Molecular Mechanisms and Antioxidant Effects of Latilactobacillus sakei F1, Lacticaseibacillus paracasei D2, Lacticaseibacillus rhamnosus JL, and Weissella cibaria JLK Isolated from Spontaneously Fermented and Raw Food Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolation of LAB Strains
2.2. Preparation and Identification of Isolates for Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS)
2.3. Preparing Live and HK LAB for the Antioxidant Assays
2.4. Ability to Scavenge DPPH Free Radical and ABTS Radicals
2.5. Growth of the Strains in the Presence of H2O2
2.6. Whole Genome Sequencing and Detection of Genes Involved in Antioxidant Activity
2.7. Bio-Screen Assay and Expression Levels of Genes Involved in Antioxidant Activity
2.8. Statistical Analysis
3. Results
3.1. Identification of LAB Using MALDI-TOF Analysis
3.2. DPPH and ABTS Free Radical Scavenging Activities
3.3. Genome Sequences of L. paracasei D2, L. rhamnosus JL, W. cibaria JLK, L. sakei F1
3.4. Analysis of the Transcript Levels of the Genes Involved in Antioxidant Activity in LAB Strains Exposed to H2O2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| LAB | Lactic acid bacteria |
| H2O2 | Hydrogen peroxide |
| ROS | Reactive oxygen species |
| BHA | Butylated hydroxyanisole |
| MBP | Metal-binding proteins |
| HK | Heat-killed |
| SOD | Superoxide dismutase |
| CAT | Catalase |
References
- Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Chandimali, N.; Bak, S.G.; Park, E.H.; Lim, H.-J.; Won, Y.-S.; Kim, E.-K.; Park, S.-I.; Lee, S.J. Free radicals and their impact on health and antioxidant defenses: A review. Cell Death Discov. 2025, 11, 19. [Google Scholar] [CrossRef]
- Krishnamurthy, H.K.; Pereira, M.; Rajavelu, I.; Jayaraman, V.; Krishna, K.; Wang, T.; Bei, K.; Rajasekaran, J.J. Oxidative stress: Fundamentals and advances in quantification techniques. Front. Chem. 2024, 12, 1470458. [Google Scholar] [CrossRef] [PubMed]
- Firuzi, O.; Miri, R.; Tavakkoli, M.; Saso, L. Antioxidant therapy: Current status and future prospects. Curr. Med. Chem. 2011, 18, 3871–3888. [Google Scholar] [CrossRef] [PubMed]
- Amaretti, A.; di Nunzio, M.; Pompei, A.; Raimondi, S.; Rossi, M.; Bordoni, A. Antioxidant properties of potentially probiotic bacteria: In vitro and in vivo activities. Appl. Microbiol. Biotechnol. 2013, 97, 809–817. [Google Scholar] [CrossRef]
- Dash, U.C.; Bhol, N.K.; Swain, S.K.; Samal, R.R.; Nayak, P.K.; Raina, V.; Panda, S.K.; Kerry, R.G.; Duttaroy, A.K.; Jena, A.B. Oxidative stress and inflammation in the pathogenesis of neurological disorders: Mechanisms and implications. Acta Pharm. Sin. B 2025, 15, 15–34. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Guo, Y.; Tang, W.; Chen, D.; Xue, L.; Chen, Y.; Guo, Y.; Wei, S.; Wu, M.; Dai, J.; et al. Reactive oxygen species-scavenging nanomaterials for the prevention and treatment of age-related diseases. J. Nanobiotechnol. 2024, 22, 252. [Google Scholar] [CrossRef]
