Bimetallic Gold--Platinum (AuPt) Nanozymes: Recent Advances in Synthesis and Applications for Food Safety Monitoring
Abstract
1. Introduction
2. Preparation Protocol of AuPt Nanozymes
2.1. Type of AuPt Nanozymes
2.1.1. Plain AuPt Nanozymes
2.1.2. Magnetic AuPt Nanozymes
2.1.3. Porous Nanomaterials with AuPt Deposition
2.1.4. AuPt Nanozyme-Anchored Flexible Nanomaterials
2.2. Synthesis Methods
2.2.1. Seed-Growth Methods
2.2.2. One-Pot Synthesis
2.3. Reducing Agents
2.3.1. Ascorbic Acid
2.3.2. Sodium Citrate
2.3.3. NaBH4
3. Different Detection Modes of AuPt Nanozyme-Based Biosensing Methods
3.1. Colorimetric Mode
3.2. Electrochemical Mode
3.3. Other Detection Methods
3.4. Dual and Multiple Modes
4. Applications of AuPt Nanozymes in Detecting Food Contaminants
4.1. Bacterial Pathogens
4.2. Mycotoxins
4.3. Heavy Metal Ions
4.4. Antibiotic and Veterinary Drug Residues
4.5. Pesticide Residues
4.6. Food Adulterants and Other Food Hazards
5. Perspective
5.1. Developing and Optimizing Protocols of Synthesizing AuPt Nanozymes with Higher Controllability and Greenness
5.2. Integration of Other Nanomaterials for Preparing Superior AuPt Nanozymes
5.3. Exploring Au or Pt Alternatives to Expand Nanozyme Diversity and Adaptability
5.4. Establishing Multiple Signal Integration Methods with High Portability and Applicability
5.5. Standardization of AuPt Nanozyme Definition and Activity Assays
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, Y.; Li, X.; Zhang, Y.; Wu, B.; Li, Y.; Tian, L.; Sun, J.; Bai, W. Weibin Mechanism of action of anthocyanin on the detoxification of foodborne contaminants—A review of recent literature. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13259. [Google Scholar] [CrossRef]
- Fedorenko, D.; Bartkevics, V. Recent applications of nano-liquid chromatography in food safety and environmental monitoring: A review. Crit. Rev. Anal. Chem. 2023, 53, 98–122. [Google Scholar] [CrossRef] [PubMed]
- Ciobanu, D.; Hosu-Stancioiu, O.; Melinte, G.; Ognean, F.; Simon, I.; Cristea, C. Recent progress of electrochemical aptasensors toward AFB1 detection (2018–2023). Biosensors 2024, 14, 7. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Guo, H.; Ou, J.; Liu, P.; Huang, C.; Wang, M.; Simal-Gandara, J.; Battino, M.; Jafari, S.M.; Zou, L.; et al. Benefits, deleterious effects and mitigation of methylglyoxal in foods: A critical review. Trends Food Sci. Technol. 2021, 107, 201–212. [Google Scholar] [CrossRef]
- Yang, Q.; Pang, B.; Solairaj, D.; Hu, W.; Legrand, N.N.G.; Ma, J.; Huang, S.; Wu, X.; Zhang, H. Effect of Rhodotorula mucilaginosa on patulin degradation and toxicity of degradation products. Food Addit. Contam. Part A 2021, 38, 1427–1439. [Google Scholar] [CrossRef]
- Tahir, H.E.; Arslan, M.; Mahunu, G.K.; Mariod, A.A.; Hashim, S.B.; Xiaobo, Z.; Jiyong, S.; El-Seedi, H.R.; Musa, T.H. The use of analytical techniques coupled with chemometrics for tracing the geographical origin of oils: A systematic review (2013–2020). Food Chem. 2022, 366, 130633. [Google Scholar] [CrossRef]
- Khan, A.; Ezati, P.; Rhim, J.-W. Alizarin: Prospects and sustainability for food safety and quality monitoring applications. Colloids Surf. B Biointerfaces 2023, 223, 113169. [Google Scholar] [CrossRef]
