Y.; Zu, Y.; Huang, S.; Stephanopoulos, G. Engineering a Universal and Efficient Platform for Terpenoid Synthesis in Yeast. Proc. Natl. Acad. Sci. USA 2023, 120, e2207680120. [Google Scholar] [CrossRef]
- Khruengsai, S.; Phalangrit, K.-A.; Sripahco, T.; Kaewfoo, M.; Sittikarn, N.; Poshyachinda, S.; Pongpiachan, S.; Pripdeevech, P. Diurnal Variations of Biogenic Volatile Organic Compounds and Their Role in Secondary Pollutant Formation in the Huai Hong Khrai Subtropical Forest, Thailand. Environ. Pollut. 2025, 372, 126044. [Google Scholar] [CrossRef]
- Qin, L.; Ma, D.; Lin, G.; Sun, W.; Li, C. Low Temperature Promotes the Production and Efflux of Terpenoids in Yeast. Bioresour. Technol. 2024, 395, 130376. [Google Scholar] [CrossRef]
- Nie, S.; Wang, S.; Chen, R.; Ge, M.; Yan, X.; Qiao, J. Catalytic Mechanism and Heterologous Biosynthesis Application of Sesquiterpene Synthases. J. Agric. Food Chem. 2024, 72, 6871–6888. [Google Scholar] [CrossRef]
- Wu, H.; Yang, B.; Zhang, R.; Dong, Z.; Xie, H. Optimization of Harvest Time for Medicinal Use of Acorus tatarinowii Schott: A Comprehensive Analytical Approach Using HS-SPME-GC-MS, Network Pharmacology, and Molecular Simulation Techniques. Ind. Crops Prod. 2025, 233, 121424. [Google Scholar] [CrossRef]
- Del Mármol, J.; Yedlin, M.A.; Ruta, V. The Structural Basis of Odorant Recognition in Insect Olfactory Receptors. Nature 2021, 597, 126–131. [Google Scholar] [CrossRef]
- Mayhew, E.J.; Arayata, C.J.; Gerkin, R.C.; Lee, B.K.; Magill, J.M.; Snyder, L.L.; Little, K.A.; Yu, C.W.; Mainland, J.D. Transport Features Predict If a Molecule Is Odorous. Proc. Natl. Acad. Sci. USA 2022, 119, e2116576119. [Google Scholar] [CrossRef]
- Liang, J.; Shalaby, N.; Rigling, M.; Wagner, T.; Heimbach, J.; Fries, A.; Kohlus, R.; Zhang, Y. Characterization of Hay-like off-Odor in Basil Samples after Various Processing and Strategies for Reducing the off-Odor. Food Res. Int. 2022, 162, 112080. [Google Scholar] [CrossRef]
- Brizzolara, S.; Manganaris, G.A.; Fotopoulos, V.; Watkins, C.B.; Tonutti, P. Primary Metabolism in Fresh Fruits During Storage. Front. Plant Sci. 2020, 11, 80. [Google Scholar] [CrossRef]




| Attributes | Reference | Definition |
|---|---|---|
| Citrus | 0.01% D-Limonene in PG | Fresh, peel-like zest reminiscent of lemon or orange. |
| Minty | 0.01% L-Menthol in water | Cooling, herbal note with a refreshing sensation. |
| Woody | 0.1% Cedrol in PG | Resinous, bark-like aroma evoking pine or sandalwood. |
| Floral | 0.02% Linalool in PG | Sweet, blossom-like scent similar to rose or jasmine. |
| Coconut-milk | Coconut juice | Creamy, lactonic sweetness akin to coconut or peach. |
| Herbal | 0.05% 1,8-Cineole in PG | Green, medicinal character reminiscent of eucalyptus or grass. |
| Spicy | 0.02% eugenol in PG | Pungent, warm note suggestive of pepper or clove. |
| No. | Retention Time | Name | Molecular Formula | Percentage Composition (%) | ||