- Mishra, V.; Shah, C.; Mokashe, N.; Chavan, R.; Yadav, H.; Prajapati, J. Probiotics as potential antioxidants: A systematic review. J. Agric. Food Chem. 2015, 63, 3615–3626. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, L.; Ye, S.; Jiang, L.; Liu, S. Genome-wide identification of glutathione peroxidase (GPX) gene family and their response to abiotic stress in cucumber. 3 Biotech 2018, 8, 159. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, L.; Wu, H.; Jiang, L.; Liu, S. Genome-wide identification and transcriptional expression analysis of cucumber superoxide dismutase (SOD) family in response to various abiotic stresses. Int. J. Genom. 2017, 2017, 7243973. [Google Scholar] [CrossRef]
- Jomova, K.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch. Toxicol. 2024, 98, 1323–1367. [Google Scholar] [CrossRef]
- Luo, D.; Fang, B. Structural identification of ginseng polysaccharides and testing of their antioxidant activities. Carbohydr. Polym. 2008, 72, 376–381. [Google Scholar] [CrossRef]
- Ren, J.; Li, Z.; Li, X.; Yang, L.; Bu, Z.; Wu, Y.; Li, Y.; Zhang, S.; Meng, X. Exploring the mechanisms of the antioxidants BHA, BHT, and TBHQ in Hepatotoxicity, Nephrotoxicity, and Neurotoxicity from the Perspective of Network Toxicology. Foods 2025, 14, 1095. [Google Scholar] [CrossRef]
- Abu-Shanab, A.; Quigley, E.M. The role of the gut microbiota in nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 691–701. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Ed-Dra, A.; Song, Y.; Elbediwi, M.; Nambiar, R.B.; Zhou, X.; Yue, M. Lacticaseibacillus rhamnosus alleviates intestinal inflammation and promotes microbiota-mediated protection against Salmonella fatal infections. Front. Immunol. 2022, 13, 973224. [Google Scholar] [CrossRef] [PubMed]
- Damholt, A.; Keller, M.; Baranowski, K.; Brown, B.; Wichmann, A.; Melsaether, C.; Eskesen, D.; Westphal, V.; Arltoft, D.; Habicht, A.; et al. Lacticaseibacillus rhamnosus GG DSM 33156 effects on pathogen defence in the upper respiratory tract: A randomised, double-blind, placebo-controlled paediatric trial. Benef. Microbes 2022, 13, 13–24. [Google Scholar] [CrossRef]
- Kang, T.S.; Korber, D.R.; Tanaka, T. Influence of oxygen on NADH recycling and oxidative stress resistance systems in Lactobacillus panis PM1. AMB Express 2013, 3, 10. [Google Scholar] [CrossRef] [PubMed]
- Vašková, J.; Kočan, L.; Vaško, L.; Perjési, P. Glutathione-Related Enzymes and Proteins: A Review. Molecules 2023, 28, 1447. [Google Scholar] [CrossRef]
- Lu, J.; Holmgren, A. The thioredoxin antioxidant system. Free Radic. Biol. Med. 2014, 66, 75–87. [Google Scholar] [CrossRef]
- Baker, L.M.; Poole, L.B. Catalytic mechanism of thiol peroxidase from Escherichia coli. Sulfenic acid formation and overoxidation of essential CYS61. J. Biol. Chem. 2003, 278, 9203–9211. [Google Scholar] [CrossRef] [PubMed]
- Nandi, A.; Yan, L.J.; Jana, C.K.; Das, N. Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxid. Med. Cell. Longev. 2019, 2019, 9613090. [Google Scholar] [CrossRef]
- Fukai, T.; Ushio-Fukai, M. Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal. 2011, 15, 1583–1606. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.; Wang, Y.; Xu, H.; Mei, X.; Yu, D.; Wang, Y.; Li, W. Antioxidant properties of probiotic bacteria. Nutrients 2017, 9, 521. [Google Scholar] [CrossRef]
- Ampemohotti, T.; Aida, G.; Christopher, P.; Charles, B.; Hao Van, T.T. Fermented vegetables: Their microbiology and impact on gut microbiota and overall health benefits. Food Rev. Int. 2025, 1–24. [Google Scholar] [CrossRef]
