Therapeutic Efficacy of Soy-Derived Bioactives: A Systematic Review of Nutritional Potency, Bioactive Therapeutics, and Clinical Biomarker Modulation
Abstract
1. Introduction
2. Materials and Methods
- Eligibility Criteria
- •
- Included human clinical trials or RCTs.
- •
- Investigated soy or soy-derived products (e.g., tofu, tempeh, soy milk, or soy protein isolate).
- •
- Reported outcome measures related to metabolic health, markers of cardiovascular function, body composition, hormonal effects, or cognitive function.
- •
- Published from 2018 to 2025.
- •
- Exclusion criteria included: Animal or in vitro studies. Studies without a control group. Trials lacking sufficient data for extraction.
- Selection of the Studies
- •
- The titles and abstracts of the identified studies were independently screened for relevance by two independent reviewers. Full texts of the studies deemed potentially eligible were retrieved and examined against the inclusion criteria. Disagreements were resolved through discussion or consultation with a third reviewer.
- Data Extraction
- •
- Data were extracted using a standardized form, which included:
- •
- Author(s), year, country
- •
- Study design and duration
- •
- Participant characteristics (age, sex, health status)
- Quality Assessment
Sr. No | Title of Study (Human Trials) | Authors | Year | Focus Area | Study Time | Country of Study | Reference |
---|---|---|---|---|---|---|---|
1. | A controlled randomized trial of metabolic syndrome, Consumption of soy milk enriched the plant sterols in a healthy dietary pattern lowers blood pressure in adults | Xu et al. | 2025 | Effect of sterol-enriched soy milk on metabolic and blood pressure in adults | Not specified | Singapore | [19] |
2. | Evaluation of the Safety Profile of Symbiota®, a Fermented Soybean-Based Formulation Through Preclinical Tests and a Human Randomized Controlled Trial for Functional Food and Supplement Use | Hung et al. | 2024 | Safety, tolerability, and clinical effects of consuming the fermented soybean solution (Symbiota®) | Not specified | Taiwan | [20] |
3. | Impact of Soy Extract-Based Nutraceuticals on Health Parameters in Postmenopausal Women: Findings from a Placebo-Controlled Randomized Trial of Double-Blind | Takuathung et al. | 2024 | Soy extract nutraceutical benefits: skin aging, bone health, cholesterol, and general health in postmenopausal women | 12 weeks (typical duration for such interventions) | Thailand | [21] |
4. | Assessing the Effectiveness of Doenjang, a Traditional Korean Fermented Food, in Alleviating Menopausal Symptoms and Managing Obesity: Findings from a Double-Blind Randomized Clinical Study | Han et al. | 2024 | Menopausal symptom relief, anti-obesity effect of fermented soy (Doenjang) | Not specified (likely 8–12 weeks typical) | Republic of Korea | [22] |
5. | A Randomized Controlled Study on the Influence of Soy-Derived Isoflavones on Metabolic Parameters in Non-Alcoholic Fatty Liver Disease Patients | Neshatbini et al. | 2024 | Soy isoflavones’ impact on metabolic status in NAFLD patients | 12 weeks | Iran | [23] |
6. | Clinical Investigation of the Effects of Equol and Resveratrol on Bone Metabolism Indicators in Postmenopausal Women | Corbi et al. | 2023 | Evaluation of the effects of equol and resveratrol supplementation on bone turnover biomarkers in postmenopausal women | Not specified | Italy | [24] |
7. | Assessment of the Safety Profile and Tolerance of Whole Soybean Consumption in Obese Elderly Individuals: A Gradual Dose-Increase Clinical Study | Rebello et al. | 2023 | Safety, tolerability, gastrointestinal responses, and biomarkers after escalating soybean flour intake | 8 weeks | United States | [25] |
8. | Impact of Probiotic-Enriched Soymilk Supplementation on Cardiovascular Risk Indicators in Individuals with Type 2 Diabetes | Hasanpour et al. | 2023 | Cardiovascular health in T2DM patients | 8 weeks | Iran | [26] |
9. | Clinical Insights into the Role of Soybean in Personalized Nutrition and Precision Healthcare | Kang et al. | 2023 | Soybeans, clinical benefits, precision medicine | Not specified | Republic of Korea | [27] |
10. | An Overview of the Impact of Soy Consumption on Digestive System Health | Belobrajdic et al. | 2023 | Soy and gut health | Not specified | Australia | [28] |
11. | A Three-Month Double-Blind Randomized Controlled Feeding Study Comparing the Impact of Soybean Oil (High in n-6 PUFA), Olive Oil (High in MUFA), and Camellia Seed Oil on Body Weight and Cardiometabolic Health in Chinese Women | Wu et al. | 2022 | Assessed the comparative effects of different dietary oils (soybean oil vs. olive oil vs. camellia seed oil) on body weight, lipid profile, glucose levels, and cardiometabolic risk factors in women | 3 Months | China | [29] |
12. | Cholesterol-Lowering Impact of a Non-Probiotic Fermented Soy Formula: Findings from a Randomized Crossover Clinical Trial | Jung et al. | 2021 | Cardiovascular health, lipid profiles (total cholesterol, LDL-C, HDL-C, ApoB/ApoA1), and isoflavone bioavailability | Not specified | United States | [30] |
13. | Extended Intake of Soy Nuts Enhances Brain Blood Circulation and Motor Function: Evidence from a Randomized Controlled Crossover Study in Elderly Adults | Kleinloog et al. | 2021 | Cognitive health, cerebral blood flow, and response time | Not specified | The Netherlands and the USA | [31] |
14. | Black Soybean Consumption Enhances Blood Vessel Health and Regulates Blood Pressure: Findings from a Human Randomized, Placebo-Controlled Crossover Study | Yamashita et al. | 2020 | Cardiovascular health, vascular function, blood pressure, nitric oxide, oxidative stress | 4 weeks | Japan | [32] |
15. | Impact of Whole Soy and Daidzein Isoflavone Supplementation on Bone Metabolism and Inflammation: A Six-Month Double-Blind Randomized Controlled Trial in Equol-Producing Postmenopausal Chinese Women | Liu et al. | 2020 | Bone health, inflammation, soy isoflavones | 6 months | China | [33] |