|---|---|---|---|---|---|---|
| F023 | F054 | F055 | ||||
| 1 | 8.184 | 1,3,5-Heptatriene,(E,E)- | C7H10 | ND | 0.36 ± 0.14 | ND |
| 2 | 11.500 | 1-Hexanol | C6H14O | ND | 0.16 ± 0.08 | ND |
| 3 | 14.207 | α-Thujene | C10H16 | 0.11 ± 0.01 b | ND | 0.26 ± 0.04 a |
| 4 | 14.626 | α-Pinene | C10H16 | 4.55 ± 0.65 b | 9.24 ± 1.27 a | 2.52 ± 0.50 b |
| 5 | 16.503 | Sabinene | C10H16 | 0.55 ± 0.08 a | 0.13 ± 0.02 b | ND |
| 6 | 17.009 | β-Pinene | C10H16 | 8.05 ± 1.21 b | 3.50 ± 0.57 c | 10.32 ± 4.32 a |
| 7 | 17.364 | β-Myrcene | C10H16 | 3.79 ± 0.47 a | 4.17 ± 0.45 a | 3.98 ± 0.32 a |
| 8 | 17.539 | Butyl butanoate | C8H16O2 | ND | 0.36 ± 0.10 | ND |
| 9 | 18.730 | α-Terpinene | C10H16 | 0.08 ± 0.01 b | ND | 0.15 ± 0.01 a |
| 10 | 19.122 | P-Cymene | C10H14 | 0.07 ± 0.01 a | ND | 0.06 ± 0.003 a |
| 11 | 19.367 | D-Limonene | C10H16 | 0.89 ± 0.10 a | 0.93 ± 0.12 a | ND |
| 12 | 19.575 | β-Phellandrene | C10H16 | ND | ND | 1.54 ± 0.11 |
| 13 | 20.151 | β-Ocimene | C10H16 | 0.31 ± 0.02 b | 0.47 ± 0.02 a | 0.37 ± 0.05 b |
| 14 | 20.838 | γ-Terpinene | C10H16 | 0.16 ± 0.03 b | 0.06 ± 0.02 c | 0.28 ± 0.01 a |
| 15 | 22.389 | Terpinolene | C10H16 | 0.17 ± 0.02 b | 0.11 ± 0.01 c | 0.33 ± 0.02 a |
| 16 | 23.068 | Linalool | C10H18O | ND | 0.21 ± 0.04 | ND |
| 17 | 23.287 | Nonanal | C9H18O | ND | 0.13 ± 0.05 | ND |
| 18 | 26.263 | Terpinen-4-ol | C10H18O | 0.25 ± 0.06 a | 0.14 ± 0.03 b | 0.18 ± 0.02 ab |
| 19 | 26.440 | Butyl caproate | C10H20O2 | ND | 0.30 ± 0.08 | ND |
| 20 | 26.723 | α-Terpineol | C10H18O | 0.22 ± 0.04 a | 0.12 ± 0.02 b | ND |
| 21 | 30.701 | Bicyclogermacrene | C15H24 | 0.04 ± 0.02 b | 0.17 ± 0.02 a | 0.19 ± 0.01 a |
| 22 | 31.309 | γ-Elemene | C15H24 | 0.35 ± 0.12 b | 2.00 ± 0.20 a | 1.72 ± 0.09 a |
| 23 | 31.780 | α-Cubebene | C15H24 | 0.50 ± 0.09 b | 0.55 ± 0.03 b | 1.05 ± 0.03 a |
| 24 | 32.630 | Ylangene | C15H24 | ND | 0.48 ± 0.02 | ND |
| 25 | 33.012 | γ-Muurolene | C15H24 | 9.49 ± 0.42 a | 9.55 ± 1.10 a | 10.37 ± 0.26 a |
| 26 | 33.413 | β-Elemen | C15H24 | 3.60 ± 0.88 b | 4.09 ± 0.45 b | 9.73 ± 0.46 a |
| 27 | 33.975 | Isocaryophyllene | C15H24 | 0.79 ± 0.18 | ND | ND |
| 28 | 34.864 | β-Caryophyllene | C15H24 | 34.02 ± 4.22 a | 28.54 ± 1.81 a | 12.80 ± 0.44 b |
| 29 | 35.067 | Aciphyllene | C15H24 | 2.72 ± 0.38 a | 2.13 ± 0.24 a | ND |
| 30 | 35.319 | α-Santoline alcohol | C10H18O | 0.80 ± 0.09 a | 3.67 ± 2.02 a | 0.90 ± 0.05 a |
| 31 | 36.076 | Humulene | C15H24 | 10.19 ± 1.24 a | 5.67 ± 0.71 b | 3.66 ± 0.11 b |
| 32 | 36.223 | Alloaromadendrene | C15H24 | 1.05 ± 0.04 b | ND | 1.48 ± 0.10 a |
| 33 | 36.720 | γ-Maaliene | C15H24 | 2.30 ± 1.60 c | 5.28 ± 0.63 b | 12.50 ± 0.88 a |
| 34 | 37.038 | Germacrene D | C15H24 | 0.59 ± 0.07 b | ND | 2.06 ± 0.11 a |
| 35 | 37.592 | α-Guaiene | C15H24 | 2.77 ± 0.70 b | 6.81 ± 0.92 a | ND |
| 36 | 37.728 | β-Selinene | C15H24 | ND | ND | 10.87 ± 0.48 |
| 37 | 38.035 | α-Selinene | C15H24 | ND | ND | 2.89 ± 0.19 |
