Evaluation of Listeria monocytogenes Dissemination in a Beef Steak Tartare Production Chain
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Plan
2.1.1. Sampling—First Step: Evaluation of Listeria spp. and LM Diffusion in Finishing Farms and on Animals
2.1.2. Sampling—Second Step: Evaluation of LM Diffusion on Slaughtered Carcasses
2.1.3. Sampling—Third Step: Evaluation of LM Diffusion in the Production Plant
2.2. Sample Analyses
2.3. Isolates Identification
2.4. Whole-Genome Sequencing of LM Isolates
2.5. Antimicrobial Susceptibility of LM Isolates from Farm and Production Plant
2.6. Statistical Analyses
3. Results
3.1. First Step: Evaluation of Listeria spp. and LM Diffusion in Finishing Farms and on Animals
3.2. Second Step: Evaluation of LM Diffusion on Slaughtered Carcasses
3.3. Third Step: Evaluation of LM Diffusion in the Production Plant
3.4. Listeria Isolates Identification
3.5. Characterization of LM Isolates
3.6. Antibiotic Susceptibility of LM Isolates
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Food Safety Authority (EFSA)-European Centre for Disease Prevention Control (ECDC). The European Union One Health 2023 Zoonoses report. EFSA J. 2024, 22, e9106. [Google Scholar] [CrossRef]
- D’Ambrosio, G.; Maggio, F.; Serio, A.; Paparella, A. Tradition and innovation in raw meat products with a focus on the steak tartare case. Foods 2025, 14, 2326. [Google Scholar] [CrossRef]
- Tirloni, E.; Bernardi, C.; Fusi, V.; Sgoifo Rossi, C.A.; Stella, S. Microbiological and physicochemical profile of Italian steak tartare and predicting growth potential of Listeria monocytogenes. Heliyon 2024, 10, e30883. [Google Scholar] [CrossRef]
- Mughini-Gras, L.; Paganini, J.A.; Guo, R.; Coipan, C.E.; Friesema, I.H.M.; van Hoek, A.H.A.M.; van den Beld, M.; Kuiling, S.; Bergval, I.; Wullings, B.; et al. Source attribution of Listeria monocytogenes in the Netherlands. Int. J. Food Microbiol. 2025, 427, 110953. [Google Scholar] [CrossRef] [PubMed]
- Tirloni, E.; Bernardi, C.; Stella, S. Shelf life and growth potential of Listeria monocytogenes in steak tartare. LWT 2020, 118, 108807. [Google Scholar] [CrossRef]
- Stella, S.; Bernardi, C.; Tirloni, E. Growth potential of Listeria monocytogenes in veal tartare. Ital. J. Food Saf. 2021, 10, 9419. [Google Scholar] [CrossRef]
- Matle, I.; Mbatha, K.R.; Madoroba, E. A review of Listeria monocytogenes from meat and meat products: Epidemiology, virulence factors, antimicrobial resistance and diagnosis. Onderstepoort J. Vet. 2020, 87, e1–e20. [Google Scholar] [CrossRef]
- Pomilio, F.; De Angelis, M.E.; Maggio, F. Listeria monocytogenes. In Igiene Nei Processi Alimentari. Progettazione Della Sicurezza Degli Alimenti; Paparella, A., Schirone, M., Visciano, P., Eds.; Hoepli: Milano, Italy, 2023; pp. 229–238. [Google Scholar]
- Rodriguez, C.; Taminiau, B.; García-Fuentes, E.; Daube, G.; Korsak, N. Listeria monocytogenes dissemination in farming and primary production: Sources, shedding and control measures. Food Control 2021, 120, 107540. [Google Scholar] [CrossRef]
- Wesley, I.V. Listeriosis in animals. In Listeria Listeriosis and Food Safety, 2nd ed.; Ryser, E.T., Marth, E.H., Eds.; Marcel Decker: New York, NY, USA, 1999; pp. 39–73. [Google Scholar]
