Machine Learning and UHPLC–MS/MS-Based Discrimination of the Geographical Origin of Dendrobium officinale from Yunnan, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Solutions
2.2. D. officinale Collection
2.3. Standard Solution Preparation
2.4. Sample Preparatison
2.5. UHPLC–MS/MS Parameters
2.6. Method Validation
2.7. Data Processing
3. Results and Discussion
3.1. Optimization of Mass Spectrometry Conditions
3.2. Method Validation
3.3. PCA and OPLS-DA for the Identification of D. officinale
3.4. Heat Map and Volcano Plot Analyses for D. officinale Discrimination
3.5. KEGG Pathway Analysis of Differential Metabolites in D. officinale from Guangnan and Maguan
3.6. Machine Learning
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Announcement on 9 New Substances of Codonopsis Pilosula and Other New Substances which are Both Food and Traditional Chinese Medicines in accordance with Tradition. Available online: http://law.foodmate.net/show-225521.html (accessed on 5 October 2025).
- Wan, J.; Gong, X.; Wang, F.; Wen, C.; Wei, Y.; Han, B.; Ouyang, Z. Comparative analysis of chemical constituents by HPLC–ESI–MSn and antioxidant activities of Dendrobium huoshanense and Dendrobium officinale. Biomed. Chromatogr. 2022, 36, e5250. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.; Zheng, G.; Zhang, Z.; Ruan, Q.; Wu, B.; Wei, G. Material basis and core chemical structure of Dendrobium officinale polysaccharides against colitis-associated cancer based on anti-inflammatory activity. Int. J. Biol. Macromol. 2024, 262, 130056. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Lu, J.; Zhang, J.; Wu, J.; Yu, L.; Qin, L.; Zhu, B. Traditional uses, phytochemistry, pharmacology, and quality control of Dendrobium officinale Kimura et. Migo. Front. Pharmacol. 2021, 12, 726528. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhao, Z.; Zhao, Z.; Zhang, D.; Zhang, Q.; Zhang, J.; Fang, Z.; Bai, Y.; Guo, X. Structure, health benefits, mechanisms, and gut microbiota of Dendrobium officinale polysaccharides: A review. Nutrients 2023, 15, 4901. [Google Scholar] [CrossRef]
- Hui, A.; Xu, W.; Wang, J.; Liu, J.; Deng, S.; Xiong, B.; Zhang, W.; Wu, Z. A comparative study of pectic polysaccharides from fresh and dried Dendrobium officinale based on their structural properties and hepatoprotection in alcoholic liver damaged mice. Food Funct. 2023, 14, 4267–4279. [Google Scholar] [CrossRef]
- He, Y.; Jiang, P.; Bian, M.; Xu, G.; Huang, S.; Sun, C. Structural characteristics and anti-tumor effect of low molecular weight Dendrobium officinale polysaccharides by reconstructing tumor microenvironment. J. Funct. Foods 2024, 119, 106314. [Google Scholar] [CrossRef]
- Liu, W.; Qiu, X.; Jiang, L.; Fan, W.; Li, P.; Zhen, Y. Origin Traceability of Dendrobium candidum with Near Infrared Spectroscopy and Variable Selection-Partial Least Squares Discriminant Analysis. J. Instrum. Anal. 2025, 44, 246–252. [Google Scholar]
