Comparative Analysis of Flavonoids, Carotenoids, and Major Primary Compounds in Site-Specific Yellow-Leaf Tea and Their Dynamic Alterations During Processing
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Instruments
2.2. Sample Collection and Tea Processing
2.3. Targeted Metabolomics of Pigments
2.4. Widely Targeted Metabolomics Analysis
2.5. Multivariate Statistical Analysis
3. Results and Discussions
3.1. Major Flavonoids Distribution in ‘Huangjinya’ FLs in Different Altitudes
3.2. Major Carotenoids Distribution in ‘Huangjinya’ FLs from Different Altitudes
3.3. Amino Acids Distribution in ‘Huangjinya’ FLs from Different Altitudes
3.4. Primary Metabolite Profiling in ‘Huangjinya’ Fresh Leaves from Different Altitudes
3.5. Dynamics of Flavor-Related Compounds During Green Tea Processing
3.5.1. Flavonoids and Carotenoids Changes During GT Processing
3.5.2. Dynamics of AAs and PMs
3.6. Dynamics of Flavor-Related Compounds During Black Tea Processing
3.6.1. Flavonoids and Carotenoids Changes
3.6.2. Dynamics of AAs and PMs During BT Processing
3.7. Correlation Between Pigments and Major Taste Compounds and Their Contribution to Quality
3.7.1. Metabolite Correlation Patterns and Flavor Implications in Green Tea Prepared from ‘Huangjinya’
3.7.2. Metabolite Correlation Patterns and Flavor Implications in Black Tea Prepared from ‘Huangjinya’
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Capasso, L.; De Masi, L.; Sirignano, C.; Maresca, V.; Basile, A.; Nebbioso, A.; Rigano, D.; Bontempo, P. Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential. Molecules 2025, 30, 654. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ge, Y.; Hu, J.; Wang, Y.; Ni, D.; Wang, P.; Guo, F. Integrated analyses of metabolome, leaf anatomy, epigenome, and transcriptome under different light intensities reveal dynamic regulation of histone modifications on the high light adaptation in Camellia sinensis. Plant J. 2025, 121, e70040. [Google Scholar] [CrossRef] [PubMed]
- Yi, Q.; Gao, Y.T.; Dou, X.D.; Peng, Q.Y.; Shen, Y.H.; Ji, W.J.; Liu, Y.J. Response of Camellia sinensis var. assamica suitable areas to climate change-Evidence from Yunnan province (China). Agron. J. 2023, 115, 1586–1598. [Google Scholar] [CrossRef]
- Bassiony, A.; Peng, Q.H.; Baldermann, S.; Feng, S.; Yang, K.N.; Zhang, Y.C.; Fu, J.Y.; Lv, H.P.; Lin, Z.; Shi, J. Differential accumulation patterns of flavor compounds in Longjing 43 and Qunti fresh leaves and during processing responding to altitude changes. Food Res. Int. 2024, 187, 114392. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, Q.Y.; Niu, L.C.; Yuan, H.B.; Shan, X.J.; Hua, J.J.; Chen, L.; Zhang, Q.T.; Feng, Y.N.; Yu, X.L.; et al. Integration of intelligent sensory evaluation, metabolomics, quantification, and enzyme activity analysis to elucidate the influence of first-drying methods on the flavor formation of congou black tea and its underlying mechanism. Food Chem. 2025, 480, 143858. [Google Scholar] [CrossRef]