16. | Intake of Q-CAN Plus, a Fermented Soy-Based Drink, Enhances Serum Lipid Profile and Modulates Cytokine Levels | Arumuga et al. | 2020 | Investigating the effects of fermented soy beverage (Q-CAN Plus) on serum cholesterol and cytokine profiles | 4 weeks (intervention period in a randomized, placebo-controlled design) | United States | [34] |
17. | A Randomized Clinical Investigation into the Influence of Lunasin Extracted from Soybeans on Cardiometabolic Health Parameters | Haddad et al. | 2020 | Effects of soy peptide (lunasin) on lipid profiles, blood pressure, and inflammatory biomarkers in at-risk adults | Not specified | United States | [35] |
18. | Impact of Phytosterol-Enriched Soy-Based Beverage on Blood Lipid Reduction | Chau et al. | 2020 | Lipid profile management in humans | 8 weeks | Hong Kong/China | [36] |
19. | Effectiveness and Safety of Fermented Soy Supplement DW2009 in Mild Cognitive Impairment: A 12-Week Randomized Controlled Trial | Hwang et al. | 2019 | Cognitive function and safety evaluation of a fermented soy supplement in older adults | 12 weeks | Republic of Korea | [37] |
20. | Soy Intake and Its Impact on Clinical and Metabolic Health in Older Women with Metabolic Syndrome: A Randomized Trial | Bakhtiari et al. | 2019 | Soy supplementation, metabolic syndrome | 12 weeks | Iran | [38] |
21. | Impact of Probiotic Soy Milk on Renal Function in Diabetic Nephropathy | Miraghajan et al. | 2019 | Probiotic soy milk, renal function in diabetics | 8 weeks | Iran | [39] |
22. | Assessment of Soy Milk Consumption on Metabolic Parameters in Patients Diagnosed with NAFLD: A Randomized Controlled Trial | Eslami et al. | 2019 | Soy milk, NAFLD, metabolic health | 8 weeks | Iran | [40] |
23. | Influence of S-equol and Soy-Derived Isoflavones on Cardiovascular and Neurological Health | Sekikawa et al. | 2019 | Soy isoflavones, cardiovascular and cognitive health | Not specified | Japan and USA | [41] |
24. | Replacing Red Meat with Soybeans, but Not Other Legumes, Reduces Inflammatory Markers in Type 2 Diabetic Patients: Evidence from a Randomized Clinical Study | Hematdar et al. | 2018 | Soy consumption and inflammation in T2DM | Not specified | Iran | [42] |
3. Phytochemical Composition of Soybean: A Bioactive Treasure
4. Major Protein Fractions in Soybean: Glycinin (11S) and β-Conglycinin (7S)
5. Amino Acid Profile and Biological Value of Soy Protein
Food Items | Protein (g/100 g) | Calories (kcal/100 g) | Citation |
---|---|---|---|
Soybean | 40 | 446 | [62] |
Fava beans | 30 | 341 | [63] |
Whey | 91 | 381 | [64] |
Casein | 85 | 365 | [65] |
Rice | 7.5 | 357 | [66] |
Quinoa | 14 | 375 | [67] |
Teff | 9.5 | 359 | [68] |
Millet | 8.5 | 355 | [69] |
Mung beans | 24 | 353 | [70] |
Chickpea | 21 | 368 | [71] |
Kidney beans | 22 | 340 | [72] |
6. Soy Isoflavones: Structure, Mechanism, and Therapeutic Potential
7. Anti-Inflammatory Effects of Soy: Molecular Pathways
8. Soybean in Cardiovascular Health: Lipid-Lowering and Atherogenic Effects
9. Glycemic Control and Soy: Role in Diabetes Prevention and Management
10. Soy and Hormonal Health: Estrogenic/Anti-Estrogenic Effects
11. Neuroprotective Effects of Soy and Cognitive Function
12. Soy and Gut Microbiota: Probiotic Properties and Metabolomic Shifts
13. Soy Intake in Adiposity Regulation and Metabolic Weight Control
14. Nutraceutical Effects of Soy in Carcinogenesis Suppression Across Various Cancer Types
15. Functional and Fortified Soy-Based Products
16. Biotechnological Advances in Soybean Breeding and Biofortification
17. Diagnostic Innovations and Allergen Mitigation of Soy Protein
18. Sustainability of Soy Production and Its Environmental Impact
19. Future Directions: Integrating Soy in Global Food and Health Policies
20. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Usman, M.; Li, Q.; Luo, D.; Xing, Y.; Dong, D. Valorization of soybean by-products for sustainable waste processing with health benefits. J. Sci. Food Agric. 2025, 105, 5150–5162. [Google Scholar] [CrossRef]
- Mishra, R.; Tripathi, M.; Sikarwar, R.; Singh, Y.; Tripathi, N. Soybean (Glycine max L. Merrill): A multipurpose legume shaping our world. Plant Cell Biotechnol. Mol. Biol. 2024, 25, 17–37. [Google Scholar] [CrossRef]
- Silva, S.R. Soil Physical Properties and Soybean Yield Influenced by Liming and Long-Term Crop Rotation Systems. Int. J. Plant Prod. 2025, 1–17. [Google Scholar] [CrossRef]
- Qin, P.; Wang, T.; Luo, Y. A review on plant-based proteins from soybean: Health benefits and soy product development. J. Agric. Food Res. 2022, 7, 100265. [Google Scholar] [CrossRef]
- Agushybana, F.; Winarni, S.; Siramaneerat, I.; Suroto, S.; Fitri, I. The impact of soy milk on perimenopause syndrome and estrogen levels among women aged more than 50 years in Semarang, Indonesia. Food Res. 2025, 9, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lu, Y. Optimization of grain import market layout in the context of food security: A study of soybean in China. Front. Sustain. Food Syst. 2025, 9, 1549463. [Google Scholar] [CrossRef]
- Rolands, M.R.; Hackl, L.S.; Bochud, M.; Lê, K.A. Protein adequacy, plant protein proportion, and main plant protein sources consumed across vegan, vegetarian, pescovegetarian, and semivegetarian diets: A systematic review. J. Nutr. 2025, 155, 153–167. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Hussain, M.A.; Zhao, Y.; Wang, Y.; Song, Y.; Li, Y.; Gao, H.; Jing, Y.; Xu, K.; Zhang, W. GmAKT1-mediated K+ absorption positively modulates soybean salt tolerance by GmCBL9-GmCIPK6 complex. Plant Biotechnol. J. 2025, 23, 2276–2289. [Google Scholar] [CrossRef]
- Amjid, M.; Üstün, R. Selection of soybean genotypes exhibiting drought resistance by assessing morphological and yield traits. Euphytica 2025, 221, 44. [Google Scholar] [CrossRef]
- Kim, I.-S. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans. Antioxidants 2021, 10, 1064. [Google Scholar] [CrossRef]
