Predicting Temporal Liking of Food Pairings from Temporal Dominance of Sensations Data via Reservoir Computing on Crackers and Spreads
Abstract
1. Introduction
2. Methods: Sensory Evaluation and Data Processing
2.1. Food Samples
2.2. Panel
2.3. TDS and TL Tasks
2.4. Dataset Generation with Bootstrap Resampling
3. Prediction of TL Curves Based on TDS Curves
3.1. Reservoir Model Architecture
3.2. Training Dataset
3.3. Model Evaluation Metrics
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TDS | Temporal dominance of sensations |
TL | Temporal liking |
References
- Pineau, N.; Schlich, P.; Cordelle, S.; Mathonniére, C.; Issanchou, S.; Imbert, A.; Rogeaux, M.; Etiévant, P.; Köster, E. Temporal Dominance of Sensations: Construction of the TDS curves and comparison with time-intensity. Food Qual. Prefer. 2009, 20, 450–455. [Google Scholar] [CrossRef]
- ISO 13299; Sensory Analysis–Methodology–General Guidance for Establishing a Sensory Profile. International Organization for Standarzation: Geneva, Switzerland, 2016.
- Schlich, P. Temporal Dominance of Sensations (TDS): A new deal for temporal sensory analysis. Curr. Opin. Food Sci. 2017, 15, 38–42. [Google Scholar] [CrossRef]
- Taylor, D.E.; Pangborn, R.M. Temporal aspects of hedonic responses. J. Sens. Stud. 1990, 4, 241–247. [Google Scholar] [CrossRef]
- Thomas, A.; Visalli, M.; Cordelle, S.; Schlich, P. Temporal Drivers of Liking. Food Qual. Prefer. 2015, 40, 365–375. [Google Scholar] [CrossRef]
- Castura, J.C.; Antúnez, L.; Giménez, A.; Ares, G. Temporal Check-All-That-Apply (TCATA): A novel dynamic method for characterizing products. Food Qual. Prefer. 2016, 47, 79–90. [Google Scholar] [CrossRef]
- Meyners, M. Temporal liking and CATA analysis of TDS data on flavored fresh cheese. Food Qual. Prefer. 2016, 47, 101–108. [Google Scholar] [CrossRef]
- Natsume, H.; Okamoto, S. Prediction of Temporal Liking from Temporal Dominance of Sensations by using reservoir computing and its sensitivity analysis. Foods 2024, 13, 3755. [Google Scholar] [CrossRef]
- Nguyen, Q.C.; Varela, P. Identifying temporal drivers of liking and satiation based on temporal sensory descriptions and consumer ratings. Food Qual. Prefer. 2021, 89, 104143. [Google Scholar] [CrossRef]
- Thomas, A.; Chambault, M.; Dreyfuss, L.; Gilbert, C.; Hegyi, A.; Henneberg, S.; Knippertz, A.; Kostyra, E.; Kremer, S.; Silva, A.; et al. Measuring temporal liking simultaneously to Temporal Dominance of Sensations in several intakes. An application to Gouda cheeses in 6 Europeans countries. Food Res. Int. 2017, 99, 426–434. [Google Scholar] [CrossRef]
- Thomas Carr, B.; Lesniauskas, R.O. Analysis of variance for identifying temporal drivers of liking. Food Qual. Prefer. 2016, 47, 97–100. [Google Scholar] [CrossRef]
- Ares, G.; Alcaire, F.; Antúnez, L.; Vidal, L.; Giménez, A.; Castura, J.C. Identification of drivers of (dis)liking based on dynamic sensory profiles: Comparison of Temporal Dominance of Sensations and Temporal Check-all-that-apply. Food Res. Int. 2017, 92, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.P.; Voss, H.P.; van Zyl, H.; Hogg, T.; de Graaf, C.; Pintado, M.; Jager, G. Temporal dominance of sensations, emotions, and temporal liking measured in a bar for two similar wines using a multi-sip approach. J. Sens. Stud. 2018, 33, e12459. [Google Scholar] [CrossRef]