- Zhang, X.; Zhou, C.; Zhang, L.; Jiang, M.; Xie, Z.; Yuan, Y.; Huang, Y.; Luo, Y.; Wei, G. Isolation and Identification of Main Flavonoid Glycosides of Dendrobium officinale from Danxia Species and Yunnan Guangnan Species. Chin. J. Exp. Tradit. Med. Formulae 2019, 25, 29–34. [Google Scholar]
- Zhen, P.; Wen, M.; Wang, X.; Liu, Q.; He, X.; Zuo, Y. Establishment of Fingerprint Spectra for Fresh Dendrobium officinale from Different Origins and Research on Chemical Pattern Recognition. J. Chin. Med. Mater. 2024, 47, 3071–3075. [Google Scholar]
- Yang, Y.; She, X.; Cao, X.; Yang, L.; Huang, J.; Zhang, X.; Su, L.; Wu, M.; Tong, H.; Ji, X. Comprehensive evaluation of Dendrobium officinale from different geographical origins using near-infrared spectroscopy and chemometrics. Spectrochim. Acta A 2022, 277, 121249. [Google Scholar] [CrossRef]
- Han, J.; Hu, Q.; Wang, Y. Geographical origin identification of Dendrobium officinale based on FT-NIR and ATR-FTIR spectroscopy. Food Biosci. 2025, 63, 105753. [Google Scholar] [CrossRef]
- Li, G.; Hu, Q.; Wang, Y. Chemometrics and deep learning assisted infrared spectroscopic identification of Dendrobium species. J. Food Compos. Anal. 2025, 140, 107296. [Google Scholar] [CrossRef]
- Xiong, F.; Yuan, Y.; Li, C.; Lyu, C.; Wan, X.; Nie, J.; Li, H.; Yang, J.; Guo, L. Stable isotopic and elemental characteristics with chemometrics for the geographical origin authentication of Dendrobium officinale at two spatial scales. LWT 2022, 167, 113871. [Google Scholar] [CrossRef]
- Yuan, Y.H.; Hou, B.W.; Xu, H.J.; Luo, J.; Ding, X.Y. Identification of the geographic origin of Dendrobium thyrsiflorum on Chinese herbal medicine market using trinucleotide microsatellite markers. Biol. Pharm. Bull. 2011, 34, 1794–1800. [Google Scholar] [CrossRef]
- Chen, W.; Chen, X.; Xu, J.; Cai, J.; Wang, X. Identification of Dendrobium officinale using DNA barcoding method combined with HRM and qPCR technology. Food Anal. Methods 2022, 15, 1–11. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, C.; Qiu, S.; Yang, C.; Zhou, R.; Liu, S. Exploring the medicinal potential of Dendrobium: Uncovering the spatial distribution of flavonoids and alkaloids in 15 species of Dendrobium using MALDI-MSI. Sci. Hortic. 2024, 338, 113738. [Google Scholar] [CrossRef]
- Lin, T.; Chen, X.-L.; Wang, J.; Hu, Z.-X.; Wu, G.-W.; Sha, L.-J.; Cheng, L.; Liu, H.-C. Application of time of flight mass spectrometry in the identification of Dendrobium devonianum Paxt and Dendrobium officinale Kimura et Migo Grown in Longling Area of Yunnan, China. Separations 2022, 9, 108. [Google Scholar] [CrossRef]
- Lin, T.; Chen, X.; Du, L.; Wang, J.; Hu, Z.; Cheng, L.; Liu, Z.; Liu, H. Traceability Research on Dendrobium devonianum Based on SWATHtoMRM. Foods 2023, 12, 3608. [Google Scholar] [CrossRef]
- Gong, K.; Yin, X.; Ying, N.; Wu, M.; Lyu, Y.; Zheng, H.; Jiang, L. Rapid and accurate detection of Dendrobium officinale adulterated with lower-price species using NMR characteristic markers integrated with artificial neural network. J. Food Meas. Charact. 2024, 18, 4845–4852. [Google Scholar] [CrossRef]