- Luo, E.-D.; Jiang, H.-M.; Chen, W.; Wang, Y.; Tang, M.; Guo, W.-M.; Diao, H.-Y.; Cai, N.-Y.; Yang, X.; Bian, Y. Advancements in lead therapeutic phytochemicals polycystic ovary syndrome: A review. Front. Pharmacol. 2023, 13, 1065243. [Google Scholar] [CrossRef]
- Mendes dos Reis, J.G.; Sanches Amorim, P.; Sarsfield Pereira Cabral, J.A.; Toloi, R.C. The impact of logistics performance on Argentina, Brazil, and the US soybean exports from 2012 to 2018: A gravity model approach. Agriculture 2020, 10, 338. [Google Scholar] [CrossRef]
- Tiryaki, S.; Macit, M.; Zemheri, I.E.; Süt, P.A.; Duman, G.; Telci, D. Anticancer Activity of Soy Lecithin-Based Curcumin in Prostate Cancer. J. Appl. Polym. Sci. 2025, 142, e56816. [Google Scholar] [CrossRef]
- Messina, M. Soy and health update: Evaluation of the clinical and epidemiologic literature. Nutrients 2016, 8, 754. [Google Scholar] [CrossRef]
- Sánchez, M. Chile as a key enabler country for global plant breeding, agricultural innovation, and biotechnology. GM Crops Food 2020, 11, 130–139. [Google Scholar] [CrossRef]
- Soujanya, K.; Supraja, T.; Kuna, A.; Nair, R.M.; Triveni, S.; Yogendra, K. Comparative Evaluation of Nutritional Quality and In Vitro Protein Digestibility in Selected Vegetable Soybean Genotypes at R6 and R8 Maturity. Foods 2025, 14, 2549. [Google Scholar] [CrossRef]
- Korobko, A.; Kravets, R.; Mazur, O.; Mazur, O.; Shevchenko, N. Nitrogen-fixing capacity of soybean varieties depending on seed inoculation and foliar fertilization with biopreparations. J. Ecol. Eng. 2024, 25, 23–37. [Google Scholar] [CrossRef]
- Cao, U.M.; Iyer, J.; Kanai, R.; Sumita, Y.; Tran, S.D. Soy-derived materials: A sustainable resource and their applications in medicine and tissue engineering. Biotechnol. Sustain. Mater. 2024, 1, 21. [Google Scholar] [CrossRef]
- Xu, Y.; Sutanto, C.N.; Xia, X.; Toh, D.W.K.; Gan, A.X.; Deng, Q.; Ling, L.H.; Khoo, C.M.; Foo, R.S.; Kim, J.E. Consumption of plant sterols-enriched soy milk with a healthy dietary pattern diet lowers blood pressure in adults with metabolic syndrome: A randomized controlled trial. Nutr. Metab. Cardiovasc. Dis. NMCD 2025, 35, 103773. [Google Scholar] [CrossRef]
- Hung, C.M.; Chu, W.C.; Huang, W.Y.; Lee, P.J.; Kuo, W.C.; Hou, C.Y.; Yang, C.C.; Yang, A.J.; Wu, W.K.; Kuo, M.L.; et al. Safety assessment of a proprietary fermented soybean solution, Symbiota®, as an ingredient for use in foods and dietary supplements: Non-clinical studies and a randomized trial. Food Sci. Nutr. 2024, 12, 2346–2363. [Google Scholar] [CrossRef]
- Na Takuathung, M.; Teekachunhatean, S.; Chansakaow, S.; Klinjan, P.; Inpan, R.; Kongta, N.; Tipduangta, P.; Tipduangta, P.; Dukaew, N.; Sakuludomkan, C.; et al. The effects of SOY extract nutraceuticals on postmenopausal women’s health: A randomized, double-blind, placebo-controlled trial. J. Funct. Foods 2024, 113, 106055. [Google Scholar] [CrossRef]
- Han, A.L.; Ryu, M.S.; Yang, H.J.; Jeong, D.Y.; Choi, K.H. Evaluation of Menopausal Syndrome Relief and Anti-Obesity Efficacy of the Korean Fermented Food Doenjang: A Randomized, Double-Blind Clinical Trial. Nutrients 2024, 16, 1194. [Google Scholar] [CrossRef]
- Neshatbini Tehrani, A.; Hatami, B.; Daftari, G.; Hekmatdoost, A.; Yari, Z.; Salehpour, A.; Hosseini, S.A.; Helli, B. The effect of soy isoflavones supplementation on metabolic status in patients with non-alcoholic fatty liver disease: A randomized placebo controlled clinical trial. BMC Public Health 2024, 24, 1362. [Google Scholar] [CrossRef]
- Corbi, G.; Nobile, V.; Conti, V.; Cannavo, A.; Sorrenti, V.; Medoro, A.; Scapagnini, G.; Davinelli, S. Equol and Resveratrol Improve Bone Turnover Biomarkers in Postmenopausal Women: A Clinical Trial. Int. J. Mol. Sci. 2023, 24, 12063. [Google Scholar] [CrossRef] [PubMed]
- Rebello, C.J.; Boué, S.; Levy, R.J.; Puyau, R.; Beyl, R.A.; Greenway, F.L.; Heiman, M.L.; Keller, J.N.; Reynolds, C.F.; Kirwan, J.P. Safety and Tolerability of Whole Soybean Products: A Dose-Escalating Clinical Trial in Older Adults with Obesity. Nutrients 2023, 15, 1920. [Google Scholar] [CrossRef] [PubMed]
- Hasanpour, A.; Babajafari, S.; Mazloomi, S.M.; Shams, M. The effects of soymilk plus probiotics supplementation on cardiovascular risk factors in patients with type 2 diabetes mellitus: A randomized clinical trial. BMC Endocr. Disord. 2023, 23, 36. [Google Scholar] [CrossRef]
- Kang, J.H.; Dong, Z.; Shin, S.H. Benefits of Soybean in the Era of Precision Medicine: A Review of Clinical Evidence. J. Microbiol. Biotechnol. 2023, 33, 1552–1562. [Google Scholar] [CrossRef] [PubMed]
- Belobrajdic, D.P.; James-Martin, G.; Jones, D.; Tran, C.D. Soy and Gastrointestinal Health: A Review. Nutrients 2023, 15, 1959. [Google Scholar] [CrossRef]
- Wu, M.Y.; Du, M.H.; Wen, H.; Wang, W.Q.; Tang, J.; Shen, L.R. Effects of n-6 PUFA-rich soybean oil, MUFA-rich olive oil and camellia seed oil on weight and cardiometabolic profiles among Chinese women: A 3-month double-blind randomized controlled-feeding trial. Food Funct. 2022, 13, 4375–4383. [Google Scholar] [CrossRef]
- Jung, S.M.; Haddad, E.H.; Kaur, A.; Sirirat, R.; Kim, A.Y.; Oda, K.; Rajaram, S.; Sabaté, J. A Non-Probiotic Fermented Soy Product Reduces Total and LDL Cholesterol: A Randomized Controlled Crossover Trial. Nutrients 2021, 13, 535. [Google Scholar] [CrossRef]
- Kleinloog, J.P.D.; Tischmann, L.; Mensink, R.P.; Adam, T.C.; Joris, P.J. Longer-term soy nut consumption improves cerebral blood flow and psychomotor speed: Results of a randomized, controlled crossover trial in older men and women. Am. J. Clin. Nutr. 2021, 114, 2097–2106. [Google Scholar] [CrossRef]
- Yamashita, Y.; Nakamura, A.; Nanba, F.; Saito, S.; Toda, T.; Nakagawa, J.; Ashida, H. Black Soybean Improves Vascular Function and Blood Pressure: A Randomized, Placebo Controlled, Crossover Trial in Humans. Nutrients 2020, 12, 2755. [Google Scholar] [CrossRef]