- Hur, S.J.; Lee, S.Y.; Kim, Y.-C.; Choi, I.; Kim, G.-B. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 2014, 160, 346–356. [Google Scholar] [CrossRef]
- Jang, H.J.; Song, M.W.; Lee, N.K.; Paik, H.D. Antioxidant effects of live and heat-killed probiotic Lactobacillus plantarum Ln1 isolated from kimchi. J. Food Sci. Technol. 2018, 55, 3174–3180. [Google Scholar] [CrossRef]
- Nataraj, B.H.; Ali, S.A.; Behare, P.V.; Yadav, H. Postbiotics-parabiotics: The new horizons in microbial biotherapy and functional foods. Microb. Cell Factories 2020, 19, 168. [Google Scholar] [CrossRef] [PubMed]
- Giri, S.S.; Jung, W.J.; Lee, S.B.; Jo, S.J.; Hwang, M.H.; Park, J.H.; Venkatachalam, S.; Park, S.C. Effect of dietary heat-killed Lactiplantibacillus plantarum VSG3 on growth, immunity, antioxidant status, and immune-related gene expression in pathogen-aggravated Cyprinus carpio. Fish Shellfish Immunol. 2024, 149, 109547. [Google Scholar] [CrossRef]
- Maresca, D.; Zotta, T.; Mauriello, G. Adaptation to Aerobic Environment of Lactobacillus johnsonii/gasseri Strains. Front. Microbiol. 2018, 9, 157. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Wang, J. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: A systematic review. Gut Microbes 2020, 12, 1801944. [Google Scholar] [CrossRef]
- Batdorj, B.; Dalgalarrondo, M.; Choiset, Y.; Pedroche, J.; Métro, F.; Prévost, H.; Chobert, J.M.; Haertlé, T. Purification and characterization of two bacteriocins produced by lactic acid bacteria isolated from Mongolian airag. J. Appl. Microbiol. 2006, 101, 837–848. [Google Scholar] [CrossRef]
- El Ahmadi, K.; Haboubi, K.; El Allaoui, H.; El Hammoudani, Y.; Bouhrim, M.; Eto, B.; Shahat, A.A.; Herqash, R.N. Isolation and preliminary screening of lactic acid bacteria for antimicrobial potential from raw milk. Front. Microbiol. 2025, 16, 1565016. [Google Scholar] [CrossRef]
- Kanak, E.K.; Yilmaz, S.Ö. Identification, antibacterial and antifungal effects, antibiotic resistance of some lactic acid bacteria. Food Sci. Technol. 2020, 41, 174–182. [Google Scholar] [CrossRef]
- Nacef, M.; Chevalier, M.; Chollet, S.; Drider, D.; Flahaut, C. MALDI-TOF mass spectrometry for the identification of lactic acid bacteria isolated from a French cheese: The Maroilles. Int. J. Food Microbiol. 2017, 247, 2–8. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.Y.; Jeong, Y.; Kang, C.-H. Antioxidant activity and probiotic properties of lactic acid bacteria. Fermentation 2022, 8, 29. [Google Scholar] [CrossRef]
- Shi, Y.; Cui, X.; Gu, S.; Yan, X.; Li, R.; Xia, S.; Chen, H.; Ge, J. Antioxidative and probiotic activities of lactic acid bacteria isolated from traditional artisanal milk cheese from northeast China. Probiotics Antimicrob. Proteins 2019, 11, 1086–1099. [Google Scholar] [CrossRef]
- Lin, M.Y.; Yen, C.L. Antioxidative ability of lactic acid bacteria. J. Agric. Food Chem. 1999, 47, 1460–1466. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhao, Y.; Zhang, L.; Zhang, X.; Huang, L.; Li, D.; Niu, C.; Yang, Z.; Wang, Q. Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem. 2012, 135, 1914–1919. [Google Scholar] [CrossRef]
- van Niel, E.W.J.; Hofvendahl, K.; Hahn-Hägerdal, B. Formation and conversion of oxygen metabolites by Lactococcus lactis subsp. lactis atcc 19435 under different growth conditions. Appl. Environ. Microbiol. 2002, 68, 4350–4356. [Google Scholar] [CrossRef]