- Li, X.; Mao, Q.; Yang, Q.; Li, Q.; Zhu, Y.; Shi, H.; Yan, L.; Liu, Y.; Hu, Y.; Xie, Q.; et al. Research progress on origin traceability technology of Chinese medicinal materials. Chem. Anal. Meterage 2025, 34, 142–152. [Google Scholar]
- Jing, S.; Zhou, Y.; Dou, X.; Luo, X.; Yu, B.; Liu, Y.; Xiang, T. Characterization of Dendrobium officinale Based on DNA Molecular Markers. Food Nutr. Chin. 2024, 1, 1–8. [Google Scholar]
- He, Q.; Lu, A.; Qin, L.; Zhang, Q.; Lu, Y.; Yang, Z.; Tan, D.; He, Y. An UPLC-Q-TOF/MS-Based Analysis of the Differential Composition of Dendrobium officinale in Different Regions. J. Anal. Methods Chem. 2022, 2022, 8026410. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Han, X.; Wang, H.-Y.; Yang, J.; Kuang, Y.; Ji, K.-Y.; Yang, Y.; Pang, K.; Yang, S.-X.; Qin, J.-C. Comparison of metabolomics of Dendrobium officinale in different habitats by UPLC-Q-TOF-MS. Biochem. Syst. Ecol. 2020, 89, 104007. [Google Scholar] [CrossRef]
- Huang, P.; Zhang, T.; Liu, H.; Yuan, T. Research Progress of Chemical Fingerprint in the Origin Traceability of Traditional Chinese Medicine. Chem 2025, 1, 1–13. [Google Scholar]
- Li, J.; Qian, J.; Chen, J.; Ruiz-Garcia, L.; Dong, C.; Chen, Q.; Liu, Z.; Xiao, P.; Zhao, Z. Recent advances of machine learning in the geographical origin traceability of food and agro-products: A review. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70082. [Google Scholar] [CrossRef]
- Beck, A.G.; Muhoberac, M.; Randolph, C.E.; Beveridge, C.H.; Wijewardhane, P.R.; Kenttamaa, H.I.; Chopra, G. Recent developments in machine learning for mass spectrometry. ACS Meas. Sci. Au 2024, 4, 233–246. [Google Scholar] [CrossRef]
- Chen, T.; Liang, W.; Zhang, X.; Wang, Y.; Lu, X.; Zhang, Y.; Zhang, Z.; You, L.; Liu, X.; Zhao, C. Screening and identification of unknown chemical contaminants in food based on liquid chromatography—High-resolution mass spectrometry and machine learning. Anal. Chim. Acta 2024, 1287, 342116. [Google Scholar] [CrossRef]
- Hansen, J.; Fransson, I.; Schrieck, R.; Kunert, C.; Seifert, S. Classification of Apples (Malus × domestica borkh.) According to Geographical Origin, Variety and Production Method Using Liquid Chromatography Mass Spectrometry and Random Forest. Foods 2025, 14, 2655. [Google Scholar] [CrossRef]
- Dossou, S.S.K.; Xu, F.; You, J.; Zhou, R.; Li, D.; Wang, L. Widely targeted metabolome profiling of different colored sesame (Sesamum indicum L.) seeds provides new insight into their antioxidant activities. Food Rev. Int. 2022, 151, 110850. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, R.; Yuan, H.; Zhou, H.; Jiangfang, Y.; Liu, X.; Luo, J. Widely targeted volatilomics and metabolomics analysis reveal the metabolic composition and diversity of zingiberaceae plants. Metabolites 2023, 13, 700. [Google Scholar] [CrossRef]
- Zhou, J.; Fang, T.; Li, W.; Jiang, Z.; Zhou, T.; Zhang, L.; Yu, Y. Widely targeted metabolomics using UPLC-QTRAP-MS/MS reveals chemical changes during the processing of black tea from the cultivar Camellia sinensis (L.) O. Kuntze cv. Huangjinya. Food Rev. Int. 2022, 162, 112169. [Google Scholar] [CrossRef]