- Wieczorek, K.; Dmowska, K.; Osek, J. Prevalence, characterization, and antimicrobial resistance of Listeria monocytogenes isolates from bovine hides and carcasses. Appl. Environ. Microbiol. 2012, 78, 2043–2045. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Betancourt, M.; Shackelford, S.D.; Arthur, T.M.; Westmoreland, K.E.; Bellinger, G.; Rossman, M.; Reagan, J.O.; Koohmaraie, M. Prevalence of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella in two geographically distant commercial beef processing plants in the United States. J. Food Protect 2004, 67, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Guerini, M.N.; Brichta-Harhay, D.M.; Shackelford, S.D.; Arthur, T.M.; Bosilevac, J.M.; Kalchayanand, N.; Wheeler, T.L.; Koohmaraie, M. Listeria prevalence and Listeria monocytogenes serovar diversity at cull cow and bull processing plants in the United States. J. Food Protect 2007, 7, 2578–2582. [Google Scholar] [CrossRef] [PubMed]
- Association Française de Normalisation (AFNOR). Detection of Listeria monocytogenes and Listeria spp.; AFNOR: La Plaine Saint Denis, France, 1998; AFNOR BRD 07/04-09/98. [Google Scholar]
- Bastin, B.; Bird, P.; Crowley, E.; Benzinger, M.J.; Agin, J.; Goins, D.; Sohier, D.; Timke, M.; Awad, M.; Kostrzewa, M. Confirmation and identification of Listeria monocytogenes, Listeria spp. and other Gram-positive organisms by the Bruker MALDI Biotyper method: Collaborative study, First Action 2017.10. J. AOAC Int. 2018, 101, 1610–1622. [Google Scholar] [CrossRef] [PubMed]
- ISO 16140-6: 2019; Microbiology of the food chain Method validation—Part 6: Protocol for the validation of alternative (proprietary) methods for microbiological confirmation and typing procedures. International Standardization Organization (ISO): Geneva, Switzerland, 2019.
- Centorotola, G.; Ziba, M.W.; Cornacchia, A.; Chiaverini, A.; Torresi, M.; Guidi, F.; Cammà, C.; Bowa, B.; Mtonga, S.; Magambwa, P.; et al. Listeria monocytogenes in ready to eat meat products from Zambia: Phenotypical and genomic characterization of isolates. Front. Microbiol. 2023, 14, 1228726. [Google Scholar] [CrossRef]
- ISO 23418:2022; Microbiology of the Food Chain-Whole Genome Sequencing for Typing and Genomic Characterization of Bacteria-General Requirements and Guidance. International Standardization Organization (ISO): Geneva, Switzerland, 2022.
- Moura, A.; Criscuolo, A.; Pouseele, H.; Maury, M.M.; Leclercq, A.; Tarr, C.; Björkman, J.T.; Dallman, T.; Reimer, A.; Enouf, V.; et al. Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat. Microbiol. 2016, 2, 16185. [Google Scholar] [CrossRef]
- Zhou, Z.; Alikhan, N.-F.; Sergeant, M.J.; Luhmann, N.; Vaz, C.; Francisco, A.P.; Carriço, J.A.; Achtman, M. GrapeTree: Visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018, 28, 1395–1404. [Google Scholar] [CrossRef]
- Matuschek, E.; Brown, D.F.J.; Kahlmeter, G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin. Microbiol. Infect. 2014, 20, O255–O266. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 7th ed.; CLSI: Wayne, PA, USA, 2024; CLSI Supplement VET01S. [Google Scholar]