- Coil, D.; Jospin, G.; Darling, A.E. A5-miseq: An updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 2014, 31, 587–589. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Tang, W.; Xing, Z.; Li, C.; Wang, J.; Wang, Y. Molecular mechanisms and in vitro antioxidant effects of Lactobacillus plantarum MA2. Food Chem. 2017, 221, 1642–1649. [Google Scholar] [CrossRef]
- Zhou, Y.; Gong, W.; Xu, C.; Zhu, Z.; Peng, Y.; Xie, C. Probiotic assessment and antioxidant characterization of Lactobacillus plantarum GXL94 isolated from fermented chili. Front. Microbiol. 2022, 13, 997940. [Google Scholar] [CrossRef]
- Yang, J.; Dong, C.; Ren, F.; Xie, Y.; Liu, H.; Zhang, H.; Jin, J. Lactobacillus paracasei M11-4 isolated from fermented rice demonstrates good antioxidant properties in vitro and in vivo. J. Sci. Food Agric. 2022, 102, 3107–3118. [Google Scholar] [CrossRef] [PubMed]
- Reis, R.A.G.; Calil, F.A.; Feliciano, P.R.; Pinheiro, M.P.; Nonato, M.C. The dihydroorotate dehydrogenases: Past and present. Arch. Biochem. Biophys. 2017, 632, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Zhang, Y.; Mu, G.; Xu, Y.; Wang, X.; Tuo, Y.; Qian, F. Protecting Effect of Bacillus coagulans T242 on HT-29 Cells Against AAPH-Induced Oxidative Damage. Probiotics Antimicrob. Proteins 2022, 14, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Li, C.; He, Z.; Pan, F.; Pan, S.; Wang, Y. Probiotic properties and cellular antioxidant activity of Lactobacillus plantarum MA2 isolated from Tibetan kefir grains. Probiotics Antimicrob. Proteins 2018, 10, 523–533. [Google Scholar] [CrossRef]
- Pimentel, T.C.; Cruz, A.G.; Pereira, E.; da Costa, W.K.A.; da Silva Rocha, R.; de Souza Pedrosa, G.T.; dos Santos Rocha, C.; Alves, J.M.; Alvarenga, V.O.; Sant’Ana, A.S.; et al. Postbiotics: An overview of concepts, inactivation technologies, health effects, and driver trends. Trends Food Sci. Technol. 2023, 138, 199–214. [Google Scholar] [CrossRef]
- Piqué, N.; Berlanga, M.; Miñana-Galbis, D. Health benefits of heat-killed (Tyndallized) probiotics: An overview. Int. J. Mol. Sci. 2019, 20, 2534. [Google Scholar] [CrossRef]
- de Almada, C.N.; Almada, C.N.; Martinez, R.C.R.; Sant’Ana, A.S. Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends Food Sci. Technol. 2016, 58, 96–114. [Google Scholar] [CrossRef]
- Floegel, A.; Kim, D.-O.; Chung, S.-J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Łepecka, A.; Szymański, P.; Okoń, A. Isolation, identification, and evaluation of the antioxidant properties of lactic acid bacteria strains isolated from meat environment. PLoS ONE 2025, 20, e0327225. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chen, C.; Li, Y.; Li, Z.; Li, C.; Luan, C. Antioxidant effects and probiotic properties of Latilactobacillus sakei MS103 isolated from sweet pickled garlic. Foods 2023, 12, 4276. [Google Scholar] [CrossRef]
- Li, X. Improved pyrogallol autoxidation method: A reliable and cheap superoxide-scavenging assay suitable for all antioxidants. J. Agric. Food Chem. 2012, 60, 6418–6424. [Google Scholar] [CrossRef]
- Yi, Z.-J.; Fu, Y.-R.; Li, M.; Gao, K.-S.; Zhang, X.-G. Effect of LTA isolated from bifidobacteria on d-galactose-induced aging. Exp. Gerontol. 2009, 44, 760–765. [Google Scholar] [CrossRef]
