Improvement in Smoothness of Fermented Soymilk Yogurt-Mimic by Effective Use of Applicable Lactic Acid Bacteria Strains
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Lactic Acid Bacteria Strains
2.2. Preparation of LAB Cultures and Fermented Soymilk Yogurt-Mimic
2.3. Smoothness Observation
2.4. Physicochemical Analysis
2.5. Taste Sensor Analysis
2.6. Statistical Analysis
3. Results
3.1. Smoothness of Fermented Soymilk Yogurt-Mimic
3.2. Physicochemical Properties of Fermented Soymilk Yogurt-Mimic
3.2.1. pH Values of Fermented Soymilk Yogurt-Mimic
3.2.2. Rheological Properties of Fermented Soymilk Yogurt-Mimic
3.3. Taste Sensor Analysis of Fermented Soymilk Yogurt
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LAB | Lactic acid bacteria |
WHC | Water-holding capacity |
EPS | Extracellular polysaccharide |
References
- Ayivi, R.D.; Ibrahim, S.A. Lactic acid bacteria: An essential probiotic and starter culture for the production of yoghurt. Int. J. Food Sci. Technol. 2022, 57, 7008–7025. [Google Scholar] [CrossRef]
- Mickinley, M.C. The nutrition and health benefits of yoghurt. Int. J. Dairy Technol. 2005, 58, 1–12. [Google Scholar] [CrossRef]
- Kundu, P.; Dhankhar, J.; Sharma, A. Development of non dairy milk alternative using soymilk and almond milk. Curr. Res. Nutr. Food Sci. 2018, 6, 203–210. [Google Scholar] [CrossRef]
- Haas, R.; Schnepps, A.; Pichler, A.; Meixner, O. Cow milk versus plant-based milk substitutes: A comparison of product image and motivational structure of consumption. Sustainability 2019, 11, 5046. [Google Scholar] [CrossRef]
- Makinen, O.E.; Wanhalinna, V.; Zannini, E.; Arendt, E.K. Foods for special dietary needs: Non-dairy plant-based milk substitutes and fermented dairy-type products. Crit. Rev. Food Sci. Nutr. 2016, 56, 339–349. [Google Scholar] [CrossRef]
- Silva, A.R.A.; Silva, M.M.N.; Ribeiro, B.D. Health issues and technological aspects of plant-based alternative milk. Food Res. Int. 2020, 131, 108972. [Google Scholar] [CrossRef]
- Nande, P.; Tapadia, P.; Jain, K.; Lodhaya, F.; Vali, S.A. A study on soymilk as a substitute for animal milk. Asian J. Dairy Food Res. 2008, 27, 1–10. [Google Scholar]
- Joo, S.I.; Kim, J.E.; Lee, S.P. Physicochemical properties of whole soybean curd prepared by microbial transglutaminase. Food Sci. Biotechnol. 2011, 20, 437–444. [Google Scholar] [CrossRef]
- Dhakal, S.; Liu, C.; Zhang, Y.; Roux, K.H.; Sathe, S.K.; Balasubramaniam, V.M. Effect of high pressure processing on the immunore-actibity of almond milk. Food Res. Int. 2014, 62, 215–222. [Google Scholar] [CrossRef]
- Dahlan, H.A.; Sani, N.A. Comparative study of palm-based milk yoghurt with dairy and coconut milk yoghurt based on proximate, texture and amino acid analysis. J. Oil Palm Res. 2024, 36, 510–523. [Google Scholar] [CrossRef]
- Dhakal, D.; Younas, T.; Bhusal, R.P.; Devkota, L.; Henry, C.J.; Dhital, S. Design rules of plant-based yoghurt-mimic: Formulation, functionality, sensory profile and nutritional value. Food Hydrocoll. 2023, 142, 108786. [Google Scholar] [CrossRef]
- Hsia, S.Y.; Hsiao, Y.H.; Li, W.T.; Hsieh, J.F. Aggregation of soy protein-isoflavone complexes and gel formation induced by glucono-δ-lactone in soymilk. Sci. Rep. 2016, 6, 35718. [Google Scholar] [CrossRef]
- Ringgenberg, E.; Alexander, M.; Corredlg, M. Effect of concentration and incubation temperature on the acid induced aggregation of soymilk. Food Hydrocoll. 2013, 30, 463–469. [Google Scholar] [CrossRef]