- Liu, Z.M.; Chen, B.; Li, S.; Li, G.; Zhang, D.; Ho, S.C.; Chen, Y.M.; Ma, J.; Qi, H.; Ling, W.H. Effect of whole soy and isoflavones daidzein on bone turnover and inflammatory markers: A 6-month double-blind, randomized controlled trial in Chinese postmenopausal women who are equol producers. Ther. Adv. Endocrinol. Metab. 2020, 11, 2042018820920555. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, S.; Dioletis, E.; Paiva, R.; Fields, M.R.; Weiss, T.R.; Secor, E.R.; Ali, A. Fermented Soy Beverage Q-CAN Plus Consumption Improves Serum Cholesterol and Cytokines. J. Med. Food 2020, 23, 560–563. [Google Scholar] [CrossRef]
- Haddad Tabrizi, S.; Haddad, E.; Rajaram, S.; Oda, K.; Kaur, A.; Sabaté, J. The Effect of Soybean Lunasin on Cardiometabolic Risk Factors: A Randomized Clinical Trial. J. Diet. Suppl. 2020, 17, 286–299. [Google Scholar] [CrossRef]
- Chau, Y.P.; Cheng, Y.C.; Sing, C.W.; Tsoi, M.F.; Cheng, V.K.; Lee, G.K.; Cheung, C.L.; Cheung, B.M.Y. The lipid-lowering effect of once-daily soya drink fortified with phytosterols in normocholesterolaemic Chinese: A double-blind randomized controlled trial. Eur. J. Nutr. 2020, 59, 2739–2746. [Google Scholar] [CrossRef]
- Hwang, Y.H.; Park, S.; Paik, J.W.; Chae, S.W.; Kim, D.H.; Jeong, D.G.; Ha, E.; Kim, M.; Hong, G.; Park, S.H.; et al. Efficacy and Safety of Lactobacillus Plantarum C29-Fermented Soybean (DW2009) in Individuals with Mild Cognitive Impairment: A 12-Week, Multi-Center, Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2019, 11, 305. [Google Scholar] [CrossRef]
- Bakhtiari, A.; Hajian-Tilaki, K.; Omidvar, S.; Nasiri-Amiri, F. Clinical and metabolic response to soy administration in older women with metabolic syndrome: A randomized controlled trial. Diabetol. Metab. Syndr. 2019, 11, 47. [Google Scholar] [CrossRef] [PubMed]
- Miraghajani, M.; Zaghian, N.; Dehkohneh, A.; Mirlohi, M.; Ghiasvand, R. Probiotic Soy Milk Consumption and Renal Function Among Type 2 Diabetic Patients with Nephropathy: A Randomized Controlled Clinical Trial. ProBiot. Antimicrob. Proteins 2019, 11, 124–132. [Google Scholar] [CrossRef]
- Eslami, O.; Shidfar, F.; Maleki, Z.; Jazayeri, S.; Hosseini, A.F.; Agah, S.; Ardiyani, F. Effect of Soy Milk on Metabolic Status of Patients with Nonalcoholic Fatty Liver Disease: A Randomized Clinical Trial. J. Am. Coll. Nutr. 2019, 38, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Sekikawa, A.; Ihara, M.; Lopez, O.; Kakuta, C.; Lopresti, B.; Higashiyama, A.; Aizenstein, H.; Chang, Y.F.; Mathis, C.; Miyamoto, Y.; et al. Effect of S-equol and Soy Isoflavones on Heart and Brain. Curr. Cardiol. Rev. 2019, 15, 114–135. [Google Scholar] [CrossRef] [PubMed]
- Hematdar, Z.; Ghasemifard, N.; Phishdad, G.; Faghih, S. Substitution of red meat with soybean but not non- soy legumes improves inflammation in patients with type 2 diabetes; a randomized clinical trial. J. Diabetes Metab. Disord. 2018, 17, 111–116. [Google Scholar] [CrossRef]
- Pabich, M.; Materska, M. Biological effect of soy isoflavones in the prevention of civilization diseases. Nutrients 2019, 11, 1660. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, J.; He, Z.; Hao, W.; Liu, J.; Kwek, E.; Ma, K.Y.; Bi, Y. Plasma cholesterol-lowering activity of soybean germ phytosterols. Nutrients 2019, 11, 2784. [Google Scholar] [CrossRef]
- Rahman, U.; Younas, Z.; Ahmad, I.; Yousaf, T.; Latif, R.; Rubab, U.; Hassan, H.; Shafi, U.; Mashwani, Z.-u.-R. Enhancing health and therapeutic potential: Innovations in the medicinal and pharmaceutical properties of soy bioactive compounds. Front. Pharmacol. 2024, 15, 1397872. [Google Scholar] [CrossRef]
- Alghamdi, S.S.; Khan, M.A.; El-Harty, E.H.; Ammar, M.H.; Farooq, M.; Migdadi, H.M. Comparative phytochemical profiling of different soybean (Glycine max (L.) Merr) genotypes using GC–MS. Saudi J. Biol. Sci. 2018, 25, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Piao, Y.-Z.; Eun, J.-B. Physicochemical characteristics and isoflavones content during manufacture of short-time fermented soybean product (cheonggukjang). J. Food Sci. Technol. 2020, 57, 2190–2197. [Google Scholar] [CrossRef]
- Alleza, Z.A.; Arshad, M.; Sikander, M.; Abid, F.; Kanwal, S.; Habib, H.F.; Khalid, M.; Akhtar, A.; Mahmood, W.; Najeeb, M. The Health Benefits of Soybeans: A Review of the Nutritional and Therapeutic Effects of Soy Protein, Isoflavones, and Bioactive Peptides. Indus J. Biosci. Res. 2025, 3, 48–54. [Google Scholar] [CrossRef]
- Wang, S.Y.; Zhang, Y.J.; Zhu, G.Y.; Shi, X.C.; Chen, X.; Herrera-Balandrano, D.D.; Liu, F.Q.; Laborda, P. Occurrence of isoflavones in soybean sprouts and strategies to enhance their content: A review. J. Food Sci. 2022, 87, 1961–1982. [Google Scholar] [CrossRef]
- Afzal, S.; Abdul Manap, A.S.; Attiq, A.; Albokhadaim, I.; Kandeel, M.; Alhojaily, S.M. From imbalance to impairment: The central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Front. Pharmacol. 2023, 14, 1269581. [Google Scholar] [CrossRef]
- Angelotti, J.A.; Dias, F.F.; Sato, H.H.; Fernandes, P.; Nakajima, V.M.; Macedo, J. Improvement of aglycone content in soy isoflavones extract by free and immobilized β-glucosidase and their effects in lipid accumulation. Appl. Biochem. Biotechnol. 2020, 192, 734–750. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, R.; Sabapathy, S.; Bawa, A. Functional and edible uses of soy protein products. Compr. Rev. Food Sci. Food Saf. 2008, 7, 14–28. [Google Scholar] [CrossRef]
- Akbari, B.; Baghaei-Yazdi, N.; Bahmaie, M.; Mahdavi Abhari, F. The role of plant-derived natural antioxidants in reduction of oxidative stress. BioFactors 2022, 48, 611–633. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G. The antioxidant role of soy and soy foods in human health. Antioxidants 2020, 9, 635. [Google Scholar] [CrossRef] [PubMed]
- Kudełka, W.; Kowalska, M.; Popis, M. Quality of soybean products in terms of essential amino acids composition. Molecules 2021, 26, 5071. [Google Scholar] [CrossRef]
- Adhikari, S.; Schop, M.; de Boer, I.J.M.; Huppertz, T. Protein Quality in Perspective: A Review of Protein Quality Metrics and Their Applications. Nutrients 2022, 14, 947. [Google Scholar] [CrossRef]