- Kim, K.-T.; Yang, S.J.; Paik, H.-D. Probiotic properties of novel probiotic Levilactobacillus brevis KU15147 isolated from radish kimchi and its antioxidant and immune-enhancing activities. Food Sci. Biotechnol. 2021, 30, 257–265. [Google Scholar] [CrossRef]
- Xu, X.; Qiao, Y.; Peng, Q.; Shi, B. Probiotic properties of Loigolactobacillus coryniformis NA-3 and in vitro comparative evaluation of live and heat-killed cells for antioxidant, anticancer and immunoregulatory activities. Foods 2023, 12, 1118. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, Z.; Fang, B.; Hung, W.; Gao, H.; Zhao, W.; Lan, H.; Liu, M.; Zhao, L.; Zhang, M. Effect of thermal inactivation on antioxidant, anti-inflammatory activities and chemical profile of postbiotics. Foods 2023, 12, 3579. [Google Scholar] [CrossRef]
- Peacock, T.; Hassan, H.M. Role of the Mn-catalase in aerobic growth of Lactobacillus plantarum ATCC 14431. Appl. Microbiol. 2021, 1, 615–625. [Google Scholar] [CrossRef]
- Li, J.; Wang, B.; Chen, J.; Du, G.; Fang, F. Heme dependent catalase conditionally contributes to oxygen tolerance of Tetragenococcus halophilus strains isolated from soy sauce moromi. Appl. Sci. 2022, 12, 8039. [Google Scholar] [CrossRef]
- An, H.; Zhai, Z.; Yin, S.; Luo, Y.; Han, B.; Hao, Y. Coexpression of the Superoxide Dismutase and the Catalase Provides Remarkable Oxidative stress resistance in Lactobacillus rhamnosus. J. Agric. Food Chem. 2011, 59, 3851–3856. [Google Scholar] [CrossRef]
- Vázquez, J.; González, B.; Sempere, V.; Mas, A.; Torija, M.J.; Beltran, G. Melatonin reduces oxidative stress damage induced by hydrogen peroxide in Saccharomyces cerevisiae. Front. Microbiol. 2017, 8, 1066. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, H.; Zhang, X.; Lu, J.; Holmgren, A. Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system. J. Biol. Chem. 2013, 288, 32241–32247. [Google Scholar] [CrossRef]
- Chen, H.-L.; Wang, C.-H.; Kuo, Y.-W.; Tsai, C.-H. Antioxidative and hepatoprotective effects of fructo-oligosaccharide in d-galactose-treated Balb/cJ mice. Br. J. Nutr. 2011, 105, 805–809. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, M.; Attri, S.; Sharma, K.; Goel, G. Lactobacillus paracasei CD4 as potential indigenous lactic cultures with antioxidative and ACE inhibitory activity in soymilk hydrolysate. J. Food Meas. Charact. 2018, 12, 1005–1010. [Google Scholar] [CrossRef]
- Huang, S.-Y.; Chen, L.-H.; Wang, M.-F.; Hsu, C.-C.; Chan, C.-H.; Li, J.-X.; Huang, H.-Y. Lactobacillus paracasei PS23 delays progression of age-related cognitive decline in senescence accelerated mouse prone 8 (SAMP8) mice. Nutrients 2018, 10, 894. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Fan, X.; Li, D.; Zhao, T.; Wu, D.; Liu, Z.; Long, D.; Li, B.; Huang, X. High Antioxidant Capacity of Lacticaseibacillus paracasei TDM-2 and Pediococcus pentosaceus TCM-3 from Qinghai Tibetan Plateau and Their Function towards Gut Modulation. Foods 2023, 12, 1814. [Google Scholar] [CrossRef]
- Shimamura, S.; Abe, F.; Ishibashi, N.; Miyakawa, H.; Yaeshima, T.; Araya, T.; Tomita, M. Relationship between oxygen sensitivity and oxygen metabolism of Bifidobacterium species. J. Dairy Sci. 1992, 75, 3296–3306. [Google Scholar] [CrossRef]