- Rhoades, J.R.; Duffy, G.; Koutsoumanis, K. Prevalence and concentration of verocytotoxigenic Escherichia coli, Salmonella enterica and Listeria monocytogenes in the beef production chain: A review. Food Microbiol. 2009, 26, 357–376. [Google Scholar] [CrossRef]
- Hluchanova, L.; Korena, K.; Juricova, H. Vacuum-packed steak tartare: Prevalence of Listeria monocytogenes and evaluation of efficacy of ListexTM P100. Foods 2022, 11, 533. [Google Scholar] [CrossRef] [PubMed]
- Demaître, N.; Van Damme, I.; De Zutter, L.; Geeraerd, A.H.; Rasschaert, G.; De Reua, K. Occurrence, distribution and diversity of Listeria monocytogenes contamination on beef and pig carcasses after slaughter. Meat Sci. 2020, 169, 108177. [Google Scholar] [CrossRef]
- Gill, C.O. Visible Contamination on animals and carcasses and the microbiological condition of meat. J. Food Protect 2004, 67, 413–419. [Google Scholar] [CrossRef]
- Maury, M.M.; Bracq-Dieye, H.; Huang, L.; Vales, G.; Lavina, M.; Thouvenot, P.; Disson, O.; Leclercq, A.; Brisse, S.; Lecuit, M. Hypervirulent Listeria monocytogenes clones’ adaption to mammalian gut accounts for their association with dairy products. Nat. Commun. 2019, 10, 2488. [Google Scholar] [CrossRef] [PubMed]
- Guidi, F.; Orsini, M.; Chiaverini, A.; Torresi, M.; Centorame, P.; Acciari, V.A.; Salini, R.; Palombo, B.; Brandi, G.; Amagliani, G.; et al. Hypo- and hyper-virulent Listeria monocytogenes clones persisting in two different food processing plants of central Italy. Microorganisms 2021, 9, 376. [Google Scholar] [CrossRef]
- Maury, M.M.; Tsai, Y.H.; Charlier, C.; Touchon, M.; Chenal-Francisque, V.; Leclercq, A.; Criscuolo, A.; Gaultier, C.; Roussel, S.; Brisabois, A.; et al. Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nat. Genet. 2016, 48, 308–313. [Google Scholar] [CrossRef]
- Jashari, B.; Stessl, B.; Félix, B.; Cana, A.; Bisha, B.; Jankuloski, D.; Blagoevska, K.; Kayode, A.J. Multilocus Sequence Typing and antimicrobial susceptibility of Listeria monocytogenes isolated from foods surveyed in Kosovo. Microorganisms 2024, 12, 2441. [Google Scholar] [CrossRef]
- Daza Prieto, B.; Pietzka, A.; Martinovic, A.; Ruppitsch, W.; Zuber Bogdanovic, I. Surveillance and genetic characterization of Listeria monocytogenes in the food chain in Montenegro during the period 2014–2022. Front. Microbiol. 2024, 15, 1418333. [Google Scholar] [CrossRef]
- Pyz-Łukasik, R.; Paszkiewicz, W.; Kiełbus, M.; Ziomek, M.; Gondek, M.; Domaradzki, P.; Michalak, K.; Pietras-Ożga, D. Genetic diversity and potential virulence of Listeria monocytogenes isolates originating from Polish artisanal cheeses. Foods 2022, 11, 2805. [Google Scholar] [CrossRef]
- Centorotola, G.; Guidi, F.; D’Aurizio, G.; Salini, R.; Di Domenico, M.; Ottaviani, D.; Petruzzelli, A.; Fisichella, S.; Duranti, A.; Tonucci, F.; et al. Intensive environmental surveillance plan for Listeria monocytogenes in food producing plants and retail stores of central Italy: Prevalence and genetic diversity. Foods 2021, 10, 1944. [Google Scholar] [CrossRef]