- Wolfe, R.R.; Church, D.D.; Ferrando, A.A.; Moughan, P.J. Consideration of the role of protein quality in determining dietary protein recommendations. Front. Nutr. 2024, 11, 1389664. [Google Scholar] [CrossRef]
- Chandran, A.S.; Suri, S.; Choudhary, P. Sustainable plant protein: An up-to-date overview of sources, extraction techniques and utilization. Sustain. Food Technol. 2023, 1, 466–483. [Google Scholar] [CrossRef]
- Bailey, H.M.; Fanelli, N.S.; Stein, H.H. Effect of heat treatment on protein quality of rapeseed protein isolate compared with non-heated rapeseed isolate, soy and whey protein isolates, and rice and pea protein concentrates. J. Sci. Food Agric. 2023, 103, 7251–7259. [Google Scholar] [CrossRef]
- Álvarez, A.; Rodríguez, A.; Chaparro, S.; Borrás, L.M.; Rache, L.Y.; Brijaldo, M.H.; Martínez, J.J. Solid-State Fermentation as a Biotechnological Tool to Reduce Antinutrients and Increase Nutritional Content in Legumes and Cereals for Animal Feed. Fermentation 2025, 11, 359. [Google Scholar] [CrossRef]
- Mayer Labba, I.-C.; Hoppe, M.; Gramatkovski, E.; Hjellström, M.; Abdollahi, M.; Undeland, I.; Hulthén, L.; Sandberg, A.-S. Lower Non-Heme Iron Absorption in Healthy Females from Single Meals with Texturized Fava Bean Protein Compared to Beef and Cod Protein Meals: Two Single-Blinded Randomized Trials. Nutrients 2022, 14, 3162. [Google Scholar] [CrossRef]
- Messina, M. Perspective: Soybeans can help address the caloric and protein needs of a growing global population. Front. Nutr. 2022, 9, 909464. [Google Scholar] [CrossRef] [PubMed]
- Krause, M.; Sørensen, J.C.; Petersen, I.L.; Duque-Estrada, P.; Cappello, C.; Tlais, A.Z.A.; Di Cagno, R.; Ispiryan, L.; Sahin, A.W.; Arendt, E.K. Associating compositional, nutritional and techno-functional characteristics of Faba bean (Vicia faba L.) protein isolates and their production side-streams with potential food applications. Foods 2023, 12, 919. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Zhang, Z.; Liu, N.; Ashaolu, T.J. Whey Protein Nutrition in Sports: Action Mechanisms and Gaps in Research. Curr. Nutr. Rep. 2025, 14, 84. [Google Scholar] [CrossRef] [PubMed]
- González-Rodríguez, N.; Vázquez-Liz, N.; Rodríguez-Sampedro, A.; Regal, P.; Fente, C.; Lamas, A. The Impact of A1- and A2 β-Casein on Health Outcomes: A Comprehensive Review of Evidence from Human Studies. Appl. Sci. 2025, 15, 7278. [Google Scholar] [CrossRef]
- Jayaprakash, G.; Bains, A.; Chawla, P.; Fogarasi, M.; Fogarasi, S. A narrative review on rice proteins: Current scenario and food industrial application. Polymers 2022, 14, 3003. [Google Scholar] [CrossRef]
- Gaur, M.; Yadav, S.; Soni, A.; Tomar, D.; Jangra, A.; Joia, S.; Kumar, A.; Mehra, R.; Trajkovska Petkoska, A. Quinoa (Chenopodium quinoa Willd): Nutritional profile, health benefits, and sustainability considerations. Discov. Food 2025, 5, 172. [Google Scholar] [CrossRef]
- Quan, Z.; Zhang, L.; Chang, W.; Ding, X.; Qian, J.; Tang, J. Determination and analysis of composition, structure, and properties of teff protein fractions. Foods 2023, 12, 3965. [Google Scholar] [CrossRef] [PubMed]
- Ceasar, S.A.; Prabhu, S.; Ebeed, H.T. Protein research in millets: Current status and way forward. Planta 2024, 260, 43. [Google Scholar] [CrossRef] [PubMed]
- Muchimapura, S.; Thukhammee, W.; Phuthong, S.; Potue, P.; Khamseekaew, J.; Tong-Un, T.; Sangartit, W. Mung Bean Functional Protein Enhances Endothelial Function via Antioxidant Activity and Inflammation Modulation in Middle-Aged Adults: A Randomized Double-Blind Trial. Foods 2024, 13, 3427. [Google Scholar] [CrossRef]
- Kumar, N.; Hong, S.; Zhu, Y.; Garay, A.; Yang, J.; Henderson, D.; Zhang, X.; Xu, Y.; Li, Y. Comprehensive review of chickpea (Cicer arietinum): Nutritional significance, health benefits, techno-functionalities, and food applications. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70152. [Google Scholar] [CrossRef]
- Navin Venketeish, K.S.; Govindarajan, N.; Pandiselvam, R. Influence of Processing Techniques on the Proximate Composition, Anti-Nutritional Factors, and Amino Acid Profile of Red Kidney Beans (Phaseolus vulgaris L). Plant Foods Hum. Nutr. 2025, 80, 13. [Google Scholar] [CrossRef]
- Dijk, F.J.; van Dijk, M.; Roberts, J.; van Helvoort, A.; Furber, M.J.W. Pea and soy fortified with leucine stimulates muscle protein synthesis comparable to whey in a murine ageing model. Eur. J. Nutr. 2024, 64, 12. [Google Scholar] [CrossRef]
- Swallah, M.; Yang, X.; Li, J.; Korese, J.K.; Wang, S.; Fan, H.; Yu, H.; Huang, Q. The Pros and Cons of Soybean Bioactive Compounds: An Overview. Food Rev. Int. 2022, 39, 5104–5131. [Google Scholar] [CrossRef]
- Barańska, A.; Błaszczuk, A.; Kanadys, W.; Baczewska, B.; Jędrych, M.; Wawryk-Gawda, E.; Polz-Dacewicz, M. Effects of soy protein containing of isoflavones and isoflavones extract on plasma lipid profile in postmenopausal women as a potential prevention factor in cardiovascular diseases: Systematic review and meta-analysis of randomized controlled trials. Nutrients 2021, 13, 2531. [Google Scholar] [CrossRef] [PubMed]
- Yue, Z.; He, S.; Wang, J.; Jiang, Q.; Wang, H.; Wu, J.; Li, C.; Wang, Z.; He, X.; Jia, N. Glyceollins from soybean: Their pharmacological effects and biosynthetic pathways. Heliyon 2023, 9, e21874. [Google Scholar] [CrossRef] [PubMed]
- Chae, H.S.; Xu, R.; Won, J.Y.; Chin, Y.W.; Yim, H. Molecular Targets of Genistein and Its Related Flavonoids to Exert Anticancer Effects. Int. J. Mol. Sci. 2019, 20, 2420. [Google Scholar] [CrossRef] [PubMed]
- Nakai, S.; Fujita, M.; Kamei, Y. Health Promotion Effects of Soy Isoflavones. J. Nutr. Sci. Vitaminol. 2020, 66, 502–507. [Google Scholar] [CrossRef]
- Intharuksa, A.; Arunotayanun, W.; Na Takuathung, M.; Chaichit, S.; Prasansuklab, A.; Chaikhong, K.; Sirichanchuen, B.; Chupradit, S.; Koonrungsesomboon, N. Daidzein and Genistein: Natural Phytoestrogens with Potential Applications in Hormone Replacement Therapy. Int. J. Mol. Sci. 2025, 26, 6973. [Google Scholar] [CrossRef]