| 38 | 38.277 | γ-Cadinene | C15H24 | 1.31 ± 0 b | ND | 1.52 ± 0.07 a |
| 39 | 38.442 | δ-Amorphene | C15H24 | 3.37 ± 0.44 b | 6.30 ± 0.92 a | 3.22 ± 0.46 b |
| 40 | 38.995 | γ-Amorphene | C15H24 | 0.25 ± 0.06 b | ND | 0.42 ± 0.01 a |
| 41 | 39.150 | α-Cadinene | C15H24 | 0.17 ± 0.02 b | ND | 0.36 ± 0.01 a |
| 42 | 39.594 | Elemol | C15H26O | 0.26 ± 0.12 b | ND | 0.74 ± 0.04 a |
| 43 | 39.900 | E-Nerolidol | C15H26O | 1.37 ± 0.32 a | 0.98 ± 0.20 a | ND |
| 44 | 41.228 | Caryophyllene oxide | C15H24O | 0.91 ± 0.17 a | 0.35 ± 0.03 b | 0.16 ± 0.01 b |
| 45 | 43.299 | γ-Eudesmol | C15H26O | 0.13 ± 0.03 a | ND | 0.18 ± 0.02 a |
| 46 | 43.769 | t-Cadinol | C15H26O | 0.29 ± 0.09 b | 0.71 ± 0.10 a | 0.33 ± 0.05 b |
| 47 | 44.348 | t-Muurolol | C15H26O | 1.11 ± 0.06 a | 0.41 ± 0.08 b | ND |
| 48 | 44.505 | β-Selinenol | C15H26O | ND | ND | 0.92 ± 0.10 |
| 49 | 45.087 | γ-Dodecalactone | C12H22O2 | ND | 0.24 ± 0.07 | ND |
| Name | OA (mg/m3) | ROAV_F023 | ROAV_F054 | ROAV_F055 | Odours |
|---|---|---|---|---|---|
| 1-Hexanol | 0.74 | 0 | 0.316 | 0 | Almond, apple, banana, bread, cut grass |
| α-Pinene | 7.9 | 0.904 | 1.711 | 0.433 | Berry, citrus, floral, fruit, lemon |
| Sabinene | 2 | 0.432 | 0.095 | 0 | Citrus, green, herb, pepper, spice |
| β-Pinene | 0.14 (OW) | 90.307 | 36.577 | 100 | Woody, terpentine |
| β-Myrcene | 0.061 | 97.586 | 100 | 88.5 | Balsamic, fruit, geranium, green, herb |
| Butyl butanoate | 0.028 | 0 | 18.811 | 0 | Floral |
| α-Terpinene | 7.9 | 0.02 | 0 | 0.026 | Berry, citrus, floral, fruit, lemon |
| P-Cymene | 7.2 | 0.015 | 0 | 0.011 | Citrus, fresh, fruit, gasoline, lemon |
| D-Limonene | 0.045 | 31.066 | 30.239 | 0 | Citrus, fresh, lemon, mint, orange |
| β-Phellandrene | 0.5 | 0 | 0 | 4.178 | Mint, spice, terpentine |
| β-Ocimene | 0.034 (OW) | 14.32 | 20.225 | 14.765 | Herb, sweet |
| γ-Terpinene | 37.5 | 0.007 | 0.002 | 0.01 | Bitter, caramel, citrus, fruit, gasoline |
| Terpinolene | 0.2 | 1.335 | 0.805 | 2.238 | Citrus, floral, herb, pine, plastic |
| Linalool | 0.013 | 0 | 23.636 | 0 | Bergamot, coriander, floral, flower, grape |
| Nonanal | 0.23 | 0 | 0.827 | 0 | Aldehyde, beany, citrus, cucumber, fat |
| Terpinen-4-ol | 0.59 | 0.665 | 0.347 | 0.414 | Citrus, earth, floral, herb, must |
| Butyl caproate | 0.7 | 0 | 0.627 | 0 | Fruit, grass, green |
| α-Terpineol | 0.41 | 0.843 | 0.428 | 0 | Anise, citrus, floral, fresh, lily |
| β-Caryophyllene | 1.5 | 35.618 | 27.838 | 11.578 | Candy, citrus, clove, fried, green |
| Humulene | 0.16 (OW) | 100 | 51.854 | 31.034 | Balsamic, carrot, hop, resin, soap |
| Elemol | 0.1 | 4.084 | 0 | 10.038 | Green, wood |
| E-Nerolidol | 1.25 (OW) | 1.721 | 1.147 | 0 | Fir, linoleum, pine |
| Caryophyllene oxide | 2.4 | 0.596 | 0.213 | 0.091 | Citrus, fruit, herb, must, spice |
| γ-Dodecalactone | 0.00481 | 0 | 73.002 | 0 | Apricot, flower, fruit, peach, sweet |