- van Bommel, R.; Stieger, M.; Boelee, N.; Schlich, P.; Jager, G. From first to last bite: Temporal dynamics of sensory and hedonic perceptions using a multiple-intake approach. Food Qual. Prefer. 2019, 78, 103748. [Google Scholar] [CrossRef]
- Okamoto, S.; Natsume, H.; Watanabe, H. Synergy analysis between the Temporal Dominance of Sensations and Temporal Liking curves of strawberries. Foods 2025, 14, 992. [Google Scholar] [CrossRef]
- Kuesten, C.; Bi, J. Temporal Drivers of liking based on Functional Data Analysis and non-additive models for multi-attribute Time-Intensity data of fruit chews. Foods 2018, 7, 84. [Google Scholar] [CrossRef]
- Okada, T.; Okamoto, S.; Yamada, Y. Affective Dynamics: Causality Modeling of Temporally Evolving Perceptual and Affective Responses. IEEE Trans. Affect. Comput. 2022, 13, 628–639. [Google Scholar] [CrossRef]
- Tachi, K.; Okamoto, S. Dynamic state-space modeling with factorial memories in temporal dominance of sensations, emotions and temporal liking. IEEE Trans. Affect. Comput. 2023, 14, 2266–2275. [Google Scholar] [CrossRef]
- Galmarini, M.; Dufau, L.; Loiseau, A.L.; Visalli, M.; Schlich, P. Wine and cheese: Two products or one association? A new method for assessing wine-cheese pairing. Beverages 2018, 4, 13. [Google Scholar] [CrossRef]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food: Principles and Practices; Food Science Text Series; Springer: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Drake, M.; Watson, M.; Liu, Y. Sensory analysis and consumer preference: Best practices. Annu. Rev. Food Sci. Technol. 2023, 14, 427–448. [Google Scholar] [CrossRef]
- Miller, R. Drivers of consumer liking for beef, pork, and lamb: A review. Foods 2020, 9, 428. [Google Scholar] [CrossRef]
- García-Barón, S.E.; Carmona-Escutia, R.P.; Herrera-López, E.J.; Leyva-Trinidad, D.A.; Gschaedler-Mathis, A. Consumers’ drivers of perception and preference of fermented food products and beverages: A systematic review. Foods 2025, 14, 713. [Google Scholar] [CrossRef]
- De Pelsmaeker, S.; Schouteten, J.J.; Lagast, S.; Dewettinck, K.; Gellynck, X. Is taste the key driver for consumer preference? A conjoint analysis study. Food Qual. Prefer. 2017, 62, 323–331. [Google Scholar] [CrossRef]
- Natsume, H.; Okamoto, S. Cross-brand machine learning of coffee’s Temporal Liking from Temporal Dominance of Sensations curves. Appl. Sci. 2025, 15, 948. [Google Scholar] [CrossRef]
- Delarue, J.; Lawlor, J.B.; Rogeaux, M. (Eds.) Rapid Sensory Profiling Techniques; Woodhead Publishing: Cambridge, UK, 2015. [Google Scholar] [CrossRef]
- Varela, P.; Ares, G. Sensory profiling, the blurred line between sensory and consumer science. A review of novel methods for product characterization. Food Res. Int. 2012, 48, 893–908. [Google Scholar] [CrossRef]
- Torrico, D.D. The potential use of ChatGPT as a sensory evaluator of chocolate brownies: A brief case study. Foods 2025, 14, 464. [Google Scholar] [CrossRef] [PubMed]
- Świa̧der, K.; Marczewska, M. Trends of using sensory evaluation in new product development in the food industry in countries that belong to the EIT regional innovation scheme. Foods 2021, 10, 446. [Google Scholar] [CrossRef] [PubMed]
- Eschevins, A.; Giboreau, A.; Julien, P.; Dacremont, C. From expert knowledge and sensory science to a general model of food and beverage pairing with wine and beer. Int. J. Gastron. Food Sci. 2019, 17, 100144. [Google Scholar] [CrossRef]