- Ishizaki, A.; Miura, A.; Kataoka, H. Determination of Luteolin and Apigenin in Herbal Teas by Online In-Tube Solid-Phase Microextraction Coupled with LC–MS/MS. Foods 2024, 13, 1687. [Google Scholar] [CrossRef]
- Shi, F.; Pan, H.; Lu, Y.; Ding, L. An HPLC–MS/MS method for the simultaneous determination of luteolin and its major metabolites in rat plasma and its application to a pharmacokinetic study. J. Sep. Sci. 2018, 41, 3830–3839. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-H.; Wang, W.-B.; Li, J.; Chang, Y.-X.; Wang, Y.-F.; Zhang, J.; Zhang, B.-L.; Gao, X.-M. Simultaneous determination of catechin, epicatechin and epicatechin gallate in rat plasma by LC–ESI-MS/MS for pharmacokinetic studies after oral administration of Cynomorium songaricum extract. J. Chromatogr. B 2012, 880, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Baranowska, I.; Hejniak, J.; Magiera, S. LC-ESI-MS/MS method for the enantioseparation of six flavanones. Anal. Methods 2017, 9, 1018–1030. [Google Scholar] [CrossRef]
- Basu, S.; Patel, V.B.; Jana, S.; Patel, H. Liquid chromatography tandem mass spectrometry method (LC–MS/MS) for simultaneous determination of piperine, cinnamic acid and gallic acid in rat plasma using a polarity switch technique. Anal. Methods 2013, 5, 967–976. [Google Scholar] [CrossRef]
- Wang, L.; Halquist, M.S.; Sweet, D.H. Simultaneous determination of gallic acid and gentisic acid in organic anion transporter expressing cells by liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2013, 937, 91–96. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, Z.; Zhang, L.; Zhou, D.; Chen, X.; Bi, K. Simultaneous determination of homoeriodictyol-7-O-β-d-Glccopyranoside and its metabolite homoeriodictyol in rat tissues and urine by liquid chromatography–mass spectrometry. J. Pharm. Biomed. Anal. 2007, 44, 293–300. [Google Scholar] [CrossRef]
- Zhou, D.; Jin, Y.; Yao, F.; Duan, Z.; Wang, Q.; Liu, J. Validated LC-MS/MS method for the simultaneous determination of hyperoside and 2′′–O-galloylhyperin in rat plasma: Application to a pharmacokinetic study in rats. Biomed. Chromatogr. 2014, 28, 1057–1063. [Google Scholar] [CrossRef]
- Zhang, S.; Xie, Y.; Wang, J.; Geng, Y.; Zhou, Y.; Sun, C.; Wang, G. Development of an LC–MS/MS method for quantification of two pairs of isomeric flavonoid glycosides and other ones in rat plasma: Application to pharmacokinetic studies. Biomed. Chromatogr. 2017, 31, e3972. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, S.; Li, X.; Li, P. LC-ESI-MS-MS determination of rat plasma protein binding of major flavonoids of Flos Lonicerae japonicae by centrifugal ultrafiltration. Chromatographia 2010, 72, 71–77. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, Y.; Deng, Z.; Wu, W.; Liu, J.; Wang, H. Development of a LC-MS/MS Method for the Quantification of Myricitrin: Application to a Pharmacokinetic Study in Rats. Rev. Bras. Farmacogn. 2021, 31, 102–106. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, G.-Q.; Zhang, T.-T.; Jin, B.; Ma, C. Pharmacokinetic comparisons of naringenin and naringenin-nicotinamide cocrystal in rats by LC-MS/MS. J. Anal. Methods Chem. 2020, 2020, 8364218. [Google Scholar] [CrossRef]