- Zhang, S.; Hua, J.J.; Niu, L.C.; Yuan, H.B.; Chen, L.; Shan, X.J.; Zhang, Q.T.; Feng, Y.N.; Zhou, Q.H.; Jiang, Y.W.; et al. Lipidomic profiles of shaking-withering black tea and their metabolic conversion during tea processing. Food Chem. 2025, 472, 142924. [Google Scholar] [CrossRef]
- Che, S.Y.; Zhuge, Y.W.; Shao, X.X.; Peng, X.T.; Fu, H.Y.; She, Y.B. A fluorescence ionic probe utilizing Cu2+ assisted competition for detecting glyphosate abused in green tea. Food Chem. 2024, 447, 138859. [Google Scholar] [CrossRef]
- Zeng, L.; Fu, Y.Q.; Gao, Y.; Wang, F.; Liang, S.; Yin, J.F.; Fauconnier, M.L.; Ke, L.J.; Xu, Y.Q. Dynamic changes of key metabolites in Longjing green tea during processing revealed by widely targeted metabolomic profiling and sensory experiments. Food Chem. 2024, 450, 139373. [Google Scholar] [CrossRef]
- Carloni, P.; Tiano, L.; Padella, L.; Bacchetti, T.; Customu, C.; Kay, A.; Damiani, E. Antioxidant activity of white, green and black tea obtained from the same tea cultivar. Food Res. Int. 2013, 53, 900–908. [Google Scholar] [CrossRef]
- Liang, L.; Li, Y.H.; Mao, X.J.; Wang, Y.X. Metabolomics applications for plant-based foods origin tracing, cultivars identification and processing: Feasibility and future aspects. Food Chem. 2024, 449, 139227. [Google Scholar] [CrossRef]
- Su, S.X.; Long, P.P.; Zhang, Q.T.; Wen, M.C.; Han, Z.S.; Zhou, F.; Ke, J.P.; Wan, X.C.; Ho, C.T.; Zhang, L. Chemical, sensory and biological variations of black tea under different drying temperatures. Food Chem. 2024, 446, 138827. [Google Scholar] [CrossRef]
- Yan, X.M.; Wang, Y.M.; Yang, T.Y.; Wang, F.; Wan, X.C.; Zhang, Z.L. Exogenous theanine application improves the fresh leaf yield and quality of an albino green tea Huangjinya. Food Chem. 2025, 467, 142298. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Yan, K.N.; Peng, Q.H.; Baldermann, S.; Zhu, Y.; Dai, W.D.; Feng, S.; Simal-Gandara, J.; Fu, J.Y.; Lv, H.P.; et al. Comprehensive analysis of pigment alterations and associated flavor development in strip and needle green teas. Food Res. Int. 2024, 175, 113713. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.N.; Wang, J.T.; Zhou, M.X.; Peng, Q.H.; Mahmoud, A.B.; Bai, X.; Baldermann, S.; Jiang, X.B.; Feng, S.; Wu, Y.; et al. Insights into potential flavor-active peptides and taste-related compounds in Longjing teas: A comparative study of ‘Longjing 43’ and ’Qunti’ cultivars. Food Chem. 2025, 471, 142790. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.L.; Jiang, Y.M.; Duan, J.; Shi, J.; Xue, S.; Kakuda, Y. Variation in catechin contents in relation to quality of ‘Huang Zhi Xiang’ Oolong tea (Camellia sinensis) at various growing altitudes and seasons. Food Chem. 2010, 119, 648–652. [Google Scholar] [CrossRef]