- Shenashen, M.A.; Emran, M.Y.; El Sabagh, A.; Selim, M.M.; Elmarakbi, A.; El-Safty, S.A. Progress in sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: Food safety concerns. Prog. Mater. Sci. 2022, 124, 100866. [Google Scholar] [CrossRef]
- Sun, Y.; Tang, H.; Zou, X.; Meng, G.; Wu, N. Raman spectroscopy for food quality assurance and safety monitoring: A review. Curr. Opin. Food Sci. 2022, 47, 100910. [Google Scholar] [CrossRef]
- Karimzadeh, Z.; Mahmoudpour, M.; de la Guardia, M.; Dolatabadi, J.E.N.; Jouyban, A. Aptamer-functionalized metal organic frameworks as an emerging nanoprobe in the food safety field: Promising development opportunities and translational challenges. TRAC Trends Anal. Chem. 2022, 152, 116622. [Google Scholar] [CrossRef]
- Almajidi, Y.Q.; Althomali, R.H.; Gandla, K.; Uinarni, H.; Sharma, N.; Hussien, B.M.; Alhassan, M.S.; Romero-Parra, R.M.; Bisht, Y.S. Multifunctional immunosensors based on mesoporous silica nanomaterials as efficient sensing platforms in biomedical and food safety analysis: A review of current status and emerging applications. Microchem. J. 2023, 191, 108901. [Google Scholar] [CrossRef]
- Yu, P.; Shen, C.; Yin, X.; Cheng, J.; Liu, C.; Yu, Z. Au-Ag bimetallic nanoparticles for surface-enhanced Raman scattering (SERS) detection of food contaminants: A review. Foods 2025, 14, 2109. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Monteiro, J.K.; Prasad, A.; Filipe, C.D.M.; Li, Y.; Didar, T.F. Material breakthroughs in smart food monitoring: Intelligent packaging and on-site testing technologies for spoilage and contamination detection. Adv. Mater. 2024, 36, 2300875. [Google Scholar] [CrossRef]
- Panferov, V.; Ivanov, N.; Zhang, W.; Wang, S.; Liu, J. Utilizing the thermostability of nanozymes for joule heating to remove background peroxidase activities in lateral flow assays. ACS Sens. 2025, 10, 3785–3793. [Google Scholar] [CrossRef]
- Gao, S.; Sun, Q.; Katona, J.; Zhang, D.; Zhang, Y.; Zou, X. Recent advances in metal–organic framework nanozyme (MOFzyme)-based biosensors for detecting food contaminants. J. Agric. Food Chem. 2025. [Google Scholar] [CrossRef]
- Ma, J.; Feng, G.; Ying, Y.; Shao, Y.; She, Y.; Zheng, L.; Ei-Aty, A.M.A.; Wang, J. Sensitive SERS assay for glyphosate based on the prevention of l-cysteine inhibition of a Au–Pt nanozyme. Analyst 2021, 146, 956–963. [Google Scholar] [CrossRef]
- Das, B.; Franco, J.L.; Logan, N.; Balasubramanian, P.; Kim, M.I.; Cao, C. Nanozymes in point-of-care diagnosis: An emerging futuristic approach for biosensing. Nano-Micro Lett. 2021, 13, 193. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, J.; Wang, L.; Zhang, J.; Ding, L.; Liu, H.; Yu, X. Nanozyme-enhanced electrochemical biosensors: Mechanisms and applications. Small 2024, 20, 2307815. [Google Scholar] [CrossRef]
- Valero-Calvo, D.; García-Alonso, F.J.; de la Escosura-Muñiz, A. Bimetallic nanoparticles as electrochemical labels in immunosensors for the detection of biomarkers of clinical interest. Anal. Sens. 2024, 4, e202400017. [Google Scholar] [CrossRef]
- Lou-Franco, J.; Das, B.; Elliott, C.; Cao, C. Gold nanozymes: From concept to biomedical applications. Nano-Micro Lett. 2020, 13, 10. [Google Scholar] [CrossRef]
- Sun, Y.; Xie, Z.; Pei, F.; Hu, W.; Feng, S.; Hao, Q.; Liu, B.; Mu, X.; Lei, W.; Tong, Z. Trimetallic Au@Pd@Pt nanozyme-enhanced lateral flow immunoassay for the detection of SARS-CoV-2 nucleocapsid protein. Anal. Methods 2022, 14, 5091–5099. [Google Scholar] [CrossRef]