- Chen, L.-R.; Ko, N.-Y.; Chen, K.-H. Isoflavone Supplements for Menopausal Women: A Systematic Review. Nutrients 2019, 11, 2649. [Google Scholar] [CrossRef]
- Pejčić, T.; Zeković, M.; Bumbaširević, U.; Kalaba, M.; Vovk, I.; Bensa, M.; Popović, L.; Tešić, Ž. The Role of Isoflavones in the Prevention of Breast Cancer and Prostate Cancer. Antioxidants 2023, 12, 368. [Google Scholar] [CrossRef]
- Wójciak, M.; Drozdowski, P.; Skalska-Kamińska, A.; Zagórska-Dziok, M.; Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Latalska, M. Protective, Anti-Inflammatory, and Anti-Aging Effects of Soy Isoflavones on Skin Cells: An Overview of In Vitro and In Vivo Studies. Molecules 2024, 29, 5790. [Google Scholar] [CrossRef]
- Goh, Y.X.; Jalil, J.; Lam, K.W.; Husain, K.; Premakumar, C.M. Genistein: A Review on its Anti-Inflammatory Properties. Front. Pharmacol. 2022, 13, 820969. [Google Scholar] [CrossRef]
- Ji, G.; Zhang, Y.; Yang, Q.; Cheng, S.; Hao, J.; Zhao, X.; Jiang, Z. Genistein suppresses LPS-induced inflammatory response through inhibiting NF-κB following AMP kinase activation in RAW 264.7 macrophages. PLoS ONE 2012, 7, e53101. [Google Scholar] [CrossRef]
- Kim, I.S.; Yang, W.S.; Kim, C.H. Beneficial Effects of Soybean-Derived Bioactive Peptides. Int. J. Mol. Sci. 2021, 22, 8570. [Google Scholar] [CrossRef]
- Sanada, Y.; Tan, S.J.O.; Adachi, N.; Miyaki, S. Pharmacological Targeting of Heme Oxygenase-1 in Osteoarthritis. Antioxidants 2021, 10, 419. [Google Scholar] [CrossRef]
- Gholami, A.; Baradaran, H.R.; Hariri, M. Can soy isoflavones plus soy protein change serum levels of interlukin-6? A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. PTR 2021, 35, 1147–1162. [Google Scholar] [CrossRef]
- Yi, G.; Li, H.; Liu, M.; Ying, Z.; Zhang, J.; Liu, X. Soybean protein-derived peptides inhibit inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4-mediated MAPK-JNK and NF-kappa B activation. J. Food Biochem. 2020, 44, e13289. [Google Scholar] [CrossRef]
- Sacks, F.M.; Lichtenstein, A.; Van Horn, L.; Harris, W.; Kris-Etherton, P.; Winston, M. Soy protein, isoflavones, and cardiovascular health: An American Heart Association Science Advisory for professionals from the Nutrition Committee. Circulation 2006, 113, 1034–1044. [Google Scholar] [CrossRef]
- Boyd, R.D.; Zier-Rush, C.E.; Moeser, A.J.; Culbertson, M.; Stewart, K.R.; Rosero, D.S.; Patience, J.F. Review: Innovation through research in the North American pork industry. Anim. Int. J. Anim. Biosci. 2019, 13, 2951–2966. [Google Scholar] [CrossRef]
- Waiz, M.; Alvi, S.S.; Khan, M.S. Potential dual inhibitors of PCSK-9 and HMG-R from natural sources in cardiovascular risk management. EXCLI J. 2022, 21, 47–76. [Google Scholar] [PubMed]
- Jia, H.; Tian, L.; Zhang, B.; Fan, X.; Zhao, D. The soluble fraction of soy protein peptic hydrolysate reduces cholesterol micellar solubility and uptake. Int. J. Food Sci. Technol. 2019, 54, 2123–2131. [Google Scholar] [CrossRef]
- Shahidi, F.; Danielski, R. Review on the Role of Polyphenols in Preventing and Treating Type 2 Diabetes: Evidence from In Vitro and In Vivo Studies. Nutrients 2024, 16, 3159. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, N.; Zhou, Z.; Zhu, L.; Wang, K.; Chen, S.; Gu, Q.; Liu, Y.; Zhai, K.; Xu, S. Pharmacology and metabolomic reveal Polysaccharides from polygonatum sibiricum ameliorate the diabetic osteoporosis in zebrafish. BMC Complement. Med. Ther. 2025, 25, 265. [Google Scholar] [CrossRef]
- Ghadimi, D.; Hemmati, M.; Karimi, N.; Khadive, T. Soy Isoflavone Genistein Is a Potential Agent for Metabolic Syndrome Treatment: A Narrative Review. J. Adv. Med. Biomed. Res. 2020, 28, 64–75. [Google Scholar] [CrossRef]
- Wang, X.; Ha, D.; Yoshitake, R.; Chan, Y.S.; Sadava, D.; Chen, S. Exploring the Biological Activity and Mechanism of Xenoestrogens and Phytoestrogens in Cancers: Emerging Methods and Concepts. Int. J. Mol. Sci. 2021, 22, 8798. [Google Scholar] [CrossRef]
- Farkas, S.; Szabó, A.; Hegyi, A.E.; Török, B.; Fazekas, C.L.; Ernszt, D.; Kovács, T.; Zelena, D. Estradiol and Estrogen-like Alternative Therapies in Use: The Importance of the Selective and Non-Classical Actions. Biomedicines 2022, 10, 861. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Martín-Rodríguez, A.; Curiel-Regueros, A.; Rubio-Zarapuz, A.; Tornero-Aguilera, J.F. Neuro-Nutrition and Exercise Synergy: Exploring the Bioengineering of Cognitive Enhancement and Mental Health Optimization. Bioengineering 2025, 12, 208. [Google Scholar] [CrossRef]
- Rizzo, G.; Feraco, A.; Storz, M.A.; Lombardo, M. The role of soy and soy isoflavones on women’s fertility and related outcomes: An update. J. Nutr. Sci. 2022, 11, e17. [Google Scholar] [CrossRef]
- Bustamante-Barrientos, F.A.; Méndez-Ruette, M.; Ortloff, A.; Luz-Crawford, P.; Rivera, F.J.; Figueroa, C.D.; Molina, L.; Bátiz, L.F. The Impact of Estrogen and Estrogen-Like Molecules in Neurogenesis and Neurodegeneration: Beneficial or Harmful? Front. Cell. Neurosci. 2021, 15, 636176. [Google Scholar] [CrossRef]
- Cheng, M.; Cong, J.; Wu, Y.; Xie, J.; Wang, S.; Zhao, Y.; Zang, X. Chronic Swimming Exercise Ameliorates Low-Soybean-Oil Diet-Induced Spatial Memory Impairment by Enhancing BDNF-Mediated Synaptic Potentiation in Developing Spontaneously Hypertensive Rats. Neurochem. Res. 2018, 43, 1047–1057. [Google Scholar] [CrossRef]
- Bhatt, P.C.; Pathak, S.; Kumar, V.; Panda, B.P. Attenuation of neurobehavioral and neurochemical abnormalities in animal model of cognitive deficits of Alzheimer’s disease by fermented soybean nanonutraceutical. Inflammopharmacology 2018, 26, 105–118. [Google Scholar] [CrossRef]
- Zhang, L.; Su, H.; Wang, S.; Fu, Y.; Wang, M. Gut Microbiota and Neurotransmitter Regulation: Functional Effects of Four Traditional Chinese Fermented Soybean (Sojae Semen Praeparatum). Foods 2025, 14, 671. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zeng, H. Association of high consumption of soy products with the risk of cognitive impairment and major neurocognitive disorders: A systematic review and dose-response meta-analysis. Front. Nutr. 2025, 12, 1635844. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.S.; Mensink, R.P.; Joris, P.J. Effects of dietary proteins on cognitive performance and brain vascular function in adults: A systematic review of randomised controlled trials. Nutr. Res. Rev. 2024, 1–15. [Google Scholar] [CrossRef]