- Zeng, X.; Zheng, Y.; He, Y.; Peng, W.; Su, W. A rapid LC-MS/MS method for simultaneous determination of ten flavonoid metabolites of naringin in rat urine and its application to an excretion study. Foods 2022, 11, 316. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhou, H.; Chu, Y.; Wang, X.; Luo, R.; Yang, L.; Polachi, N.; Li, X.; Chen, M.; Huang, L. Simultaneous determination and pharmacokinetics of danshensu, protocatechuic aldehyde, 4-hydroxy-3-methyloxyphenyl lactic acid and protocatechuic acid in human plasma by LC–MS/MS after oral administration of compound danshen dripping pills. J. Pharm. Biomed. Anal. 2017, 145, 860–864. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Feng, Y.; Ouyang, H.-Z.; Yu, B.; Chang, Y.-X.; Pan, G.-X.; Dong, G.-Y.; Wang, T.; Gao, X.-M. A sensitive LC–MS/MS method for simultaneous determination of six flavonoids in rat plasma: Application to a pharmacokinetic study of total flavonoids from mulberry leaves. J. Pharm. Biomed. Anal. 2013, 84, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Dong, L.; Guo, P.; Yan, W.; Wang, C.; Zhang, Z. Simultaneous determination of four flavonoids and one phenolic acid in rat plasma by LC–MS/MS and its application to a pharmacokinetic study after oral administration of the Herba desmodii Styracifolii extract. J. Chromatogr. B 2013, 932, 66–73. [Google Scholar] [CrossRef]
- Wang, X.; Xia, H.; Liu, Y.; Qiu, F.; Di, X. Simultaneous determination of three glucuronide conjugates of scutellarein in rat plasma by LC–MS/MS for pharmacokinetic study of breviscapine. J. Chromatogr. B 2014, 965, 79–84. [Google Scholar] [CrossRef]
- Suryawanshi, S.; Mehrotra, N.; Asthana, R.K.; Gupta, R.C. Liquid chromatography/tandem mass spectrometric study and analysis of xanthone and secoiridoid glycoside composition of Swertia chirata, a potent antidiabetic. Rapid Commun. Mass Spectrom. 2006, 20, 3761–3768. [Google Scholar] [CrossRef]
- Du, Y.; Li, C.; Xu, S.; Yang, J.; Wan, H.; He, Y. LC-MS/MS combined with blood-brain dual channel microdialysis for simultaneous determination of active components of astragali radix-safflower combination and neurotransmitters in rats with cerebral ischemia reperfusion injury: Application in pharmacokinetic and pharmacodynamic study. Phytomedicine 2022, 106, 154432. [Google Scholar]
- Szczesny, D.; Bartosińska, E.; Jacyna, J.; Patejko, M.; Siluk, D.; Kaliszan, R. Quantitative determination of trigonelline in mouse serum by means of hydrophilic interaction liquid chromatography–MS/MS analysis: Application to a pharmacokinetic study. Biomed. Chromatogr. 2018, 32, e4054. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Ma, T.; Li, Y.; Cai, N. A rapid and sensitive LC–MS/MS method for the determination of vanillic acid in rat plasma with application to pharmacokinetic study. Biomed. Chromatogr. 2022, 36, e5248. [Google Scholar] [CrossRef] [PubMed]