- Chen, X.; Liao, J.; Lin, Y.; Zhang, J.; Zheng, C. Nanozyme’s catalytic activity at neutral pH: Reaction substrates and application in sensing. Anal. Bioanal. Chem. 2023, 415, 3817–3830. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, X. Gold/platinum bimetallic nanomaterials for immunoassay and immunosensing. Coord. Chem. Rev. 2022, 465, 214578. [Google Scholar] [CrossRef]
- Lei, Y.; Yu, L.; Yang, Z.; Quan, K.; Qing, Z. Biotemplated platinum nanozymes: Synthesis, catalytic regulation and biomedical applications. ChemBioChem 2024, 25, e202400548. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wei, H.; Li, Z.; Wang, T.; Wu, D.; Zeng, L. Near infrared-II photothermal-promoted multi-enzyme activities of gold-platinum to enhance catalytic therapy. J. Colloid Interface Sci. 2024, 676, 1088–1097. [Google Scholar] [CrossRef]
- Lin, P.; Ali, Z.A.; Werner, J. Investigation of the bimodal leaching response of ram chip gold fingers in ammonia thiosulfate solution. Materials 2023, 16, 4940. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Briega-Martos, V.; Alemany, P.; Sandhya, A.L.M.; Skála, T.; Rodríguez, M.G.; Nováková, J.; Dopita, M.; Vorochta, M.; Bruix, A.; et al. Balancing activity and stability through compositional engineering of ternary PtNi–Au alloy orr catalysts. ACS Catal. 2025, 15, 234–245. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Wang, H.; Lv, J.; Shi, X.; Wu, L.; Niu, X. Colorimetric sensor array based on Au2Pt nanozymes for antioxidant nutrition quality evaluation in food. Biosens. Bioelectron. 2023, 236, 115417. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, L.; Mei, X.; Xi, J.; Wu, K.; Li, J. Preparation of AuPt@ZIF-67 nanomaterials and their application in a flow injection chemiluminescence immunoassay. Analyst 2025, 150, 2845–2853. [Google Scholar] [CrossRef]
- Nuti, S.; Fernández-Lodeiro, J.; Palomo, J.M.; Capelo-Martinez, J.-L.; Lodeiro, C.; Fernández-Lodeiro, A. Synthesis, structural analysis, and peroxidase-mimicking activity of AuPt branched nanoparticles. Nanomaterials 2024, 14, 1166. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Zhang, D.; Guo, G.; Wang, L.; Wang, X. Kinetically controlled nucleation enabled by tunable microfluidic mixing for the synthesis of dendritic Au@Pt core/shell nanomaterials. Small 2024, 20, 2302589. [Google Scholar] [CrossRef]
- Wang, M.; Chang, M.; Chen, Q.; Wang, D.; Li, C.; Hou, Z.; Lin, J.; Jin, D.; Xing, B. Au2Pt-PEG-Ce6 nanoformulation with dual nanozyme activities for synergistic chemodynamic therapy/phototherapy. Biomaterials 2020, 252, 120093. [Google Scholar] [CrossRef]
- Chen, M.; Li, Y.; Huang, Y.; Wang, J.; Wang, Y.; Yan, F.; Guo, W.; Wang, X. Multienzyme-mimicking Cu2O/AuPt with efficient photothermal effects for superior and long-term antibacterial performance. ACS Omega 2025, 10, 29059–29073. [Google Scholar] [CrossRef]
- Liu, X.; Domingues, N.P.; Oveisi, E.; Coll-Satue, C.; Jansman, M.M.T.; Smit, B.; Hosta-Rigau, L. Metal–organic framework-based oxygen carriers with antioxidant activity resulting from the incorporation of gold nanozymes. Biomater. Sci. 2023, 11, 2551–2565. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, R.; Pan, G.; Cao, M.; Zhang, L. Unique electron-transfer-mediated electrochemiluminescence of AuPt bimetallic nanoclusters and the application in cancer immunoassay. Biosensors 2023, 13, 550. [Google Scholar] [CrossRef]