- Wu, S.; Chen, Y.; Chen, Z.; Zhou, Q.; Wei, F.; Li, P.; Gu, Q. Antioxidant properties and molecular mechanisms of Lactiplantibacillus plantarum ZJ316: A potential probiotic resource. LWT 2023, 187, 115269. [Google Scholar] [CrossRef]
- Yu, H.S.; Lee, N.K.; Choi, A.J.; Choe, J.S.; Bae, C.H.; Paik, H.D. Antagonistic and antioxidant effect of probiotic Weissella cibaria JW15. Food Sci. Biotechnol. 2019, 28, 851–855. [Google Scholar] [CrossRef] [PubMed]



| Isolated Food Sample | Organism ID | Species Name |
|---|---|---|
| Blue Cheese | F3 | Lactococcus lactis |
| Homemade sauerkraut | L4 | Lacticaseibacillus paracasei |
| L5 | Lactiplantibacillus plantarum | |
| L6 | Levilactobacillus brevis | |
| L7 | Latilactobacillus curvatus | |
| L8 | Pediococcus pentosaceus | |
| SK1 | Leuconostoc citreum | |
| SK21 | Latilactobacillus curvatus | |
| D2 | Lacticaseibacillus paracasei | |
| D1 | Pediococcus pentosaceus | |
| D6 | Lactococcus lactis | |
| SK 5-1 | Levilactobacillus brevis | |
| SK 5-2 | Furfurilactobacillus rossiae | |
| SK 5-3 | Lacticaseibacillus paracasei | |
| RSK 1 | Lacticaseibacillus paracasei | |
| RSK 2 | Levilactobacillus brevis | |
| SKR 32 | Lactiplantibacillus plantarum | |
| SK ® 3 4 | Lacticaseibacillus paracasei | |
| SK 10-5 | Leuconostoc mesenteroides | |
| Raw cabbage | Cab 01 | Leuconostoc citreum |
| Raw broccoli | Broc 03 | Weissella cibaria |
| RB2 | Leuconostoc citreum | |
| Homemade Kimchi | F1 | Latilactobacillus sakei |
| F2 | Latilactobacillus curvatus | |
| JL | Lacticaseibacillus rhamnosus | |
| T | Latilactobacillus sakei | |
| JLK | Weissella cibaria | |
| DT3 | Latilactobacillus sakei | |
| KM 5 | Pediococcus acidilactici | |
| Kim 1-1 | Latilactobacillus sakei | |
| Kim 1-2 | Latilactobacillus curvatus | |
| Kim 2-1 | Latilactobacillus sakei | |
| Kim 2-4 | Latilactobacillus curvatus | |
| Kim 3-1 | Latilactobacillus sakei | |
| Kim 3-2 | Weissella koreensis | |
| Kim 4-1 | Latilactobacillus sakei | |
| Kim 4-2 | Latilactobacillus curvatus | |
| Kim 4-4 | Leuconostoc mesenteroides | |
| Kim 5-1 | Latilactobacillus curvatus | |
| Kim 5-4 | Leuconostoc mesenteroides | |
| Kim 6-1 | Latilactobacillus sakei | |
| Kim 7-1 | Latilactobacillus sakei | |
| Kim 8-3 | Leuconostoc mesenteroides | |
| Kim 8-5 | Latilactobacillus sakei | |
| Kim 9-7 | Latilactobacillus sakei | |
| Kim 9-8 | Latilactobacillus curvatus | |
| Fermented radish | FR 1 | Latilactobacillus sakei |
| FR 2 | Leuconostoc mesenteroides | |
| Kombucha | HA | Weissella cibaria |
| HC | Lactobacillus delbrueckii |
| Strains | ABTS (%) | DPPH (%) | ||
|---|---|---|---|---|
| Live | Heat-Killed | Live | Heat-Killed | |
| F1 | 24.24 ± 0.59 F−J | 21.36 ± 0.68 J K | 29.84 ± 0.39 A | 20.18 ± 0.58 E–I |
| F2 | 25.76 ± 0.34 D–H | 22.93 ± 0.40 H–K | 15.12 ± 0.35 J K L | 12.56 ± 0.46 L–O |
| F3 | 13.58 ± 0.76 N–T | 16.99 ± 0.40 L M N | 10.92 ± 0.43 M–R | 21.85 ± 0.10 D E F |
| D2 | 29.08 ± 0.78 D | 26.59 ± 0.27 D –G | 25.42 ± 0.24 B C D | 21.25 ± 0.24 E–H |
| L4 | 23.70 ± 0.90 F–J | 24.46 ± 0.41 F–J | 20.67 ± 0.51 E–I | 21.67 ± 0.96 D–G |
| L5 | 12.05 ± 0.42 Q–W | 14.16 ± 0.43 N–R | 13.69 ± 0.25 K–N | 13.02 ± 0.18 L–O |
| L6 | 13.55 ± 0.32 N–T | 10.65 ± 0.29 S–W | 11.73 ± 0.43 L–Q | 7.57 ± 0.52 R–W |
| L7 | 27.09 ± 0.51 D E F | 23.38 ± 0.52 G–J | 21.21 ± 1.37 E–H | 21.22 ± 0.65 E–H |