- Ryan, S.; Begley, M.; Hill, C.; Gahan, C.G. A five-gene stress survival islet (SSI-1) that contributes to the growth of Listeria monocytogenes in suboptimal conditions. J. Appl. Microbiol. 2010, 109, 984–995. [Google Scholar] [CrossRef] [PubMed]
- Harter, E.; Wagner, E.M.; Zaiser, A.; Halecker, S.; Wagner, M.; Rychli, K. Stress Survival Islet 2, predominantly present in Listeria monocytogenes strains of Sequence Type 121, Is involved in the alkaline and oxidative stress responses. Appl. Environ. Microb. 2017, 83, e00827-17. [Google Scholar] [CrossRef]
- Kim, M.; Weigand, M.R.; Oh, S.; Hatt, J.K.; Krishnan, R.; Tezel, U.; Pavlostathis, S.G.; Konstantinidis, K.T. Widely used benzalkonium chloride disinfectants can promote antibiotic resistance. Appl. Environ. Microb. 2018, 84, e01201-18. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, M.; Aguilar-Bultet, L.; Rupp, S.; Guldimann, C.; Stephan, R.; Schock, A.; Otter, A.; Schüpbach, G.; Brisse, S.; Lecuit, M.; et al. Listeria monocytogenes sequence type 1 is predominant in ruminant rhombencephalitis. Sci. Rep. 2016, 6, 36419. [Google Scholar] [CrossRef]
- Guidi, F.; Centorotola, G.; Chiaverini, A.; Iannetti, L.; Schirone, M.; Visciano, P.; Cornacchia, A.; Scattolini, S.; Pomilio, F.; D’Alterio, N.; et al. The slaughterhouse as hotspot of CC1 and CC6 Listeria monocytogenes strains with hypervirulent profiles in an integrated poultry chain of Italy. Microorganisms 2023, 11, 1543. [Google Scholar] [CrossRef]
- Vilchis-Rangel, R.E.; Espinoza-Mellado, M.D.R.; Salinas-Jaramillo, I.J.; Martinez-Peña, M.D.; Rodas-Suárez, O.R. Association of Listeria monocytogenes LIPI-1 and LIPI-3 marker llsX with invasiveness. Curr. Microbiol. 2019, 76, 637–643. [Google Scholar] [CrossRef]
- Wiktorczyk-Kapischke, N.; Skowron, K.; Wałecka-Zacharska, E. Genomic and pathogenicity islands of Listeria monocytogenes-overview of selected aspects. Front. Mol. Biosci. 2023, 10, 1161486. [Google Scholar] [CrossRef]
- Ireton, K.; Mortuza, R.; Gyanwali, G.C.; Gianfelice, A.; Hussain, M. Role of internalin proteins in the pathogenesis of Listeria monocytogenes. Mol. Microbiol. 2021, 116, 1407–1419. [Google Scholar] [CrossRef] [PubMed]
- Kurpas, M.; Osek, J.; Moura, A.; Leclercq, A.; Lecuit, M.; Wieczorek, K. Genomic characterization of Listeria monocytogenes isolated from ready-to-eat meat and meat processing environments in Poland. Front. Microbiol. 2020, 11, 1412. [Google Scholar] [CrossRef]
- Lachtara, B.; Osek, J.; Wieczorek, K. Molecular typing of Listeria monocytogenes IVb serogroup isolated from food and food production environments in Poland. Pathogens 2021, 10, 482. [Google Scholar] [CrossRef]
- Parra-Flores, J.; Holý, O.; Bustamante, F.; Lepuschitz, S.; Pietzka, A.; Contreras-Fernández, A.; Castillo, C.; Ovalle, C.; Alarcón-Lavín, M.P.; Cruz-Córdova, A.; et al. Virulence and antibiotic resistance genes in Listeria monocytogenes strains isolated from ready-to-eat foods in Chile. Front. Microbiol. 2022, 12, 796040. [Google Scholar] [CrossRef]
- Moura, A.; Leclercq, A.; Vales, G.; Tessaud-Rita, N.; Bracq-Dieye, H.; Thouvenot, P.; Madec, Y.; Charlier, C.; Lecuit, M. Phenotypic and genotypic antimicrobial resistance of Listeria monocytogenes: An observational study in France. Lancet Reg. Health Eur. 2023, 37, 100800. [Google Scholar] [CrossRef] [PubMed]