- Liu, L.; Huang, Y.T.; Zhang, X.Q.; Zeng, J.H.; Zou, J.Z.; Zhang, L.W.; Gong, P.M. Texture analysis ad physicochemical characteristics of fermented soymilk gel by different lactic acid bacteria. Food Hydrocoll. 2023, 136, 108252. [Google Scholar] [CrossRef]
- Kong, X.; Xiao, Z.Q.; Du, M.; Wang, K.; Yu, W.; Chen, Y.; Liu, Z.; Cheng, Y.; Gan, J. Physicochemical, Textural, and Sensorial Properties of Soy Yogurt as Affected by Addition of Low Acyl Gellan Gum. Gels 2022, 8, 453. [Google Scholar] [CrossRef] [PubMed]
- Degbeu, K.C.; Kouadio, K.O.; Adjouman, Y.D.; Amani, N.G. Influence od Starch Content on the Sensory and Rheological Quality of Fermented Soy Milk. Eur. J. Nutr. Food Saf. 2023, 15, 30–40. [Google Scholar] [CrossRef]
- Li, C.; Li, W.; Chen, X.; Feng, M.; Rui, X.; Jiang, M.; Dong, M. Microbiological, physicochemical and rheological properties of fermented soymilk produced with exopolysaccharide (EPS) producing lactic acid bacteria strains. Food Sci. Technol. 2014, 57, 477–485. [Google Scholar] [CrossRef]
- Pang, Z.; Xu, R.; Zhu, Y.; Li, H.; Bansal, N.; Liu, X. Comparison of rheological, tribological, and microstructural properties of soymilk gels acidified with glucono-δ-lactone or culture. Food Res. Int. 2019, 121, 798–805. [Google Scholar] [CrossRef]
- Yang, X.; Ren, Y.; Liu, H.; Huo, C.; Li, L. Differences in the physicochemical, digestion and microstructural characteristics of soy protein gel acidified with lactic acid bacteria, glucono-δ-lactone and organic acid. Int. J. Biol. Macromol. 2021, 185, 462–470. [Google Scholar] [CrossRef]
- Tiwari, S.; Kavitake, D.; Devi, P.B.; Shetty, P.H. Bacterial exopolysaccharides for improvement of technological, functional and rheological properties of yoghurt. Int. J. Biol. Macromol. 2021, 183, 1585–1595. [Google Scholar] [CrossRef]
- Grasso, N.; Alonso-Miravalles, L.; A.O’Mahony, J. Composition, physicochemical and sensorial properties of commercial plant-based yogurts. Foods 2020, 9, 252. [Google Scholar] [CrossRef]
- Vicent, V. Influence of banana powder on proximate composition, physicochemical and rheological properties of soy yoghurt. Appl. Food Res. 2024, 4, 100450. [Google Scholar] [CrossRef]
- Hati, S.; Ramanuj, K.; Prakash, S. Influence of storage time of fermented soghurt on the changes in fat and protein biomolecules through Confocal Laser Scanning Microscopy (CLSM) under refrigeration condition. Discov. Food. 2024, 4, 127. [Google Scholar] [CrossRef]
- Stijepic, M.; Glusac, J.; Durdevic-Milosevic, D.; Pesic-Mikulec, D. Physicochemical characteristics of soy probiotic yoghurt with inulin addition during the refrigerated storage. Rom. Biotechnol. Lett. 2013, 18, 8077–8085. [Google Scholar]
- Luo, H.; Bao, Y.; Zhu, P. Enhancing the functionality of plant-based yogurt: Integration of lycopene through dual-stage fermentation of soymilk. Food Chem. 2024, 434, 137511. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Hu, M.; Wen, W.; Zhang, P.; Yu, W.; Fan, B.; Wang, F. Effect of different strains on quality characteristics of soy yogurt: Physicochemical, nutritional, safety features, sensory, and formation mechanism. Food Chem. X 2024, 22, 101359. [Google Scholar] [CrossRef]
- Yang, M.; Li, N.; Tong, L.; Fan, B.; Wang, L.; Wang, F.; Liu, L. Comparison of physicochemical properties and volatile flavor compounds of pea protein and mung bean protein-based Yoghurt. LWT 2021, 152, 112390. [Google Scholar] [CrossRef]