- Yuan, Y.; Peng, Z.; Jiang, X.Y.; Zhu, Q.; Chen, R.P.; Wang, W.Z.; Liu, A.X.; Wu, C.J.; Ma, C.H.; Zhang, J. Metabolomics analysis of flavor differences in Shuixian (Camellia sinensis) tea from different production regions and their microbial associations. Food Chem. 2024, 443, 138542. [Google Scholar] [CrossRef]
- Li, N.N.; Lu, J.L.; Li, Q.S.; Zheng, X.Q.; Wang, X.C.; Wang, L.; Wang, Y.C.; Ding, C.Q.; Liang, Y.R.; Yang, Y.J. Dissection of Chemical Composition and Associated Gene Expression in the Pigment-Deficient Tea Cultivar ‘Xiaoxueya’ Reveals an Albino Phenotype and Metabolite Formation. Front. Plant Sci. 2019, 10, 1543. [Google Scholar] [CrossRef]
- Li, N.N.; Xu, J.R.; Zhao, Y.Q.; Zhao, M.M.; Liu, Z.H.; Wang, K.B.; Huang, J.N.; Zhu, M.Z. The influence of processing methods on polyphenol profiling of tea leaves from the same large-leaf cultivar (Camellia sinensis var. assamica cv. Yunkang-10): Nontargeted/targeted polyphenomics and electronic sensory analysis. Food Chem. 2024, 460, 140515. [Google Scholar] [CrossRef]
- Tounekti, T.; Joubert, E.; Hernandez, I.; Munne-Bosch, S. Improving the Polyphenol Content of Tea, Crit. Rev. Plant Sci. 2013, 32, 192–215. [Google Scholar] [CrossRef]
- Ran, W.; Li, Q.H.; Hu, X.L.; Zhang, D.; Yu, Z.; Chen, Y.Q.; Wang, M.L.; Ni, D.J. Comprehensive analysis of environmental factors on the quality of tea (Camellia sinensis var. sinensis) fresh leaves. Sci. Hortic. 2023, 319, 112177. [Google Scholar] [CrossRef]
- Qiao, F.; Lu, Y.H.; Geng, G.G.; Zhou, L.Y.; Chen, Z.N.; Wang, L.H.; Xie, H.C.; Qiu, Q.S. Flavonoid synthesis in Lamiophlomis rotata from Qinghai-Tibet Plateau is influenced by soil properties, microbial community, and gene expression. J. Plant Physiol. 2023, 287, 154043. [Google Scholar] [CrossRef]
- Ye, J.H.; Lv, Y.Q.; Liu, S.R.; Jin, J.; Wang, Y.F.; Wei, C.L.; Zhao, S.Q. Effects of Light Intensity and Spectral Composition on the Transcriptome Profiles of Leaves in Shade Grown Tea Plants (Camellia sinensis L.) and Regulatory Network of Flavonoid Biosynthesis. Molecules 2021, 26, 5836. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zhang, S.S.; Ma, X.J.; Zheng, X.; Liu, Y.J.; Zhu, Q.H.; Luo, X.Q.; Cui, J.L.; Song, C.K. Glycoside-specific metabolomics reveals the novel mechanism of glycinebetaine-induced cold tolerance by regulating apigenin glycosylation in tea plants. New Phytol. 2025, 245, 2616–2631. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhou, P.; Hu, Z.H.; Xiong, A.S.; Li, X.H.; Chen, X.; Zhuang, J. The transcription factor CsPAT1 from tea plant (Camellia sinensis) is involved in drought tolerance by modulating phenylpropanoid biosynthesis. J. Plant Physiol. 2025, 308, 154474. [Google Scholar] [CrossRef]