- Charpentier, E.; Courvalin, P. Antibiotic resistance in Listeria spp. Antimicrob. Agents Chemoter. 1999, 43, 2103–2108. [Google Scholar] [CrossRef] [PubMed]
- Conter, M.; Paludi, D.; Zanardi, E.; Ghidini, S.; Vergara, A.; Ianieri, A. Characterization of antimicrobial resistance of foodborne Listeria monocytogenes. Int. J. Food Microbiol. 2009, 128, 497–500. [Google Scholar] [CrossRef] [PubMed]
- Andriyanov, P.A.; Zhurilov, P.A.; Liskova, E.A.; Karpova, T.I.; Sokolova, E.V.; Yushina, Y.K.; Zaiko, E.V.; Bataeva, D.S.; Voronina, O.L.; Psareva, E.K.; et al. Antimicrobial resistance of Listeria monocytogenes Strains isolated from humans, animals, and food products in Russia in 1950–1980, 2000–2005, and 2018–2021. Antibiotics 2021, 10, 1206. [Google Scholar] [CrossRef] [PubMed]
- Oliveira Dos Reis, J.; Serpa Vieira, B.; Cunha Neto, A.; Silva Castro, V.; de Souza Figueiredo, E.E. Antimicrobial resistance of Listeria monocytogenes from animal foods to first- and second-line drugs in the treatment of listeriosis from 2008 to 2021: A systematic review and meta-analysis. Can. J. Infect. Dis. Med. Microbiol. 2022, 2022, 1351983. [Google Scholar] [CrossRef]
- Thønnings, S.; Knudsen, J.D.; Schønheyder, H.C.; Søgaard, M.; Arpi, M.; Gradel, K.O.; Østergaard, C. Antibiotic treatment and mortality in patients with Listeria monocytogenes meningitis or bacteraemia. Clin. Microbiol. Infect. 2016, 22, 725–730. [Google Scholar] [CrossRef]
- Luque-Sastre, L.; Arroyo, C.; Fox, E.M.; McMahon, B.J.; Bai, L.; Li, F.; Fanning, S. Antimicrobial resistance in Listeria species. Microbiol. Spectr. 2018, 6, 10-1128–1128. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. OJEU. 2005. Available online: https://eur-lex.europa.eu/eli/reg/2005/2073/oj/eng (accessed on 9 September 2025).
- Commission Regulation (EU) 2024/2895 of 20 November 2024 amending Regulation (EC) No 2073/2005 as regards Listeria monocytogenes. OJEU. 2024. Available online: https://eur-lex.europa.eu/eli/reg/2024/2895/oj/eng (accessed on 9 September 2025).
Location | Sample | Listeria spp. | LM |
---|---|---|---|
Farm | Cattle skin | 2/9 | 0/9 |
Litter | 3/9 | 2/9 | |
Feeding trough | 4/5 | 0/5 | |
Manure | 0/5 | 0/5 | |
Feed | 9/15 | 0/15 | |
Total | 18/43 | 2/43 | |
Slaughterhouse | Live cattle skin | 5/10 | 0/10 |
Carcasses | 10/13 | 2/13 | |
Drains | 10/10 | 2/10 | |
Total | 25/33 | 4/33 | |
Global | 43/76 | 6/76 |
Sampling Phase | Detection Rate (No. of Positive/Total Samples) |
---|---|
Raw matter (primal cuts) | 7/18 |
After sheath removal | 4/18 |
After dressing | 3/18 |
During hardening | 1/18 |
After cubing | 2/20 |
After mixing | 7/8 |
After forming | 9/18 |
After final hardening | 11/18 |
Final product | 13/18 |
Total | 57/154 |
Area | Surface Type | Sample | Detection Rate (No. of Positive/Total Samples) |
---|---|---|---|
Sectioning | FCS | Sectioning tables | 3/24 |
Racks | 4/8 | ||
NFCS | Racks wheels | 0/8 | |
Drains | 0/2 | ||
Hamburger production | NFCS | Drains | 4/6 |
Steak tartare production | FCS | Peeling machine | 2/9 |
Dressing tables | 1/9 | ||
Dressing knives | 1/9 | ||
Racks | 1/9 | ||