- Rizzo, G.; Baroni, L. Soy, Soy Foods and Their Role in Vegetarian Diets. Nutrients 2018, 10, 43. [Google Scholar] [CrossRef]
- Sasi, M.; Kumar, S.; Hasan, M.; Garcia-Gutierrez, E.; Kumari, S.; Prakash, O.; Nain, L.; Sachdev, A.; Dahuja, A. Current trends in the development of soy-based foods containing probiotics and paving the path for soy-synbiotics. Crit. Rev. Food Sci. Nutr. 2023, 63, 9995–10013. [Google Scholar] [CrossRef]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [PubMed]
- Ortiz, C.; Manta, B. Advances in equol production: Sustainable strategies for unlocking soy isoflavone benefits. Results Chem. 2024, 7, 101288. [Google Scholar] [CrossRef]
- Cady, N.; Peterson, S.R.; Freedman, S.N.; Mangalam, A.K. Beyond Metabolism: The Complex Interplay Between Dietary Phytoestrogens, Gut Bacteria, and Cells of Nervous and Immune Systems. Front. Neurol. 2020, 11, 150. [Google Scholar] [CrossRef] [PubMed]
- Sindhu, R.K.; Goyal, A.; Algın Yapar, E.; Cavalu, S. Bioactive Compounds and Nanodelivery Perspectives for Treatment of Cardiovascular Diseases. Appl. Sci. 2021, 11, 11031. [Google Scholar] [CrossRef]
- Mayo, B.; Vázquez, L.; Flórez, A.B. Equol: A Bacterial Metabolite from The Daidzein Isoflavone and Its Presumed Beneficial Health Effects. Nutrients 2019, 11, 2231. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, X.-G. A comprehensive review on biotransformation, interaction, and health of gut microbiota and bioactive components. Comb. Chem. High Throughput Screen. 2024, 27, 1551–1565. [Google Scholar] [CrossRef]
- Singh, P.; Covassin, N.; Marlatt, K.; Gadde, K.M.; Heymsfield, S.B. Obesity, body composition, and sex hormones: Implications for cardiovascular risk. Compr. Physiol. 2022, 12, 2949–2993. [Google Scholar] [CrossRef]
- Waddell, I.S.; Orfila, C. Dietary fiber in the prevention of obesity and obesity-related chronic diseases: From epidemiological evidence to potential molecular mechanisms. Crit. Rev. Food Sci. Nutr. 2023, 63, 8752–8767. [Google Scholar] [CrossRef]
- Wang, W.; Yang, W.; Dai, Y.; Liu, J.; Chen, Z.Y. Production of Food-Derived Bioactive Peptides with Potential Application in the Management of Diabetes and Obesity: A Review. J. Agric. Food Chem. 2023, 71, 5917–5943. [Google Scholar] [CrossRef]
- Kuryłowicz, A.; Cąkała-Jakimowicz, M.; Puzianowska-Kuźnicka, M. Targeting Abdominal Obesity and Its Complications with Dietary Phytoestrogens. Nutrients 2020, 12, 582. [Google Scholar] [CrossRef] [PubMed]
- Hertzler, S.R.; Lieblein-Boff, J.C.; Weiler, M.; Allgeier, C. Plant Proteins: Assessing Their Nutritional Quality and Effects on Health and Physical Function. Nutrients 2020, 12, 3704. [Google Scholar] [CrossRef]
- Haghighat, N.; Ashtary-Larky, D.; Bagheri, R.; Wong, A.; Cheraghloo, N.; Moradpour, G.; Nordvall, M.; Asbaghi, O.; Moeinvaziri, N.; Amini, M.; et al. Effects of 6 Months of Soy-Enriched High Protein Compared to Eucaloric Low Protein Snack Replacement on Appetite, Dietary Intake, and Body Composition in Normal-Weight Obese Women: A Randomized Controlled Trial. Nutrients 2021, 13, 2266. [Google Scholar] [CrossRef]
- Singh, M.; Manickavasagan, A.; Shobana, S.; Mohan, V. Glycemic index of pulses and pulse-based products: A review. Crit. Rev. Food Sci. Nutr. 2021, 61, 1567–1588. [Google Scholar] [CrossRef]
- Dai, S.; Pan, M.; El-Nezami, H.S.; Wan, J.M.F.; Wang, M.F.; Habimana, O.; Lee, J.C.Y.; Louie, J.C.Y.; Shah, N.P. Effects of Lactic Acid Bacteria-Fermented Soymilk on Isoflavone Metabolites and Short-Chain Fatty Acids Excretion and Their Modulating Effects on Gut Microbiota. J. Food Sci. 2019, 84, 1854–1863. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Liu, C.; Liu, X. The Beneficial Effects of Soybean Proteins and Peptides on Chronic Diseases. Nutrients 2023, 15, 1811. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.S.; Kim, C.H.; Yang, W.S. Physiologically Active Molecules and Functional Properties of Soybeans in Human Health—A Current Perspective. Int. J. Mol. Sci. 2021, 22, 4054. [Google Scholar] [CrossRef]
- Hu, C.; Wong, W.T.; Wu, R.; Lai, W.F. Biochemistry and use of soybean isoflavones in functional food development. Crit. Rev. Food Sci. Nutr. 2020, 60, 2098–2112. [Google Scholar] [CrossRef]
- Sivoňová, M.K.; Kaplán, P.; Tatarková, Z.; Lichardusová, L.; Dušenka, R.; Jurečeková, J. Androgen receptor and soy isoflavones in prostate cancer. Mol. Clin. Oncol. 2019, 10, 191–204. [Google Scholar] [CrossRef]
- Fang, Y.; Yan, C.; Zhao, Q.; Xu, J.; Liu, Z.; Gao, J.; Zhu, H.; Dai, Z.; Wang, D.; Tang, D. The roles of microbial products in the development of colorectal cancer: A review. Bioengineered 2021, 12, 720–735. [Google Scholar] [CrossRef]
- Xu, B.; Dong, Q.; Yu, C.; Chen, H.; Zhao, Y.; Zhang, B.; Yu, P.; Chen, M. Advances in Research on the Activity Evaluation, Mechanism and Structure-Activity Relationships of Natural Antioxidant Peptides. Antioxidants 2024, 13, 479. [Google Scholar] [CrossRef]
- Polimeno, L.; Barone, M.; Mosca, A.; Viggiani, M.T.; Joukar, F.; Mansour-Ghanaei, F.; Mavaddati, S.; Daniele, A.; Debellis, L.; Bilancia, M.; et al. Soy Metabolism by Gut Microbiota from Patients with Precancerous Intestinal Lesions. Microorganisms 2020, 8, 469. [Google Scholar] [CrossRef] [PubMed]
- Olías, R.; Delgado-Andrade, C.; Padial, M.; Marín-Manzano, M.C.; Clemente, A. An Updated Review of Soy-Derived Beverages: Nutrition, Processing, and Bioactivity. Foods 2023, 12, 2665. [Google Scholar] [CrossRef]
- Colletti, A.; Attrovio, A.; Boffa, L.; Mantegna, S.; Cravotto, G. Valorisation of By-Products from Soybean (Glycine max (L.) Merr.) Processing. Molecules 2020, 25, 2129. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, C.; Gleddie, S.; Xiao, C.W. Soybean Bioactive Peptides and Their Functional Properties. Nutrients 2018, 10, 1211. [Google Scholar] [CrossRef]