- Avalos, J.; Limón, M.C. Biological roles of fungal carotenoids. Curr. Genet. 2015, 61, 309–324. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.K.; Yu, S.Q.; Zhang, W.; Zhang, S.S.; Fu, J.L.; Ying, H.; Pingcuo, G.S.; Liu, S.J.; Zhao, F.; Wu, Q.J.; et al. The content and diversity of carotenoids associated with high-altitude adaptation in Tibetan peach fruit. Food Chem. 2023, 398, 133909. [Google Scholar] [CrossRef]
- Kato, S.; Tanno, Y.; Takaichi, S.; Shinomura, T. Low Temperature Stress Alters the Expression of Phytoene Desaturase Genes (crtP1 and crtP2) and the ζ-Carotene Desaturase Gene (crtQ) Together with the Cellular Carotenoid Content of Euglena gracilis. Plant Cell Physiol. 2019, 60, 274–284. [Google Scholar] [CrossRef]
- Wang, J.M.; Zhang, N.; Zhao, M.Y.; Jing, T.T.; Jin, J.Y.; Wu, B.; Wan, X.C.; Schwab, W.; Song, C.K. Carotenoid Cleavage Dioxygenase 4 Catalyzes the Formation of Carotenoid-Derived Volatile β-lonone during Tea (Camellia sinensis) Withering. J. Agric. Food Chem. 2020, 68, 1684–1690. [Google Scholar] [CrossRef]
- Ma, Y.Y.; Hu, Y.W.; Peng, H.G.; Yang, Z.N.; Zheng, Y.Q.; Wang, J. An investigation into the key volatile compounds that dominate the characteristic aroma and flavor of pomelo flower-green tea. Food Chem. X 2025, 29, 102641. [Google Scholar] [CrossRef]
- Guo, Y.F.; Li, D.L.; Qiu, H.J.; Zhang, X.L.; Liu, L.; Zhao, J.J.; Jiang, D.Y. Genome-wide association studies reveal the genetic basis of amino acid content variation in tea plants. J. Integr. Agric. 2023, 22, 3364–3379. [Google Scholar] [CrossRef]
- Xiao, H.S.; Tian, Y.; Yang, H.; Zeng, Y.J.; Yang, Y.; Yuan, Z.H.; Zhou, H.Y. Are there any differences in the quality of high-mountain green tea before and after the first new leaves unfold? A comprehensive study based on E-sensors, whole metabolomics and sensory evaluation. Food Chem. 2024, 457, 140119. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.M.; Nie, C.N.; Du, X.; Xu, W.; Zhang, X.; Tan, X.Q.; Li, Q.; Bian, J.L.; Li, P.W. Evaluation of sensory and safety quality characteristics of “high mountain tea”. Food Sci. Nutr. 2022, 10, 3338–3354. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.Y.; Zhou, X.C.; Zeng, L.T. How does tea (Camellia sinensis) produce specialized metabolites which determine its unique quality and function: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 3751–3767. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.L.; Zhong, Z.H.; Li, Z.M.; Zhang, X.J.; Fu, H.W.; Yang, B.X.; Zhang, L. Metabolomics in quality formation and characterisation of tea products: A review. Int. J. Food Sci. Technol. 2022, 57, 4001–4014. [Google Scholar] [CrossRef]
- Zeng, L.T.; Zhou, X.C.; Liao, Y.Y.; Yang, Z.Y. Roles of specialized metabolites in biological function and environmental adaptability of tea plant (Camellia sinensis) as a metabolite studying model. J. Adv. Res. 2021, 34, 159–171. [Google Scholar] [CrossRef]