- Camont, L.; Collin, F.; Marchetti, C.; Jore, D.; Gardes-Albert, M.; Bonnefont-Rousselot, D. Liquid chromatographic/electrospray ionization mass spectrometric identification of the oxidation end-products of trans-resveratrol in aqueous solutions. Rapid Commun. Mass Spectrom. 2010, 24, 634–642. [Google Scholar] [CrossRef] [PubMed]
- Betz, J.M.; Brown, P.N.; Roman, M.C. Accuracy, precision, and reliability of chemical measurements in natural products research. Fitoterapia 2011, 82, 44–52. [Google Scholar] [CrossRef]
- Kwon, E.-Y.; Choi, M.-S. Dietary eriodictyol alleviates adiposity, hepatic steatosis, insulin resistance, and inflammation in diet-induced obese mice. Int. J. Mol. Sci. 2019, 20, 1227. [Google Scholar] [CrossRef]
- Lin, S.-X.; Li, X.-Y.; Chen, Q.-C.; Ni, Q.; Cai, W.-F.; Jiang, C.-P.; Yi, Y.-K.; Liu, L.; Liu, Q.; Shen, C.-Y. Eriodictyol regulates white adipose tissue browning and hepatic lipid metabolism in high fat diet-induced obesity mice via activating AMPK/SIRT1 pathway. J. Ethnopharmacol. 2025, 337, 118761. [Google Scholar] [CrossRef]
- Ashokkumar, N.; Vinothiya, K. Protective impact of vanillic acid on lipid profile and lipid metabolic enzymes in diabetic hypertensive rat model generated by a high-fat diet. Curr. Drug Discovery Technol. 2023, 20, 66–73. [Google Scholar] [CrossRef]
- Ding, H.; Liu, J.; Chen, Z.; Huang, S.; Yan, C.; Kwek, E.; He, Z.; Zhu, H.; Chen, Z.-Y. Protocatechuic acid alleviates TMAO-aggravated atherosclerosis via mitigating inflammation, regulating lipid metabolism, and reshaping gut microbiota. Food Funct. 2024, 15, 881–893. [Google Scholar] [CrossRef]
- Wang, D.; Wei, X.; Yan, X.; Jin, T.; Ling, W. Protocatechuic acid, a metabolite of anthocyanins, inhibits monocyte adhesion and reduces atherosclerosis in apolipoprotein E-deficient mice. J. Agric. Food. Chem. 2010, 58, 12722–12728. [Google Scholar] [CrossRef]
- Chen, T.; Wang, Y.; Yang, J.-L.; Ni, J.; You, K.; Li, X.; Song, Y.; Wang, X.; Li, J.; Shen, X. Gentisic acid prevents the development of atherosclerotic lesions by inhibiting SNX10-mediated stabilization of LRP6. Pharmacol. Res. 2024, 210, 107516. [Google Scholar] [CrossRef]
- Assini, J.M.; Mulvihill, E.E.; Sutherland, B.G.; Telford, D.E.; Sawyez, C.G.; Felder, S.L.; Chhoker, S.; Edwards, J.Y.; Gros, R.; Huff, M.W. Naringenin prevents cholesterol-induced systemic inflammation, metabolic dysregulation, and atherosclerosis in Ldlr−/− mice. J. Lipid Res. 2013, 54, 711–724. [Google Scholar] [CrossRef]
- Wang, J.; Wu, R.; Hua, Y.; Ling, S.; Xu, X. Naringenin ameliorates vascular senescence and atherosclerosis involving SIRT1 activation. J. Pharm. Pharmacol. 2023, 75, 1021–1033. [Google Scholar] [CrossRef]
- Ye, W.; Yan, T.; Zhang, C.; Duan, L.; Chen, W.; Song, H.; Zhang, Y.; Xu, W.; Gao, P. Detection of pesticide residue level in grape using hyperspectral imaging with machine learning. Foods 2022, 11, 1609. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Hu, M.; Wang, Z.; Sha, R.; Huang, J.; Mao, J.; Cui, Y. Metabolomics Combined with Machine Learning for Geographical Origin Tracing of Garlic. Sci. Technol. Food Ind. 2024, 45, 1–8. [Google Scholar]