- Stanojevic, S.P.; Barac, M.B.; Pesic, M.B.; Jankovic, V.S.; Vucelic-Radovic, B.V. Bioactive proteins and energy value of okara as a byproduct in hydrothermal processing of soy milk. J. Agric. Food Chem. 2013, 61, 9210–9219. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, A.; Raza, A.; Jie, H.; Mahmood, A.; Ma, Y.; Zhao, L.; Xing, H.; Li, L.; Hassan, M.U.; Qari, S.H.; et al. Molecular Tools and Their Applications in Developing Salt-Tolerant Soybean (Glycine max L.) Cultivars. Bioengineering 2022, 9, 495. [Google Scholar] [CrossRef]
- Anwar, A.; Kim, J.-K. Transgenic Breeding Approaches for Improving Abiotic Stress Tolerance: Recent Progress and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 2695. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, S.S.; Sharma, V.; Shukla, A.K.; Verma, V.; Kaur, M.; Shivay, Y.S.; Nisar, S.; Gaber, A.; Brestic, M.; Barek, V.; et al. Biofortification-A Frontier Novel Approach to Enrich Micronutrients in Field Crops to Encounter the Nutritional Security. Molecules 2022, 27, 1340. [Google Scholar] [CrossRef]
- Song, H.; Taylor, D.C.; Zhang, M. Bioengineering of Soybean Oil and Its Impact on Agronomic Traits. Int. J. Mol. Sci. 2023, 24, 2256. [Google Scholar] [CrossRef]
- Sittipo, P.; Shim, J.W.; Lee, Y.K. Microbial Metabolites Determine Host Health and the Status of Some Diseases. Int. J. Mol. Sci. 2019, 20, 5296. [Google Scholar] [CrossRef]
- Harahap, I.A.; Suliburska, J.; Karaca, A.C.; Capanoglu, E.; Esatbeyoglu, T. Fermented soy products: A review of bioactives for health from fermentation to functionality. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70080. [Google Scholar] [CrossRef] [PubMed]
- Nagassa, M.; He, S.; Liu, S.; Wang, J.; Cao, X.; Chen, S.; Song, J.; Sun, H. Exploring off-flavour compounds in soy-based meats: Mechanisms and removal methods. Flavour Fragr. J. 2024, 39, 319–335. [Google Scholar] [CrossRef]
- Qu, S.; Kwon, S.J.; Duan, S.; Lim, Y.J.; Eom, S.H. Isoflavone changes in immature and mature soybeans by thermal processing. Molecules 2021, 26, 7471. [Google Scholar] [CrossRef]
- Di Giorgio, L.; Marcantonio, M.A.; Salgado, P.R.; Mauri, A.N. Isolation, characterization, and industrial processing of soybean proteins. In Handbook of Natural Polymers; Elsevier: Amsterdam, The Netherlands, 2023; Volume 1, pp. 557–575. [Google Scholar]
- Matsuo, A.; Matsushita, K.; Fukuzumi, A.; Tokumasu, N.; Yano, E.; Zaima, N.; Moriyama, T. Comparison of Various Soybean Allergen Levels in Genetically and Non-Genetically Modified Soybeans. Foods 2020, 9, 522. [Google Scholar] [CrossRef]
- Santos, A.F.; Riggioni, C.; Agache, I.; Akdis, C.A.; Akdis, M.; Alvarez-Perea, A.; Alvaro-Lozano, M.; Ballmer-Weber, B.; Barni, S.; Beyer, K.; et al. EAACI guidelines on the diagnosis of IgE-mediated food allergy. Allergy 2023, 78, 3057–3076. [Google Scholar] [CrossRef] [PubMed]
- Mennini, M.; Piccirillo, M.; Furio, S.; Valitutti, F.; Ferretti, A.; Strisciuglio, C.; De Filippo, M.; Parisi, P.; Peroni, D.G.; Di Nardo, G.; et al. Probiotics and other adjuvants in allergen-specific immunotherapy for food allergy: A comprehensive review. Front. Allergy 2024, 5, 1473352. [Google Scholar] [CrossRef] [PubMed]
- Chang, F.; Eng, L.; Chang, C. Food Allergy Labeling Laws: International Guidelines for Residents and Travelers. Clin. Rev. Allergy Immunol. 2023, 65, 148–165. [Google Scholar] [CrossRef] [PubMed]
- Majidian, P.; Ghorbani, H.R.; Farajpour, M. Achieving agricultural sustainability through soybean production in Iran: Potential and challenges. Heliyon 2024, 10, e26389. [Google Scholar] [CrossRef]
- El Sabagh, A.; Islam, M.S.; Saneoka, H.; Barutçular, C.; Ueda, A.; Hasan, M.K.; Liu, L.; Lone, J.; Muhyidiyn, I.; Islam, M.R.; et al. Ohyama, T., Takahashi, Y., Ohtake, N., Sato, T., Tanabata, S., Eds.; Soybean and Sustainable Agriculture for Food Security. In Soybean—Recent Advances in Research and Applications; IntechOpen: London, UK, 2022. [Google Scholar]
- Soendergaard, N. Modern Monoculture and Periphery Processes: A World Systems Analysis of the Brazilian soy expansion from 2000–2012. Rev. De Econ. E Sociol. Rural 2018, 56, 69–90. [Google Scholar] [CrossRef]
- Hussain, A.; Elkarmout, A.F.; Mansour, E.Z.; Awais, M.; Usman, M.; Ahmad, H.; Faisal, M.; Ahmad, T. An Environment Friendly Practice, the Climate Smart Agriculture Crop Production and Soil Management Systems: A review. J. Sustain. Agric. Environ. Sci. 2024, 3, 101–124. [Google Scholar]
- Angnes, G.; Thame, D.; Grenz, J.; Romanelli, T.; Cherubin, M. Voluntary sustainability standards and soil health: Insights from a case study in soybean production in Brazilian Savannah. Exp. Agric. 2025, 61, e13. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatima, Z.; Itrat, N.; Israr, B.; Ahmad, A.M.R. Therapeutic Efficacy of Soy-Derived Bioactives: A Systematic Review of Nutritional Potency, Bioactive Therapeutics, and Clinical Biomarker Modulation. Foods 2025, 14, 3447. https://doi.org/10.3390/foods14193447
Fatima Z, Itrat N, Israr B, Ahmad AMR. Therapeutic Efficacy of Soy-Derived Bioactives: A Systematic Review of Nutritional Potency, Bioactive Therapeutics, and Clinical Biomarker Modulation. Foods. 2025; 14(19):3447. https://doi.org/10.3390/foods14193447
Chicago/Turabian StyleFatima, Zara, Nizwa Itrat, Beenish Israr, and Abdul Momin Rizwan Ahmad. 2025. "Therapeutic Efficacy of Soy-Derived Bioactives: A Systematic Review of Nutritional Potency, Bioactive Therapeutics, and Clinical Biomarker Modulation" Foods 14, no. 19: 3447. https://doi.org/10.3390/foods14193447
APA StyleFatima, Z., Itrat, N., Israr, B., & Ahmad, A. M. R. (2025). Therapeutic Efficacy of Soy-Derived Bioactives: A Systematic Review of Nutritional Potency, Bioactive Therapeutics, and Clinical Biomarker Modulation. Foods, 14(19), 3447. https://doi.org/10.3390/foods14193447