- Mu, H.; Dai, T.; Huang, S.; Wu, K.; Wang, M.; Tan, C.; Zhang, F.; Sheng, J.; Zhao, C. Physical and chemical properties, flavor and organoleptic characteristics of a walnut and purple rice fermented plant drink. Foods 2024, 13, 400. [Google Scholar] [CrossRef] [PubMed]
Samples | Roughness Area (%) | |||
---|---|---|---|---|
Control | AL3G1 | AL21D1 | AL28A1 | |
Y0-1 | 43.3% | 36.0% | 40.5% | 30.1% |
Y1-1 | 43.4% | 24.8% | 41.4% | 38.8% |
Y4-1 | 41.2% | 24.7% | 40.0% | 38.2% |
Y7-1 | 41.4% | 42.6% | 46.2% | 44.1% |
Y0-2 | 35.8% | 39.3% | 35.7% | 41.5% |
Y1-2 | 39.2% | 30.1% | 39.8% | 33.0% |
Y4-2 | 29.9% | 7.6% | 5.2% | 2.3% |
Y7-2 | 51.2% | 0.0% | 8.4% | 17.4% |
Samples | G′ (Pa) | |||
Control | AL3G1 | AL21D1 | AL28A1 | |
Y0-1 | 1047 a | 402 f | 804 b | 585 g |
Y1-1 | 734 b | 492 g | 585 g | 545 g |
Y4-1 | 1052 a | 589 g | 938 j | 962 j |
Y7-1 | 806 b | 616 g | 656 g | 937 j |
Y0-2 | 1394 c | 714 b | 875 j | 680 g |
Y1-2 | 1724 d | 656 g | 801 b | 629 g |
Y4-2 | 2193 e | 308 h | 872 j | 918 j |
Y7-2 | 1782 d | 141 i | 445 f | 606 g |
G″ (Pa) | ||||
Control | AL3G1 | AL21D1 | AL28A1 | |
Y0-1 | 250 a | 97 g | 185 i | 138 i |
Y1-1 | 175 b | 119 h | 139 i | 129 i |
Y4-1 | 256 c | 141 i | 216 l | 224 l |
Y7-1 | 189 d | 142 i | 150 i | 218 l |
Y0-2 | 326 e | 171 i | 208 l | 163 i |
Y1-2 | 416 f | 157 i | 192 i | 155 i |
Y4-2 | 515 f | 75 j | 206 l | 215 l |
Y7-2 | 425 f | 36 k | 106 h | 145 i |
Samples | Titratable Acidity (%) | |||
---|---|---|---|---|
Control | AL3G1 | AL21D1 | AL28A1 | |
Y0-1 | 0.5 | 0.42 | 0.43 | 0.4 |
Y1-1 | 0.66 | 0.55 | 0.49 | 0.46 |
Y4-1 | 1 | 0.58 | 0.62 | 0.5 |
Y7-1 | 0.92 | 0.56 | 0.54 | 0.52 |
Y0-2 | 1.02 | 0.59 | 0.53 | 0.41 |
Y1-2 | 1.08 | 0.62 | 0.57 | 0.45 |
Y4-2 | 1.09 | 0.61 | 0.58 | 0.41 |
Y7-2 | 1.12 | 0.6 | 0.55 | 0.4 |
Y0-1 | |||||||
Sourness | Bitterness | Astringency | Umami | Bitterness (aftertaste) | Astringency (aftertaste) | Umai (aftertaste) | |
Control | −19.52 a | 5.58 a | 2.80 a | 6.35 a | 0.32 a | 0.18 a | 4.14 ab |
AL3G1 | −21.47 b | 2.35 b | 1.03 b | 6.86 ab | 0.37 b | 0.36 b | 3.72 a |
AL21D1 | −22.97 c | 5.18 c | 2.43 ac | 7.35 b | 0.25 c | 0.27 cd | 4.44 bc |
AL28A1 | −22.75 c | 4.69 d | 2.44 ac | 7.20 b | 0.02 d | 0.24 c | 4.63 bc |
Y4-2 | |||||||
Sourness | Bitterness | Astringency | Umami | Bitterness (aftertaste) | Astringency (aftertaste) | Umai (aftertaste) | |
Control | −15.83 d | 5.03 c | 2.41 ac | 5.78 c | 0.28 c | 0.18 a | 2.85 d |
AL3G1 | −24.19 e | 4.58 d | 1.72 d | 8.24 d | 0.38 b | 0.36 b | 4.23 ab |
AL21D1 | −25.37 f | 5.25 c | 2.09 cd | 8.75 de | 0.21 e | 0.30 d | 4.86 c |
AL28A1 | −26.60 g | 4.75 d | 1.95 cd | 8.94 e | 0.08 f | 0.27 cd | 5.58 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, W.; Kobayashi, A.; Yano, H. Improvement in Smoothness of Fermented Soymilk Yogurt-Mimic by Effective Use of Applicable Lactic Acid Bacteria Strains. Foods 2025, 14, 3235. https://doi.org/10.3390/foods14183235
Fu W, Kobayashi A, Yano H. Improvement in Smoothness of Fermented Soymilk Yogurt-Mimic by Effective Use of Applicable Lactic Acid Bacteria Strains. Foods. 2025; 14(18):3235. https://doi.org/10.3390/foods14183235
Chicago/Turabian StyleFu, Wei, Akio Kobayashi, and Hiroyuki Yano. 2025. "Improvement in Smoothness of Fermented Soymilk Yogurt-Mimic by Effective Use of Applicable Lactic Acid Bacteria Strains" Foods 14, no. 18: 3235. https://doi.org/10.3390/foods14183235
APA StyleFu, W., Kobayashi, A., & Yano, H. (2025). Improvement in Smoothness of Fermented Soymilk Yogurt-Mimic by Effective Use of Applicable Lactic Acid Bacteria Strains. Foods, 14(18), 3235. https://doi.org/10.3390/foods14183235