| L8 | 21.33 ± 0.50 J K | 28.87 ± 0.63 D E | 17.08 ± 0.24 I J K | 20.16 ± 0.39 E–I |
| SK1 | 12.92 ± 0.45 O–V | 23.42 ± 0.49 G–J | 12.00 ± 0.95 L–P | 17.92 ± 0.24 G–J |
| SK21 | 4.60 ± 0.50 AB–AG | 10.33 ± 0.50 S–X | 2.95 ± 0.29 Y–AB | 7.86 ± 0.35 Q–V |
| D1 | 22.15 ± 0.69 I J K | 17.80 ± 0.50 L M | 17.59 ± 0.89 H I J | 15.30 ± 0.29 J K L |
| D6 | 5.90 ± 0.36 AA–AE | 14.91 ± 0.50 M–Q | 3.91 ± 0.58 W–AA | 17.04 ± 0.24 I J K |
| SK 5-1 | 3.73 ± 0.52 AB–AG | 13.97 ± 0.58 N–S | 0.00 ± 0.00 AB | 12.29 ± 0.32 L–P |
| SK 5-2 | 15.81 ± 0.61 M–P | 9.80 ± 0.14 V–Z | 9.49 ± 0.96 O–S | 4.17 ± 0.48 V–AA |
| SK 5-3 | 13.49 ± 1.28 O–T | 4.62 ± 0.59 AB–AG | 14.51 ± 0.93 J–M | 0.00 ± 0.00 AB |
| RSK 1 | 2.48 ± 0.31 AE–AH | 10.00 ± 0.33 T–Y | 5.42 ± 0.72 T–Z | 10.92 ± 0.43 M–R |
| RSK 2 | 0.00 ± 0.00 AH AI | 2.18 ± 0.31 AF–AH | 0.00 ± 0.00 AB | 0.00 ± 0.00 AB |
| SKR 32 | 12.07 ± 0.23 Q–W | 10.57 ± 0.32 T–W | 11.72 ± 1.22 L–Q | 12.50 ± 1.44 L–O |
| SK ® 3 4 | 1.99 ± 0.45 AG AH | 13.64 ± 0.38 N–T | 0.00 ± 0.00 AB | 10.34 ± 0.73 N–S |
| SK 10-5 | 16.20 ± 0.31 M N O | 4.98 ± 0.57 AB–AG | 30.18 ± 0.64 A | 4.60 ± 1.19 U–AA |
| Cab 01 | 4.23 ± 0.18 AB–AG | 12.18 ± 0.51 Q–V | 4.19 ± 0.46 V–AA | 9.67 ± 0.28 O–S |
| Broc 03 | 6.66 ± 0.49 Y–AC | 14.33 ± 0.31 N–R | 0.00 ± 0.00 AB | 22.91 ± 1.05 D E F |
| RB2 | 34.90 ± 0.24 c | 25.56 ± 0.31 E–I | 30.72 ± 0.89 A | 19.26 ± 1.18 F–I |
| JL | 39.90 ± 1.34 A | 35.87 ± 0.29 B C | 27.37 ± 0.97 A B C | 23.75 ± 0.24 C D E |
| T | 5.48 ± 0.55 AA–AF | 6.20 ± 0.58 AA–AD | 5.45 ± 0.70 T–Z | 7.92 ± 0.24Q–V |
| JLK | 39.27 ± 0.93 A B | 26.02 ± 0.41 D–H | 29.05 ± 0.49 A B | 22.50 ± 1.44 D E F |
| DT3 | 9.83 ± 0.74 V–Y | 0.00 ± 0.00 AH AI | 6.70 ± 0.48 S–Y | 0.00 ± 0.00 D E F |
| KM 5 | 5.87 ± 0.25 AA–AE | 6.35 ± 0.19 Z–AD | 4.26 ± 0.34 U–AA | 5.26 ± 0.39 T–Z |
| Kim 1-1 | 8.69 ± 1.27 W–AA | 11.33 ± 0.45 R–W | 5.48 ± 0.37 T–Z | 10.28 ± 0.35 N–S |
| Kim 1-2 | 5.95 ± 0.17 AA–AD | 14.94 ± 0.55 M–Q | 7.50 ± 0.48 R–X | 21.02 ± 0.15 C D E |
| Kim 2-1 | 5.57 ± 0.47 AA–AF | 13.35 ± 0.34 O–U | 3.04 ± 0.61 Y–AB | 9.72 ± 0.70 O–S |
| Kim 2-4 | 6.93 ± 0.44 X–AB | 10.63 ± 0.30 S–W | 8.10 ± 0.79 Q–U | 8.50 ± 0.03 P–T |
| Kim 3-1 | 2.93 ± 0.17 AD–AH | 0.00 ± 0.00 AH AI | 1.21 ± 0.70 AA AB | 0.00 ± 0.00 AB |
| Kim 3-2 | 13.99 ± 0.48 N–S | 19.85 ± 0.36 K L | 8.10 ± 0.79 Q–U | 9.72 ± 0.74 O–S |
| Kim 4-1 | 24.75 ± 0.90 F–J | 15.18 ± 0.36 M–Q | 17.00 ± 0.64 I J K | 6.69 ± 0.33 S–Y |
| Kim 4-2 | 0.00 ± 0.00 AH AI | 0.00 ± 0.00 AH AI | 0.00 ± 0.00 AB | 0.00 ± 0.00 AB |
| Kim 4-4 | 0.00 ± 0.00 AH AI | 0.00 ± 0.00 AH AI | 3.65 ± 0.72 X–AB | 0.00 ± 0.00 AB |
| Kim 5-1 | 0.00 ± 0.00 AH AI | 0.00 ± 0.00 AH AI | 0.00 ± 0.00 AB | 0.00 ± 0.00 AB |
| Kim 5-4 | 3.28 ± 0.25 AC–AH | 4.20 ± 0.72 AB–AG | 4.45 ± 1.06 U–AA | 0.00 ± 0.00 AB |
| Kim 6-1 | 12.68 ± 1.13 P–V | 5.60 ± 0.53 AA–AF | 9.72 ± 0.04 O–S | 0.00 ± 0.00 AB |
| Kim 7-1 | 5.46 ± 0.55 AA–AF | 4.63 ± 0.58 AB–AG | 4.26 ± 0.37 U–AA | 0.00 ± 0.00 AB |
| Kim 8-3 | 0.00 ± 0.00 AH AI | 0.00 ± 0.00 AH AI | 0.00 ± 0.00 AB | 0.00 ± 0.00 AB |
| Kim 8-5 | 0.00 ± 0.00 AH AI | 0.00 ± 0.00 AH AI | 0.00 ± 0.00 AB | 0.00 ± 0.00 AB |
| Kim 9-7 | 0.00 ± 0.00 AH AI | 0.00 ± 0.00 AH AI | 0.00 ± 0.00 AB | 0.00 ± 0.00 AB |
| Kim 9-8 | 3.10 ± 0.85 AD–AH | 0.00 ± 0.00 AH AI | 0.00 ± 0.00 AB | 2.18 ± 0.43 Z–AB |
| FR 1 | 2.39 ± 0.69 AF–AH | 5.14 ± 0.27 AB–AG | 0.00 ± 0.00 AB | 0.00 ± 0.00 AB |