Cubing machine | 1/11 | ||
Mixing machine | 8/9 | ||
Tubs | 2/9 | ||
Forming machine | 4/9 | ||
Scale | 2/9 | ||
Small equipment | 0/22 | ||
NFCS | Rack wheels | 1/9 | |
Tub wheels | 1/9 | ||
Rack handles | 0/4 | ||
Door handles | 0/8 | ||
Turnstiles | 0/4 | ||
Drains | 0/4 | ||
Total FCS | 29/137 | ||
Total NFCS | 6/54 | ||
Global | 35/191 |
Phase | Sample | Species | ||
---|---|---|---|---|
L. innocua | L. welshimeri | L. monocytogenes | ||
Farm | Animal skin | 5 (100%) | 0 | 0 |
Litter | 5 (33.3%) | 0 | 10 (66.7%) | |
Feeding trough | 14 (100%) | 0 | 0 | |
Feed | 31 (100%) | 0 | 0 | |
Total | 55 (84.6%) | 0 | 10 (15.4%) | |
Slaughterhouse | Animal skin | 6 (50.0%) | 0 | 6 (50.0%) |
Carcasses | 20 (39.2%) | 0 | 31 (60.8%) | |
Drains | 45 (43.7%) | 45 (43.7%) | 13 (12.6%) | |
Total | 71 (42.8%) | 46 (27.7%) | 49 (29.5%) | |
Global | 126 (54.5%) | 46 (19.9%) | 59 (25.5%) |
Antibiotic | S | I | R |
---|---|---|---|
Nalidixic acid (NA) | - | - | 63 (100%) |
Amoxicillin–clavulanic acid (AVG) | 59 (93.7%) | 1 (1.6%) | 3 (4.8%) |
Ampicillin (AMP) | 62 (98.4%) | 1 (1.6%) | - |
Cephalothin (KF) | 60 (95.2%) | 1 (1.6%) | 2 (3.2%) |
Ceftriaxone (CRO) | 9 (14.3%) | - | 54 (85.7%) |
Ciprofloxacin (CIP) | 61 (96.8%) | 2 (3.2%) | - |
Erythromycin (E) | 54 (85.7%) | - | 9 (14.3) |
Gentamicin (CN) | 57 (90.5%) | 1 (1.6%) | 5 (7.9%) |
Linezolid (LZD) | 63 (100%) | - | - |
Meropenem (MEM) | 51 (81.0%) | - | 12 (19.0%) |
Penicillin (P) | 62 (98.4%) | - | 1 (1.6%) |
Piperacillin (PRL) | 61 (96.8%) | - | 2 (3.2%) |
Rifampin (RD) | 63 (100%) | - | - |
Trimethoprim–sulfamethoxazole (SXT) | 36 (57.1%) | - | 27 (42.9%) |
Tetracycline (TE) | 54 (85.7%) | 4 (6.4%) | 5 (7.9%) |
Tigecycline (TGC) | 61 (96.8%) | - | 2 (3.2%) |
Vancomycin (VA) | 630 (100%) | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stella, S.; Sgoifo Rossi, C.A.; Pomilio, F.; Centorotola, G.; Torresi, M.; Chiaverini, A.; Addis, M.F.; Bernardi, C.; Penati, M.; Locatelli, C.; et al. Evaluation of Listeria monocytogenes Dissemination in a Beef Steak Tartare Production Chain. Foods 2025, 14, 3372. https://doi.org/10.3390/foods14193372
Stella S, Sgoifo Rossi CA, Pomilio F, Centorotola G, Torresi M, Chiaverini A, Addis MF, Bernardi C, Penati M, Locatelli C, et al. Evaluation of Listeria monocytogenes Dissemination in a Beef Steak Tartare Production Chain. Foods. 2025; 14(19):3372. https://doi.org/10.3390/foods14193372
Chicago/Turabian StyleStella, Simone, Carlo Angelo Sgoifo Rossi, Francesco Pomilio, Gabriella Centorotola, Marina Torresi, Alexandra Chiaverini, Maria Filippa Addis, Cristian Bernardi, Martina Penati, Clara Locatelli, and et al. 2025. "Evaluation of Listeria monocytogenes Dissemination in a Beef Steak Tartare Production Chain" Foods 14, no. 19: 3372. https://doi.org/10.3390/foods14193372
APA StyleStella, S., Sgoifo Rossi, C. A., Pomilio, F., Centorotola, G., Torresi, M., Chiaverini, A., Addis, M. F., Bernardi, C., Penati, M., Locatelli, C., Moroni, P., Grossi, S., Fusi, V., Urgesi, P., & Tirloni, E. (2025). Evaluation of Listeria monocytogenes Dissemination in a Beef Steak Tartare Production Chain. Foods, 14(19), 3372. https://doi.org/10.3390/foods14193372