- Harrington, R.J. The wine and food pairing process: Using culinary and sensory perspectives. J. Culin. Sci. Technol. 2005, 4, 101–112. [Google Scholar] [CrossRef]
- Rune, C.J.B.; Münchow, M.; Perez-Cueto, F.J.A. Systematic review of methods used for food pairing with coffee, tea, wine, and beer. Beverages 2021, 7, 40. [Google Scholar] [CrossRef]
- Kustos, M.; Heymann, H.; Jeffery, D.W.; Goodman, S.; Bastian, S.E. Intertwined: What makes food and wine pairings appropriate? Food Res. Int. 2020, 136, 109463. [Google Scholar] [CrossRef]
- Tseng, Y.J.; Chuang, P.J.; Appell, M. When machine learning and deep learning come to the big data in food chemistry. ACS Omega 2023, 8, 15854–15864. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.Y.; Ahnert, S.E.; Bagrow, J.P.; Barabási, A.L. Flavor network and the principles of food pairing. Sci. Rep. 2011, 1, 196. [Google Scholar] [CrossRef]
- Park, D.; Kim, K.; Park, Y.; Shin, J.; Kang, J. KitcheNette: Predicting and ranking food ingredient pairings using Siamese Neural Network. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, International Joint Conferences on Artificial Intelligence Organization IJCAI-2019, Macao, China, 10–16 August 2019; pp. 5930–5936. [Google Scholar] [CrossRef]
- Park, D.; Kim, K.; Kim, S.; Spranger, M.; Kang, J. FlavorGraph: A large-scale food-chemical graph for generating food representations and recommending food pairings. Sci. Rep. 2021, 11, 931. [Google Scholar] [CrossRef] [PubMed]
- Visalli, M.; Galmarini, M.V. Multi-attribute temporal descriptive methods in sensory analysis applied in food science: A systematic scoping review. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13294. [Google Scholar] [CrossRef] [PubMed]
- Verstraeten, D.; Schrauwen, B.; D’Haene, M.; Stroobandt, D. An experimental unification of reservoir computing methods. Neural Netw. 2007, 20, 391–403. [Google Scholar] [CrossRef]
- Tanaka, G.; Yamane, T.; Héroux, J.B.; Nakane, R.; Kanazawa, N.; Takeda, S.; Numata, H.; Nakano, D.; Hirose, A. Recent advances in physical reservoir computing: A review. Neural Netw. 2019, 115, 100–123. [Google Scholar] [CrossRef]
- Abbas, A.H.; Abdel-Ghani, H.; Maksymov, I.S. Classical and quantum physical Reservoir Computing for onboard artificial intelligence systems: A perspective. Dynamics 2024, 4, 643–670. [Google Scholar] [CrossRef]
- Brar, J. Sensory and Consumer Evaluation of Commercially Available Gluten-Free Crackers. Master’s Thesis, College of Health and Human Sciences, Kansas State University, Manhattan, KS, USA, 2024. [Google Scholar]
- Ikegaya, A.; Toyoizumi, T.; Kosugi, T.; Arai, E. Taste and palatability of strawberry jam as affected by organic acid content. Int. J. Food Prop. 2020, 23, 2087–2096. [Google Scholar] [CrossRef]
- Oliver, P.; Cicerale, S.; Pang, E.; Keast, R. Developing a strawberry lexicon to describe cultivars at two maturation stages. J. Sens. Stud. 2018, 33, e12312. [Google Scholar] [CrossRef]
- Teixeira, F.; Santos, B.A.D.; Nunes, G.; Soares, J.M.; Amaral, L.A.D.; Souza, G.H.O.D.; Resende, J.T.V.D.; Menegassi, B.; Rafacho, B.P.M.; Schwarz, K.; et al. Addition of orange peel in orange jam: Evaluation of sensory, physicochemical, and nutritional characteristics. Molecules 2020, 25, 1670. [Google Scholar] [CrossRef]
- Kurotobi, T.; Hoshino, T.; Kazami, Y.; Hayakawa, F.; Hagura, Y. Relationship between sensory analysis for texture and instrument measurements in model strawberry jam. J. Texture Stud. 49. [CrossRef]