- Sera, M.; Hossain, S.; Yoshikawa, S.; Takemae, K.; Ikeda, A.; Tanaka, T.; Kosaka, T.; Niihori, Y.; Kawawaki, T.; Negishi, Y. Atomically precise Au24Pt(thiolate)12(dithiolate)3 nanoclusters with excellent electrocatalytic hydrogen evolution reactivity. J. Am. Chem. Soc. 2024, 146, 29684–29693. [Google Scholar] [CrossRef]
- Wang, J.; Mao, J.; Chen, H.; Ding, D.; Yan, Q. Synergistic action sandwich-type aptasensor based on nanozymes and biological enzymes for ultrasensitive cardiac troponin I determination. Microchim. Acta 2025, 192, 413. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, Q.; Zhang, Y.; Ren, B.; Huang, L.; Cai, H.; Xu, T.; Liu, Q.; Zhang, X. An electrochemical aptasensor based on AuPt alloy nanoparticles for ultrasensitive detection of amyloid-β oligomers. Talanta 2021, 231, 122360. [Google Scholar] [CrossRef]
- Cai, M.; Zhang, Y.; Cao, Z.; Lin, W.; Lu, N. DNA-Programmed Tuning of the Growth and Enzyme-Like Activity of a Bimetallic Nanozyme and Its Biosensing Applications. ACS Appl. Mater. Interfaces 2023, 15, 18620–18629. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, O.D.; Zvereva, E.A.; Panferov, V.G.; Solopova, O.N.; Zherdev, A.V.; Sveshnikov, P.G.; Dzantiev, B.B. Application of Au@Pt nanozyme as enhancing label for the sensitive lateral flow immunoassay of okadaic acid. Biosensors 2022, 12, 1137. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Jin, M.; Ma, J.; Yan, M.; Cui, X.; Wang, Y.; Zhang, X.; Li, H.; Zheng, W.; Zhang, Y.; et al. Competitive bio-barcode immunoassay for highly sensitive detection of parathion based on bimetallic nanozyme catalysis. J. Agric. Food Chem. 2020, 68, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, X.; Mao, G.; Zhu, G.; Yi, Y. Self-reduction of gold@platinum bimetallic nanoparticles on Ti3C2Tx MXene nanoribbons coupled with hydrogel and smartphone technology for colorimetric detection of silver ions. Anal. Methods 2025, 17, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Panferov, V.G.; Safenkova, I.V.; Zherdev, A.V.; Dzantiev, B.B. Urchin peroxidase-mimicking Au@Pt nanoparticles as a label in lateral flow immunoassay: Impact of nanoparticle composition on detection limit of Clavibacter michiganensis. Microchim. Acta 2020, 187, 268. [Google Scholar] [CrossRef]
- Wang, L.; Xu, A.; Wang, M.; Xu, S.; Zhang, Y.; Liu, Y. Syringe-driven biosensing of Salmonella typhimurium using nuclear track membrane filtration and nanozyme signal amplification. Food Control 2023, 152, 109882. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, L.; Xin, S.; Yang, Q.; Wu, W.; Hou, X. Poly (ionic liquid) cross-linked hydrogel encapsulated with AuPt nanozymes for the smartphone-based colorimetric detection of zearalenone. Food Chem. X 2024, 22, 101471. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zhai, R.; Liu, G.; Huang, X.; Zhang, K.; Xu, X.; Li, L.; Zhang, Y.; Wang, J.; Jin, M.; et al. A competitive assay based on dual-mode Au@Pt-DNA biosensors for on-site sensitive determination of carbendazim fungicide in agricultural products. Front. Nutr. 2022, 9, 820150. [Google Scholar] [CrossRef]