| Compounds | Olfactory Receptors | Binding Energy (kcal/mol) | Type of Interactions | Interacting Amino Acids |
|---|---|---|---|---|
| β-Pinene | OR2W1 | −6.973 | Hydrophobic Interaction | TYR104, ILE206, VAL207, TYR259 |
| γ-Dodecalactone | OR2W1 | −6.422 | H-bond, Hydrophobic Interaction | ASN155, PHE73, TYR104, LEU159, VAL207, PHE251, ILE255, TYR259, TYR278 |
| Humulene | OR5AN1 | −6.740 | Hydrophobic Interaction | TYR74, PHE105, LEU110, THR204, PHE252, VAL259 |
| β-Caryophyllene | OR5AN1 | −6.720 | Hydrophobic Interaction | LEU110, PHE252, TYR253, VAL259 |
| β-Pinene | OR5AN1 | −5.778 | Hydrophobic Interaction | PHE105, PHE252, VAL259, TYR279 |
| β-Caryophyllene | OR2AG1 | −7.439 | Hydrophobic Interaction | LEU105, TYR159, PHE206, LEU207, PHE251, ALA255, TYR259 |
| Humulene | OR2AG1 | −6.873 | Hydrophobic Interaction | LEU105, TYR159, PHE206, LEU207, PHE251, ALA255, TYR259 |
| γ-Dodecalactone | OR2AG1 | −6.008 | H-bond, Hydrophobic Interaction | TYR159, LEU207, PHE251, ALA254, TYR259, TYR278 |
| β-Pinene | OR2AG1 | −5.875 | Hydrophobic Interaction | PHE251, ALA254, TYR259, TYR278 |
| Humulene | OR10G4 | −7.343 | Hydrophobic Interaction | PHE71, PHE103, ALA206, PHE250, TYR258, V TYR275 |
| β-Caryophyllene | OR10G4 | −6.687 | Hydrophobic Interaction | PHE103, VAL205, ALA206, PHE250, TYR258, TYR275 |
| β-Pinene | OR10G4 | −6.137 | Hydrophobic Interaction | PHE71, PHE103, ILE202, TYR275 |
| Humulene | OR5P3 | −6.720 | Hydrophobic Interaction | VAL104, VAL105, PHE159, ILE207, PHE251, ILE255, TYR278 |
| β-Pinene | OR5P3 | −6.457 | Hydrophobic Interaction | PHE159, ILE207, TYR259, TYR278 |
| β-Caryophyllene | OR5P3 | −6.292 | Hydrophobic Interaction | VAL104, VAL105, PHE159, ILE207, ILE255, TYR259, TYR278 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhang, R.; Wu, H.; Xie, J.; Tang, Q.; Dong, Z. Sensory–Chemical Co-Dynamics in Kadsura coccinea: ROAV-Driven Prioritization of Cultivar-Specific Odorants and Mechanistic Validation via Molecular Docking. Foods 2025, 14, 3603. https://doi.org/10.3390/foods14213603
Wang L, Zhang R, Wu H, Xie J, Tang Q, Dong Z. Sensory–Chemical Co-Dynamics in Kadsura coccinea: ROAV-Driven Prioritization of Cultivar-Specific Odorants and Mechanistic Validation via Molecular Docking. Foods. 2025; 14(21):3603. https://doi.org/10.3390/foods14213603
Chicago/Turabian StyleWang, Lin, Ruiyin Zhang, Huilan Wu, Juan Xie, Qi Tang, and Zhen Dong. 2025. "Sensory–Chemical Co-Dynamics in Kadsura coccinea: ROAV-Driven Prioritization of Cultivar-Specific Odorants and Mechanistic Validation via Molecular Docking" Foods 14, no. 21: 3603. https://doi.org/10.3390/foods14213603
APA StyleWang, L., Zhang, R., Wu, H., Xie, J., Tang, Q., & Dong, Z. (2025). Sensory–Chemical Co-Dynamics in Kadsura coccinea: ROAV-Driven Prioritization of Cultivar-Specific Odorants and Mechanistic Validation via Molecular Docking. Foods, 14(21), 3603. https://doi.org/10.3390/foods14213603