- Sithole, T.R.; Ma, Y.X.; Qin, Z.; Liu, H.M.; Wang, X.D. Influence of peanut varieties on the sensory quality of peanut butter. Foods 2022, 11, 3499. [Google Scholar] [CrossRef]
- Okamoto, S. Bootstrap Resampling of Temporal Dominance of Sensations Curves to Compute Uncertainties. Foods 2021, 10, 2472. [Google Scholar] [CrossRef] [PubMed]
- Castura, J.; Rutledge, D.; Ross, C.; Næs, T. Discriminability and uncertainty in principal component analysis (PCA) of temporal check-all-that-apply (TCATA) data. Food Qual. Prefer. 2022, 96, 104370. [Google Scholar] [CrossRef]
- Trouvain, N.; Pedrelli, L.; Dinh, T.T.; Hinaut, X. ReservoirPy: An efficient and user-friendly library to design Echo State Networks. In Proceedings of the Artificial Neural Networks and Machine Learning–ICANN 2020, Bratislava, Slovakia, 15–18 September 2020; pp. 494–505. [Google Scholar] [CrossRef]
- Lund, M.N.; Ray, C.A. Control of maillard reactions in foods: Strategies and chemical mechanisms. J. Agric. Food Chem. 2017, 65, 4537–4552. [Google Scholar] [CrossRef] [PubMed]
- Grafenauer, S.; Miglioretto, C.; Solah, V.; Curtain, F. Review of the sensory and physico-chemical properties of red and white wheat: Which makes the best whole grain? Foods 2020, 9, 136. [Google Scholar] [CrossRef]
- En Tay, R.R.; Agatha, T.; Somang, G.; Yuliarti, O.; Lin Tan, E.L. Structuring wheat flour-based crackers using whey protein isolate. Int. Dairy J. 2022, 128, 105314. [Google Scholar] [CrossRef]
- Madhavan, S.; Sreekantaiah, H.M. Influence of high protein on the rheological properties, microstructure and X-ray diffraction of crackers formulations. Curr. Res. Nutr. Food Sci. J. 2025, 13, 132–144. [Google Scholar] [CrossRef]
- Greff, K.; Srivastava, R.K.; Koutnik, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2222–2232. [Google Scholar] [CrossRef]
- Visalli, M.; Galmarini, M.V.; Schlich, P. Use of temporal sensory evaluation methods with consumers: A position paper. Curr. Opin. Food Sci. 2023, 54, 101102. [Google Scholar] [CrossRef]
Category | Name | Original Name | Manufacturer |
---|---|---|---|
Cracker | Plain | Premium Saltine Crackers | Nabisco, Inc. |
Sesame | Black Sesame Soft Crackers | Maeda Confectionery Co., Ltd. | |
Spread | Peanut | Verde Peanut Whip | Aohata Corporation |
Strawberry | Spoon Free Strawberry | Aohata Corporation |
Attribute | Definition |
---|---|
Aromatic | Complex but pleasant fragrant |
Burned | Well-baked, toasty |
Buttery | Butter-like flavor |
Dry | Moisture-free, crispy |
Nutty | Reminiscent of dried nuts |
Salty | Salty (basic taste) |
Sesame-like | Sesame-like flavor |
Smooth | Smooth mouthfeel, no graininess texture |
Sour | Sour (basic taste) |
Sweet | Sweet (basic taste) |
Wet | Moist, no dryness |
Wheat-like | Wheat-like flavor |
Total Input Dimensions | Auxiliary Dimensions | Description |
---|---|---|
12 | 0 | No auxiliary information (only TDS curves provided) |
13 | 1 | Combination flag (0: single item; 1: paired cracker and spread) |
14 | 2 | Cracker flag and spread flag (both set to 1 for paired samples) |
15 | 3 | Cracker, spread, and combination flags (exclusive, only one set to 1) |
16 | 4 | Brand flags (premium, sesame, peanut, strawberry) |
17 | 5 | Brand flags and combination flag |
18 | 6 | Brand flags, cracker flag, and spread flag |