- Pham, X.-H.; Tran, V.-K.; Hahm, E.; Kim, Y.-H.; Kim, J.; Kim, W.; Jun, B.-H. Synthesis of gold-platinum core-shell nanoparticles assembled on a silica template and their peroxidase nanozyme properties. Int. J. Mol. Sci. 2022, 23, 6424. [Google Scholar] [CrossRef]
- Kannan, P.; Maduraiveeran, G. Bimetallic nanomaterials-based electrochemical biosensor platforms for clinical applications. Micromachines 2022, 13, 76. [Google Scholar] [CrossRef]
- Dindar, C.K.; Erkmen, C.; Uslu, B. Electroanalytical methods based on bimetallic nanomaterials for determination of pesticides: Past, present, and future. Trends Environ. Anal. Chem. 2021, 32, e00145. [Google Scholar] [CrossRef]
- Awiaz, G.; Lin, J.; Wu, A. Recent advances of Au@Ag core–shell SERS-based biosensors. Exploration 2023, 3, 20220072. [Google Scholar] [CrossRef]
- Arkhipova, V.I.; Mochalova, E.N.; Nikitin, M.P. Au-based bimetallic nanoparticles: Current biomedical applications. J. Nanoparticle Res. 2024, 26, 214. [Google Scholar] [CrossRef]
- Zhang, J.; Li, R.; Cao, K.; Zhang, T.; Xiao, H.; Wang, L. Gold and platinum bimetallic nanoparticles with double enzyme-like properties for the colorimetric detection of glutathione. J. Mol. Struct. 2025, 1340, 142521. [Google Scholar] [CrossRef]
- Hendrickson, O.D.; Zvereva, E.A.; Pridvorova, S.M.; Dzantiev, B.B.; Zherdev, A.V. The use of Au@Pt nanozyme to perform ultrasensitive immunochromatographic detection of banned pork additives in meat products. Food Control. 2023, 154, 110013. [Google Scholar] [CrossRef]
- Chen, D.-N.; Mao, Y.-W.; Qu, P.; Wang, A.-J.; Mei, L.-P.; Feng, J.-J. Bimetallic AuPt alloy/rod-like CeO2 nanojunctions with high peroxidase-like activity for colorimetric sensing of organophosphorus pesticides. Microchim. Acta 2023, 190, 220. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Qin, K.; Yuan, D.; Tan, J.; Qin, L.; Zhang, X.; Wei, H. Rational design of Au@Pt multibranched nanostructures as bifunctional nanozymes. ACS Appl. Mater. Interfaces 2018, 10, 12954–12959. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Yao, K.; Wang, Q.; Han, T.; Lu, W.; Xia, Y. Poly(ionic liquid)-regulated green one-pot synthesis of Au@Pt porous nanospheres for the smart detection of acid phosphatase and organophosphorus inhibitor. Talanta 2025, 286, 127503. [Google Scholar] [CrossRef]
- Lu, C.; Tang, L.; Gao, F.; Li, Y.; Liu, J.; Zheng, J. DNA-encoded bimetallic Au-Pt dumbbell nanozyme for high-performance detection and eradication of Escherichia coli O157:H7. Biosens. Bioelectron. 2021, 187, 113327. [Google Scholar] [CrossRef] [PubMed]
- Pebdeni, A.B.; Hosseini, M. Fast and selective whole cell detection of Staphylococcus aureus bacteria in food samples by paper based colorimetric nanobiosensor using peroxidase-like catalytic activity of DNA-Au/Pt bimetallic nanoclusters. Microchem. J. 2020, 159, 105475. [Google Scholar] [CrossRef]
- Ruan, X.; Hulubei, V.; Wang, Y.; Shi, Q.; Cheng, N.; Wang, L.; Lyu, Z.; Davis, W.C.; Smith, J.N.; Lin, Y.; et al. Au@PtPd enhanced immunoassay with 3D printed smartphone device for quantification of diaminochlorotriazine (DACT), the major atrazine biomarker. Biosens. Bioelectron. 2022, 208, 114190. [Google Scholar] [CrossRef]
- Liu, B.; Zhai, R.; El-Aty, A.M.A.; Zhang, J.; Liu, G.; Huang, X.; Lv, J.; Chen, J.; Liu, J.; Jin, M.; et al. Bimetallic nanozyme-assisted immunoassay for the detection of acetamiprid in vegetables. ACS Appl. Nano Mater. 2024, 7, 21833–21841. [Google Scholar] [CrossRef]