- Shan, X.J.; Jiang, Y.W.; Zhang, S.; Chen, L.; Niu, L.C.; Zhang, Q.T.; Zhou, Q.H.; Wang, Y.J.; Yuan, H.B.; Li, J. Key umami taste contributors in Longjing green tea uncovered by integrated means of sensory quantitative descriptive analysis, metabolomics, quantification analysis and taste addition experiments. Food Chem. 2024, 453, 139628. [Google Scholar] [CrossRef]
- Ye, Y.L.; Yan, J.N.; Cui, J.L.; Mao, S.H.; Li, M.F.; Liao, X.L.; Tong, H.R. Dynamic changes in amino acids, catechins, caffeine and gallic acid in green tea during withering. J. Food Compos. Anal. 2018, 66, 98–108. [Google Scholar] [CrossRef]
- Ding, S.Y.; Liu, J.X.; Li, X.J.; Li, J.H.; Tan, Y.L.; Wang, X.; Li, X. Effects of altitude and tree age on the biochemical composition of tea leaves in Wufeng County. J. Food Saf. Qual. 2023, 14, 236–243. [Google Scholar] [CrossRef]
- Lin, S.J.; Chen, Z.P.; Chen, T.T.; Deng, W.W.; Wan, X.C.; Zhang, Z.L. Theanine metabolism and transport in tea plants (Camellia sinensis L.): Advances and perspectives. Crit. Rev. Biotechnol. 2023, 43, 327–341. [Google Scholar] [CrossRef]
- Dai, M.J.; Kang, X.R.; Wang, Y.Q.; Huang, S.; Guo, Y.Y.; Wang, R.F.; Chao, N.; Liu, L. Functional Characterization of Flavanone 3-Hydroxylase (F3H) and Its Role in Anthocyanin and Flavonoid Biosynthesis in Mulberry. Molecules 2022, 27, 3341. [Google Scholar] [CrossRef]
Compounds | Fresh Tea Leaves | p Value | |
---|---|---|---|
Low | High | ||
Flavonoids | mg·g−1 DW | ||
EGC | 27.72 ± 0.67 | 70.20 ± 1.65 | <0.001 |
EGCG | 60.92 ± 0.99 | 73.39 ± 1.29 | <0.001 |
ECG | 56.25 ± 1.28 | 35.68 ± 0.64 | <0.001 |
EC | 17.68 ± 0.25 | 18.38 ± 0.42 | NS |
GC | 3.44 ± 0.04 | 5.11 ± 0.05 | <0.001 |
C | 3.18 ± 0.06 | 2.81 ± 0.06 | <0.01 |
GCG | 0.31 ± 0.01 | 0.52 ± 0.02 | <0.001 |
CG | 0.08 ± 0.00 | 0.04 ± 0.00 | <0.001 |
Myricetin-3-galactoside (M-3-gal) | 3.69 ± 0.03 | 4.87 ± 0.08 | <0.001 |
Myricetin-3-glucoside (M-3-glu) | 0.38 ± 0.00 | 0.93 ± 0.01 | <0.001 |
Myricetin (M) | 0.08 ± 0.00 | 0.12 ± 0.01 | <0.01 |
Kaempferol-3-rutinoside (K-3-rut) | 0.23 ± 0.01 | 0.58 ± 0.02 | <0.001 |
Kaempferol (K) | 0.01 ± 0.00 | 0.00 ± 0.00 | <0.001 |
Quercetin-3-galactoside (Q-3-gal) | 1.21 ± 0.04 | 0.90 ± 0.03 | <0.001 |
Quercetin-3-glucoside (Q-3-glu) | 0.07 ± 0.00 | 0.38 ± 0.02 | <0.001 |
Quercetin (Q) | 0.00 ± 0.00 | 0.00 ± 0.00 | <0.001 |
Flavonoids in total | 175.25 ± 3.20 | 213.91 ± 3.78 | <0.001 |
Carotenoids | μg·g−1 DW | ||
α-Carotene | 1.10 ± 0.01 | 7.31 ± 0.09 | <0.001 |
β-Carotene | 12.97 ± 0.17 | 36.72 ± 0.47 | <0.001 |
(E/Z)-Phytoene | 0.89 ± 0.01 | 2.77 ± 0.04 | <0.001 |
Lutein palmitate | 0.12 ± 0.00 | 0.15 ± 0.00 | <0.001 |
Zeaxanthin | 9.31 ± 0.12 | 17.58 ± 0.23 | <0.001 |
Violaxanthin | 1.11 ± 0.01 | 1.47 ± 0.02 | <0.001 |
Neoxanthin | 3.45 ± 0.04 | 4.64 ± 0.06 | <0.001 |
Lutein | 166.35 ± 2.14 | 477.74 ± 6.14 | <0.001 |
β-Cryptoxanthin | 1.35 ± 0.02 | 2.48 ± 0.03 | <0.001 |
8′-Apo-beta-carotenal | 0.02 ± 0.00 | 0.03 ± 0.00 | <0.01 |
Canthaxanthin | 0.00 ± 0.00 | 0.00 ± 0.00 | <0.001 |