- Lebanov, L.; Tedone, L.; Ghiasvand, A.; Paull, B. Random Forests machine learning applied to gas chromatography—Mass spectrometry derived average mass spectrum data sets for classification and characterisation of essential oils. Talanta 2020, 208, 120471. [Google Scholar] [CrossRef] [PubMed]
- Nie, W.; Alimujiang, S.; Zhang, Y.; Zhang, S.; Li, W. A Multi-omics approach combining GC-MS, LC-MS, and FT-NIR with chemometrics and machine learning for metabolites systematic profiling and geographical origin tracing of Artemisia argyi Folium. J. Chromatogr. A 2025, 1757, 466138. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, H.; Jiang, J.; Chen, S.; Zhang, H.; Zhang, G.; Zheng, C.; Xu, H. Metabolomics approach to growth-age discrimination in mountain-cultivated ginseng (Panax ginseng CA Meyer) using ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. J. Sep. Sci. 2023, 46, 2300445. [Google Scholar] [CrossRef]
- Chahal, S.; Tian, L.; Bilamjian, S.; Balogh, F.; De Leoz, L.; Anumol, T.; Cuthbertson, D.; Bayen, S. Robust Multiclass Feature Selection for the Authentication of Honey Botanical Origin via Nontargeted LC-MS Analysis. Anal. Chem. 2025, 97, 12521–12530. [Google Scholar] [CrossRef]
Compound | Precursor Ion (Da) | Product Ion (Da) | Declustering Potential (V) | Collision Energy (V) | References |
---|---|---|---|---|---|
Apigenin | 269.1 | 117.1 | −55 | −55 | [33] |
Chrysoeriol | 299.1 | 284.2 | −45 | −55 | [34] |
Epicatechin gallate | 441.0 | 169.1 | −50 | −40 | [35] |
Eriodictyol | 286.9 | 135.0 | −50 | −25 | [36] |
Gallic acid | 169.0 | 125.1 | −70 | −30 | [37] |
Gentisic acid | 153.0 | 108.1 | −30 | −45 | [38] |
Homoeriodictyol | 301.1 | 150.8 | −28 | −45 | [39] |
Hyperoside | 463.2 | 300.0 | −165 | −30 | [40] |
Isoquercitrin | 463.1 | 300.1 | −170 | −30 | [41] |
Lonicerin | 593.0 | 284.0 | −190 | −45 | [42] |
Myricitrin | 463.0 | 271.1 | −80 | −55 | [43] |
Naringenin | 271.1 | 150.9 | −80 | −30 | [44] |
Naringin | 579.1 | 271.1 | −210 | −45 | [45] |
Protocatechuic acid | 153.1 | 109.2 | −80 | −25 | [46] |
Quercetin | 301.0 | 151.1 | −100 | −35 | [47] |
Schaftoside | 563.1 | 353.0 | −100 | −55 | [48] |
Scutellarein | 461.0 | 285.1 | −30 | −25 | [49] |
Sweroside | 357.0 | 125.1 | −120 | −25 | [50] |
Syringin | 394.9 | 232.1 | 120 | 40 | [51] |
Trigonelline | 138.1 | 94.1 | 15 | 40 | [52] |
Vanillic acid | 167.1 | 152.2 | −45 | −25 | [53] |
4-Hydroxybenzaldehyde | 121.0 | 92.1 | −40 | −30 | [54] |
Compound | Linear Range (μg/mL) | Correlation Coefficient (r2) | Limit of Quantification (mg/kg) | Limit of Detection (mg/kg) | RSD/% | ||
---|---|---|---|---|---|---|---|
Precision | Repeatability | Stability | |||||
Apigenin | 0.01–15 | 0.9993 | 0.06 | 0.020 | 2.34 | 2.36 | 2.43 |
Chrysoeriol | 0.005–15 | 0.9993 | 0.03 | 0.001 | 6.84 | 8.30 | 6.82 |