- Cui, X.; Lv, L.; Zhao, K.; Tian, P.; Chao, X.; Li, Y.; Zhang, B. Exo III-assisted amplification signal strategy synergized with Au@Pt NFs/CoSe2 for sensitive detection of enrofloxacin. Bioelectrochemistry 2024, 160, 108750. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-T.; Zeng, Y.-X.; Tsai, W.-X.; Huang, H.-C.; Tsai, M.-Y.; Diao, Y.; Hung, W.-H. Study of highly efficient Au/Pt nanoparticles for rapid screening of Clostridium difficile. ACS Omega 2024, 9, 24593–24600. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, J.; Wu, X.; Shi, J.; Hammock, B.D. Development of the Au@Pt-labeled nanobody lateral-flow nanozyme immunoassay for visual detection of 3-phenoxybenzoic acid in milk and lake water. ACS Agric. Sci. Technol. 2022, 2, 573–579. [Google Scholar] [CrossRef]
- Wu, J.; Liang, L.; Li, S.; Qin, Y.; Zhao, S.; Ye, F. Rational design of nanozyme with integrated sample pretreatment for colorimetric biosensing. Biosens. Bioelectron. 2024, 257, 116310. [Google Scholar] [CrossRef]
- Gao, S.; Zheng, X.; Zhu, J.; Zhang, Y.; Zhou, R.; Wang, T.; Katona, J.; Zhang, D.; Zou, X. Magnetic nanoprobe-enabled lateral flow assays in the applications of food safety and in vitro diagnostic. Coord. Chem. Rev. 2025, 534, 216588. [Google Scholar] [CrossRef]
- Li, H.; Ahmad, W.; Rong, Y.; Chen, Q.; Zuo, M.; Ouyang, Q.; Guo, Z. Designing an aptamer based magnetic and upconversion nanoparticles conjugated fluorescence sensor for screening Escherichia coli in food. Food Control 2020, 107, 106761. [Google Scholar] [CrossRef]
- Yin, L.; Cai, J.; Ma, L.; You, T.; Arslan, M.; Jayan, H.; Zou, X.; Gong, Y. Dual function of magnetic nanocomposites-based SERS lateral flow strip for simultaneous detection of aflatoxin B1 and zearalenone. Food Chem. 2024, 446, 138817. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef]
- Feng, X.; Fu, H.; Bai, Z.; Li, P.; Song, X.; Hu, X. Colorimetric detection of glucose by a hybrid nanomaterial based on amplified peroxidase-like activity of ferrosoferric oxide modified with gold–platinum heterodimer. New J. Chem. 2022, 46, 239–249. [Google Scholar] [CrossRef]
- Zhu, L.; Zeng, W.; Li, Y.; Han, Y.; Wei, J.; Wu, L. Development of magnetic fluorescence aptasensor for sensitive detection of saxitoxin based on Fe3O4@Au-Pt nanozymes. Sci. Total Environ. 2024, 921, 171236. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Li, Y.; Han, Y.; Liu, X.; Han, B.; Mao, H.; Chen, Q. A dual-mode optical sensor for sensitive detection of saxitoxin in shellfish based on three-in-one functional nanozymes. J. Food Compos. Anal. 2024, 130, 106190. [Google Scholar] [CrossRef]
- Liu, Q.; Xin, S.; Tan, X.; Yang, Q.; Hou, X. Ionic liquids functionalized Fe3O4-based colorimetric biosensor for rapid determination of ochratoxin A. Microchim. Acta 2023, 190, 364. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zheng, S.; Xia, X.; Li, J.; Yu, Q.; Wang, Y.; Jin, Q.; Wang, C.; Gu, B. Core–satellite-structured magnetic nanozyme enables the ultrasensitive colorimetric detection of multiple drug residues on lateral flow immunoassay. Anal. Chim. Acta 2024, 1325, 343115. [Google Scholar] [CrossRef]
- Zhao, C.; Jian, X.; Gao, Z.; Song, Y.-Y. Plasmon-mediated peroxidase-like activity on an asymmetric nanotube architecture for rapid visual detection of bacteria. Anal. Chem. 2022, 94, 14038–14046. [Google Scholar] [CrossRef]