Echinenone | 0.01 ± 0.00 | 0.01 ± 0.00 | <0.001 |
β-Citraurin | 0.00 ± 0.00 | 0.01 ± 0.00 | <0.001 |
Lutein myristate | 0.11 ± 0.00 | 0.25 ± 0.00 | <0.001 |
Violaxanthin dibutyrate | 0.03 ± 0.00 | 0.01 ± 0.00 | <0.001 |
α-Cryptoxanthin | 0.13 ± 0.00 | 0.53 ± 0.01 | <0.001 |
Lutein dilaurate | 0.03 ± 0.00 | 0.06 ± 0.00 | <0.001 |
Lutein dimyristate | 0.05 ± 0.00 | 0.10 ± 0.00 | <0.001 |
Carotenoids in total | 197.02 ± 2.53 | 551.88 ± 7.09 | <0.001 |
Total pigments | 327.27 ± 2.83 | 765.79 ± 6.67 | <0.001 |
Amino Acids | Fresh Tea Leaves | p Value | |
---|---|---|---|
Low | High | ||
Phenylalanine | 0.04 ± 0.00 | 0.11 ± 0.00 | <0.001 |
Leucine | nd | nd | ns |
Tryptophan | 0.36 ± 0.01 | 0.44 ± 0.01 | <0.001 |
Valine | 0.10 ± 0.00 | 0.11 ± 0.00 | <0.01 |
Proline | 0.10 ± 0.00 | 0.10 ± 0.00 | 0.090 |
Tyrosine | 0.63 ± 0.01 | 0.60 ± 0.01 | <0.05 |
Alanine | 0.25 ± 0.00 | 0.29 ± 0.00 | <0.001 |
Threonine | 0.28 ± 0.00 | 0.35 ± 0.01 | <0.001 |
Glycine | 0.13 ± 0.00 | 0.13 ± 0.00 | ns |
Glutamine | 2.47 ± 0.04 | 4.02 ± 0.07 | <0.001 |
Serine | 0.57 ± 0.01 | 0.88 ± 0.01 | <0.001 |
Glutamic acid | 3.21 ± 0.05 | 4.03 ± 0.07 | <0.001 |
Asparagine | 0.77 ± 0.01 | 0.83 ± 0.01 | <0.05 |
Aspartic acid | 1.99 ± 0.03 | 1.70 ± 0.03 | <0.001 |
Histidine | 0.36 ± 0.01 | 0.39 ± 0.01 | <0.001 |
Arginine | 1.44 ± 0.02 | 2.57 ± 0.04 | <0.001 |
Lysine | 0.10 ± 0.00 | 0.11 ± 0.00 | <0.01 |
Isoleucine | 0.01 ± 0.00 | 0.01 ± 0.00 | <0.01 |
Theanine | 19.62 ± 0.33 | 25.96 ± 0.44 | <0.001 |
in total | 32.44 ± 0.55 | 42.63 ± 0.72 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Zhou, Q.; Fang, S.; Yan, K.; Peng, Q.; Lin, Z.; Lv, H.; Mu, D.; Fu, J.; Shi, J. Comparative Analysis of Flavonoids, Carotenoids, and Major Primary Compounds in Site-Specific Yellow-Leaf Tea and Their Dynamic Alterations During Processing. Foods 2025, 14, 3575. https://doi.org/10.3390/foods14203575
Yang J, Zhou Q, Fang S, Yan K, Peng Q, Lin Z, Lv H, Mu D, Fu J, Shi J. Comparative Analysis of Flavonoids, Carotenoids, and Major Primary Compounds in Site-Specific Yellow-Leaf Tea and Their Dynamic Alterations During Processing. Foods. 2025; 14(20):3575. https://doi.org/10.3390/foods14203575
Chicago/Turabian StyleYang, Jiaqi, Qi Zhou, Shitao Fang, Kangni Yan, Qunhua Peng, Zhi Lin, Haipeng Lv, Dan Mu, Jianyu Fu, and Jiang Shi. 2025. "Comparative Analysis of Flavonoids, Carotenoids, and Major Primary Compounds in Site-Specific Yellow-Leaf Tea and Their Dynamic Alterations During Processing" Foods 14, no. 20: 3575. https://doi.org/10.3390/foods14203575
APA StyleYang, J., Zhou, Q., Fang, S., Yan, K., Peng, Q., Lin, Z., Lv, H., Mu, D., Fu, J., & Shi, J. (2025). Comparative Analysis of Flavonoids, Carotenoids, and Major Primary Compounds in Site-Specific Yellow-Leaf Tea and Their Dynamic Alterations During Processing. Foods, 14(20), 3575. https://doi.org/10.3390/foods14203575