19 | 7 | Brand flags, cracker, spread, and combination flags |
Rank | Neurons | Flags | Median RMSE (IQR) | ||||
---|---|---|---|---|---|---|---|
All Pairs | Plain–Jam | Plain–Peanut | Sesame–Jam | Sesame–Peanut | |||
1 | 128 | 1 | 0.44 (0.34–0.54) | 0.41 (0.31–0.49) | 0.46 (0.35–0.58) | 0.42 (0.34–0.50) | 0.51 (0.39–0.62) |
2 | 192 | 2 | 0.44 (0.34–0.55) | 0.39 (0.30–0.50) | 0.42 (0.30–0.57) | 0.42 (0.36–0.50) | 0.52 (0.39–0.67) |
3 | 192 | 0 | 0.46 (0.35–0.58) | 0.42 (0.33–0.54) | 0.40 (0.33–0.52) | 0.45 (0.35–0.53) | 0.59 (0.46–0.73) |
4 | 64 | 1 | 0.46 (0.36–0.59) | 0.44 (0.37–0.52) | 0.48 (0.34–0.61) | 0.42 (0.32–0.53) | 0.59 (0.44–0.70) |
5 | 192 | 3 | 0.46 (0.36–0.60) | 0.46 (0.35–0.59) | 0.49 (0.35–0.61) | 0.41 (0.34–0.49) | 0.57 (0.45–0.75) |
6 | 256 | 1 | 0.47 (0.35–0.57) | 0.44 (0.33–0.56) | 0.46 (0.35–0.57) | 0.45 (0.36–0.54) | 0.51 (0.40–0.62) |
7 | 192 | 1 | 0.47 (0.37–0.59) | 0.44 (0.33–0.52) | 0.47 (0.34–0.57) | 0.46 (0.40–0.54) | 0.57 (0.43–0.70) |
8 | 256 | 0 | 0.47 (0.37–0.59) | 0.44 (0.34–0.56) | 0.50 (0.39–0.59) | 0.43 (0.34–0.54) | 0.50 (0.43–0.64) |
9 | 128 | 2 | 0.48 (0.37–0.62) | 0.60 (0.45–0.73) | 0.47 (0.35–0.57) | 0.41 (0.32–0.48) | 0.52 (0.42–0.68) |
10 | 256 | 3 | 0.48 (0.37–0.63) | 0.41 (0.32–0.53) | 0.44 (0.33–0.58) | 0.47 (0.40–0.60) | 0.62 (0.50–0.78) |
⋮ | ⋮ | ||||||
23 | 192 | 6 | 1.49 (1.13–1.71) | 1.66 (1.46–1.83) | 1.47 (1.39–1.61) | 0.88 (0.71–0.99) | 1.71 (1.56–1.89) |
24 | 256 | 7 | 1.68 (1.05–3.76) | 2.55 (2.30–2.83) | 1.08 (0.86–1.26) | 1.00 (0.85–1.22) | 4.65 (4.47–4.90) |
25 | 256 | 5 | 1.91 (1.08–2.25) | 1.60 (1.40–1.87) | 2.53 (2.34–2.75) | 2.10 (1.95–2.21) | 0.68 (0.56–0.86) |
26 | 128 | 7 | 2.38 (0.82–4.72) | 5.60 (5.31–5.86) | 0.60 (0.44–0.79) | 3.92 (3.73–4.12) | 1.01 (0.89–1.23) |
27 | 192 | 5 | 2.38 (1.65–4.08) | 1.80 (1.61–1.97) | 1.55 (1.43–1.67) | 3.20 (3.01–3.38) | 5.55 (5.41–5.68) |
28 | 192 | 4 | 2.58 (1.14–4.53) | 1.59 (1.42–1.77) | 6.58 (6.34–6.77) | 3.73 (3.56–3.88) | 0.77 (0.60–0.96) |
29 | 64 | 7 | 2.71 (2.05–3.72) | 2.23 (2.04–2.49) | 2.95 (2.83–3.11) | 1.95 (1.73–2.08) | 4.30 (4.12–4.47) |
30 | 256 | 6 | 3.01 (2.00–4.74) | 6.33 (6.16–6.52) | 3.60 (3.37–3.81) | 1.65 (1.40–1.93) | 2.50 (2.24–2.68) |
31 | 192 | 7 | 3.42 (1.61–5.25) | 1.96 (1.62–2.20) | 5.07 (4.89–5.21) | 5.51 (5.30–5.70) | 1.39 (1.23–1.56) |
32 | 64 | 5 | 3.58 (2.28–4.14) | 4.61 (4.44–4.79) | 3.38 (3.22–3.57) | 0.58 (0.44–0.74) | 3.81 (3.63–3.95) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natsume, H.; Okamoto, S. Predicting Temporal Liking of Food Pairings from Temporal Dominance of Sensations Data via Reservoir Computing on Crackers and Spreads. Foods 2025, 14, 3373. https://doi.org/10.3390/foods14193373
Natsume H, Okamoto S. Predicting Temporal Liking of Food Pairings from Temporal Dominance of Sensations Data via Reservoir Computing on Crackers and Spreads. Foods. 2025; 14(19):3373. https://doi.org/10.3390/foods14193373
Chicago/Turabian StyleNatsume, Hiroharu, and Shogo Okamoto. 2025. "Predicting Temporal Liking of Food Pairings from Temporal Dominance of Sensations Data via Reservoir Computing on Crackers and Spreads" Foods 14, no. 19: 3373. https://doi.org/10.3390/foods14193373
APA StyleNatsume, H., & Okamoto, S. (2025). Predicting Temporal Liking of Food Pairings from Temporal Dominance of Sensations Data via Reservoir Computing on Crackers and Spreads. Foods, 14(19), 3373. https://doi.org/10.3390/foods14193373