- Zhou, J.; Zhu, W.; Lv, X.; Du, X.; He, J.; Cai, J. Dendritic silica nanospheres with Au–Pt nanoparticles as nanozymes for label-free colorimetric Hg2+ detection. ACS Appl. Nano Mater. 2022, 5, 18885–18893. [Google Scholar] [CrossRef]
- Wang, M.; Xiao, C.; Zhao, F.; Suo, Z.; Liu, Y.; Wei, M.; Jin, B. A label-free electrochemical sensor based on π-structured bipedal DNA walker-triggered hybridization chain reaction and AuPt NPs/Zr-MOF for OTA detection. Anal. Chim. Acta 2025, 1334, 343424. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhao, L.; Li, W.; Xu, X.; Xu, Q.; Xu, H. Sea cucumber-inspired self-assembly nanozyme for ultrasensitive and tri-modal colorimetric quantification of pathogenic bacteria. Sens. Actuators B Chem. 2025, 431, 137314. [Google Scholar] [CrossRef]
- Qileng, A.; Liu, W.; Liang, H.; Chen, M.; Shen, H.; Chen, S.; Liu, Y. Tuning the electronic configuration of oxygen atom in engineering non-self-limited nanozyme for portable immunosensor. Adv. Funct. Mater. 2024, 34, 2311783. [Google Scholar] [CrossRef]
- Su, T.; Chang, Y.; Lu, M.; Lin, X.; Ning, Z.; Wu, S.; Wang, Z.; Duan, N. Bimetallic loaded ZIF-8 with peroxidase-like and photothermal activities for sensitive detection and efficient elimination of Listeria monocytogenes. Chem. Eng. J. 2024, 497, 154918. [Google Scholar] [CrossRef]
- Lai, L.; Guo, Q.; Zou, W.; Huang, L.; Xu, S.; Qiao, D.; Wang, L.; Zheng, P.; Pan, Q.; Zhu, W. Space-confined nanozyme with cascade reaction based on PCN-224 for synergistic bacterial infection treatment and NIR fluorescence imaging of wound bacterial infections. Chem. Eng. J. 2024, 487, 150642. [Google Scholar] [CrossRef]
- Qileng, A.; Chen, S.; Liang, H.; Shen, H.; Chen, M.; Liu, W.; Liu, Y. Bionic structural design of Pt nanozymes with the nano-confined effect for the precise recognition of copper ion. Chem. Eng. J. 2023, 455, 140769. [Google Scholar] [CrossRef]
- Zhang, Y.; Nie, C.; Wang, Z.; Lan, F.; Wan, L.; Li, A.; Zheng, P.; Zhu, W.; Pan, Q. A spatial confinement biological heterogeneous cascade nanozyme composite hydrogel combined with nitric oxide gas therapy for enhanced treatment of psoriasis and diabetic wound. Chem. Eng. J. 2025, 507, 160629. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, S.; Xu, C.; Yu, Q.; Bai, W.; Zhang, L.; Li, G.; Wang, C.; Gu, B. 3D multilayered sheet-like nanozyme enables the multiplex, flexible, and ultrasensitive detection of small-molecule drugs by immunochromatographic assay. Chem. Eng. J. 2024, 502, 158162. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, L.; Li, W.; Hu, X.; Chen, A.; Li, C. Hydrangea-like AuPtRu/ZnO-rGO nanocomposites with enhanced peroxidase mimiking activity for senitive colorimetric determination of H2O2. ACS Omega 2023, 8, 49218–49227. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Hu, M.; Zhang, W.; Lei, Z. Selective colorimetric detection of carbosulfan based on its hydrolysis behavior and Ti3C2/AuPt nanozyme. Anal. Chim. Acta 2025, 1336, 343519. [Google Scholar] [CrossRef]
- Yi, Y.; Li, J.; Bi, X.; Zhang, L.; Ren, Y.; Li, L.; You, T. Highly active Ti3C2Tx MXene nanoribbons@AuPt bimetallic nanozyme constructed in a “two birds with one stone” manner for colorimetric sensing of dipterex. Talanta 2025, 281, 126881. [Google Scholar] [CrossRef]