| FR 2 | 25.06 ± 0.99 F–I | 14.89 ± 0.49 M–Q | 21.28 ± 1.68 E–H | 15.12 ± 0.35 J K L |
| HA | 17.87 ± 0.42 L M | 6.02 ± 0.27 AA–AD | 14.97 ± 2.09 J K L | 3.23 ± 1.06 Y–AB |
| HC | 3.39 ± 0.65 AC–AH | 5.54 ± 0.48 AA–AF | 0.00 ± 0.00 AB | 0.00 ± 0.00 AB |
| Bacterial Strain | Genome Size (Mbp) | GC Content (%) | NCBI GenBank Accession Number |
|---|---|---|---|
| L. paracasei D2 | 3.36 | 45.8 | PRJNA1251814 |
| L. rhamnosus JL | 2.96 | 46.6 | PRJNA1252288 |
| W. cibaria JLK | 2.53 | 44.7 | PRJNA1265932 |
| L. sakei F1 | 1.98 | 41.0 | PRJNA1093171 |
| Genes Responsible for Antioxidant Activity in LAB | Gene Description | L. paracasei D2 | L. rhamnosus JL | W. cibaria JLK | L. sakei F1 |
|---|---|---|---|---|---|
| npx | NADH Peroxidase | + | + | + | + |
| nox | NADH Oxidase | − | + | − | − |
| tpx | Thiol Peroxidase | + | + | − | + |
| trxB | Thioredoxin Reductase | + | + | + | + |
| gpx | Glutathione Peroxidase | + | + | + | − |
| gshR | Glutathione Reductase | + | + | + | + |
| sodA | Superoxide Dismutase | + | − | − | + |
| katE | Catalase | − | − | − | + |
| System/Genes Responsible for Antioxidant Activity | Relative Expression Fold (D2) | Relative Expression Fold (JL) | |||
|---|---|---|---|---|---|
| Mid-Log | Start of Stationery | Mid-Log | Start of Stationery | ||
| NADH oxidase-peroxidase/ | npx | 1.42 | 0.78 | 1.44 | 0.94 |
| nox | - | - | 1.25 | 1.07 | |
| Thioredoxin (Trx)/ | tpx | 1.23 | 0.96 | 1.26 | 0.85 |
| trxB | 1.10 | 1.14 | 1.14 | 1.11 | |
| Glutathione peroxidase system/ | gpx | 0.86 | 1.13 | 1.28 | 1.24 |
| gshR | 0.92 | 1.35 | 1.02 | 0.91 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ampemohotti, T.; Spooner, C.; Eastwood, S.; Golneshin, A.; Brennan, C.; Pillidge, C.; Van, T.T.H. Molecular Mechanisms and Antioxidant Effects of Latilactobacillus sakei F1, Lacticaseibacillus paracasei D2, Lacticaseibacillus rhamnosus JL, and Weissella cibaria JLK Isolated from Spontaneously Fermented and Raw Food Products. Foods 2025, 14, 3395. https://doi.org/10.3390/foods14193395
Ampemohotti T, Spooner C, Eastwood S, Golneshin A, Brennan C, Pillidge C, Van TTH. Molecular Mechanisms and Antioxidant Effects of Latilactobacillus sakei F1, Lacticaseibacillus paracasei D2, Lacticaseibacillus rhamnosus JL, and Weissella cibaria JLK Isolated from Spontaneously Fermented and Raw Food Products. Foods. 2025; 14(19):3395. https://doi.org/10.3390/foods14193395
Chicago/Turabian StyleAmpemohotti, Thilakna, Christopher Spooner, Sarah Eastwood, Aida Golneshin, Charles Brennan, Christopher Pillidge, and Thi Thu Hao Van. 2025. "Molecular Mechanisms and Antioxidant Effects of Latilactobacillus sakei F1, Lacticaseibacillus paracasei D2, Lacticaseibacillus rhamnosus JL, and Weissella cibaria JLK Isolated from Spontaneously Fermented and Raw Food Products" Foods 14, no. 19: 3395. https://doi.org/10.3390/foods14193395
APA StyleAmpemohotti, T., Spooner, C., Eastwood, S., Golneshin, A., Brennan, C., Pillidge, C., & Van, T. T. H. (2025). Molecular Mechanisms and Antioxidant Effects of Latilactobacillus sakei F1, Lacticaseibacillus paracasei D2, Lacticaseibacillus rhamnosus JL, and Weissella cibaria JLK Isolated from Spontaneously Fermented and Raw Food Products. Foods, 14(19), 3395. https://doi.org/10.3390/foods14193395