Epicatechin gallate | 0.002–15 | 0.9994 | 0.012 | 0.004 | 3.46 | 2.74 | 2.24 |
Eriodictyol | 0.02–15 | 0.9991 | 0.12 | 0.040 | 2.45 | 3.46 | 4.75 |
Gallic acid | 0.005–15 | 0.999 | 0.03 | 0.010 | 2.98 | 1.47 | 1.76 |
Gentisic acid | 0.08–15 | 0.9995 | 0.48 | 0.150 | 2.48 | 4.26 | 3.92 |
Homoeriodictyol | 0.008–15 | 0.9997 | 0.048 | 0.015 | 2.66 | 5.58 | 4.31 |
Hyperoside | 0.01–15 | 0.9993 | 0.06 | 0.020 | 3.15 | 5.36 | 5.25 |
Isoquercitrin | 0.005–15 | 0.9992 | 0.03 | 0.010 | 7.50 | 6.43 | 7.81 |
Lonicerin | 0.002–15 | 0.9995 | 0.012 | 0.005 | 1.84 | 1.19 | 1.40 |
Myricitrin | 0.005–15 | 0.9997 | 0.03 | 0.010 | 1.92 | 1.40 | 2.22 |
Naringenin | 0.005–15 | 0.9993 | 0.03 | 0.010 | 0.86 | 0.80 | 1.58 |
Naringin | 0.001–15 | 0.9998 | 0.006 | 0.002 | 3.87 | 4.61 | 4.92 |
Protocatechuic acid | 0.08–15 | 0.9992 | 0.48 | 0.150 | 2.88 | 2.71 | 5.76 |
Quercetin | 0.005–15 | 0.9994 | 0.03 | 0.010 | 6.44 | 8.19 | 6.82 |
Schaftoside | 0.005–15 | 0.9993 | 0.03 | 0.010 | 1.48 | 1.70 | 2.30 |
Scutellarein | 0.002–15 | 0.9995 | 0.012 | 0.004 | 2.93 | 3.14 | 4.62 |
Sweroside | 0.005–15 | 0.9998 | 0.03 | 0.010 | 5.63 | 6.04 | 6.58 |
Syringin | 0.001–15 | 0.999 | 0.006 | 0.002 | 5.18 | 6.01 | 8.38 |
Trigonelline | 0.08–15 | 0.9991 | 0.48 | 0.150 | 0.97 | 1.25 | 2.43 |
Vanillic acid | 0.2–15 | 0.9993 | 1.2 | 0.400 | 0.87 | 2.58 | 3.51 |
4-Hydroxybenzaldehyde | 0.1–15 | 0.9994 | 0.6 | 0.200 | 1.23 | 1.31 | 1.92 |
Arithmetic | Accuracy (%) | Precision (%) | Recall (%) | F1 Score |
---|---|---|---|---|
Random Forest (RF) | 100 | 100 | 100 | 1 |
XGBoost | 100 | 100 | 100 | 1 |
Support Vector Machine (SVM) | 100 | 100 | 100 | 1 |
k-Nearest Neighbor (KNN) | 100 | 100 | 100 | 1 |
Backpropagation Neural Network (BPNN) | 100 | 100 | 100 | 1 |
Random Tree (RT) | 100 | 100 | 100 | 1 |
CatBoost (CT) | 100 | 100 | 100 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, T.; Ye, Y.; Zhang, J.; Wang, J.; Hu, Z.; Linn, K.Z.; Chen, X.; Liu, H.; Liu, Z.; Yao, Q. Machine Learning and UHPLC–MS/MS-Based Discrimination of the Geographical Origin of Dendrobium officinale from Yunnan, China. Foods 2025, 14, 3442. https://doi.org/10.3390/foods14193442
Lin T, Ye Y, Zhang J, Wang J, Hu Z, Linn KZ, Chen X, Liu H, Liu Z, Yao Q. Machine Learning and UHPLC–MS/MS-Based Discrimination of the Geographical Origin of Dendrobium officinale from Yunnan, China. Foods. 2025; 14(19):3442. https://doi.org/10.3390/foods14193442
Chicago/Turabian StyleLin, Tao, Yanping Ye, Jiao Zhang, Jing Wang, Zhengxu Hu, Khine Zar Linn, Xinglian Chen, Hongcheng Liu, Zhenhuan Liu, and Qinghua Yao. 2025. "Machine Learning and UHPLC–MS/MS-Based Discrimination of the Geographical Origin of Dendrobium officinale from Yunnan, China" Foods 14, no. 19: 3442. https://doi.org/10.3390/foods14193442
APA StyleLin, T., Ye, Y., Zhang, J., Wang, J., Hu, Z., Linn, K. Z., Chen, X., Liu, H., Liu, Z., & Yao, Q. (2025). Machine Learning and UHPLC–MS/MS-Based Discrimination of the Geographical Origin of Dendrobium officinale from Yunnan, China. Foods, 14(19), 3442. https://doi.org/10.3390/foods14193442