- Wan, L.; Wu, L.; Su, S.; Zhu, D.; Chao, J.; Wang, L. High peroxidase-mimicking activity of gold@platinum bimetallic nanoparticle-supported molybdenum disulfide nanohybrids for the selective colorimetric analysis of cysteine. Chem. Commun. 2020, 56, 12351–12354. [Google Scholar] [CrossRef]
- Han, E.; Pan, Y.; Li, L.; Liu, Y.; Gu, Y.; Cai, J. Development of sensitive electrochemical sensor based on chitosan/MWCNTs-auptpd nanocomposites for detection of bisphenol A. Chemosensors 2023, 11, 331. [Google Scholar] [CrossRef]
- Lv, J.; Huang, R.; Zeng, K.; Zhang, Z. Magnetic immunoassay based on Au Pt bimetallic nanoparticles/carbon nanotube hybrids for sensitive detection of tetracycline antibiotics. Biosensors 2024, 14, 342. [Google Scholar] [CrossRef]
- Sharma, A.S.; Ali, S.; Sabarinathan, D.; Murugavelu, M.; Li, H.; Chen, Q. Recent progress on graphene quantum dots-based fluorescence sensors for food safety and quality assessment applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5765–5801. [Google Scholar] [CrossRef]
- Shoaib, M.; Li, H.; Khan, I.M.; Hassan, M.; Zareef, M.; Niazi, S.; Chen, Q. Emerging MXenes-based aptasensors: A paradigm shift in food safety detection. Trends Food Sci. Technol. 2024, 151, 104635. [Google Scholar] [CrossRef]
- Riazi, H.; Taghizadeh, G.; Soroush, M. MXene-based nanocomposite sensors. ACS Omega 2021, 6, 11103–11112. [Google Scholar] [CrossRef]
- Pei, Y.; Zhang, X.; Hui, Z.; Zhou, J.; Huang, X.; Sun, G.; Huang, W. Ti3C2TX MXene for sensing applications: Recent progress, design principles, and future perspectives. ACS Nano 2021, 15, 3996–4017. [Google Scholar] [CrossRef] [PubMed]
- Lee, J. Carbon nanotube-based biosensors using fusion technologies with biologicals & chemicals for food assessment. Biosensors 2023, 13, 183. [Google Scholar] [CrossRef] [PubMed]
- Masood, M.; Albayouk, T.; Saleh, N.; El-Shazly, M.; El-Nashar, H.A.S. Carbon nanotubes: A novel innovation as food supplements and biosensing for food safety. Front. Nutr. 2024, 11, 1381179. [Google Scholar] [CrossRef]
- Gao, Z.; Tang, D.; Tang, D.; Niessner, R.; Knopp, D. Target-induced nanocatalyst deactivation facilitated by core@shell nanostructures for signal-amplified headspace-colorimetric assay of dissolved hydrogen sulfide. Anal. Chem. 2015, 87, 10153–10160. [Google Scholar] [CrossRef]
- Yue, X.; Zhang, H.; Zhu, J.; Zhang, S.; Xu, N.; Wang, Y. A gold-platinum nanozyme-based immunochromatographic strip for rapid detection of ofloxacin in chicken and fish. J. Food Compos. Anal. 2025, 146, 107888. [Google Scholar] [CrossRef]
- Gao, B.; Ding, Y.; Cai, Z.; Wu, S.; Wang, J.; Ling, N.; Ye, Q.; Chen, M.; Zhang, Y.; Wei, X.; et al. Dual-recognition colorimetric platform based on porous Au@Pt nanozymes for highly sensitive washing-free detection of Staphylococcus aureus. Microchim. Acta 2024, 191, 438. [Google Scholar] [CrossRef]
- Liu, D.; Yu, X.; Li, C.; Wang, Y.; Huang, C.; Li, M.; Huang, Y.; Yang, C. Au–Pt coating improved catalytic stability of Au@AuPt nanoparticles for pressure-based point-of-care detection of Escherichia coli O157:H7. ACS Appl. Mater. Interfaces 2024, 16, 34632–34640. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Ai, Y.; Hu, W.; Guan, L.; Ding, M.; Liang, Q. Recent advances of seed-mediated growth of metal nanoparticles: From growth to applications. Adv. Mater. 2023, 35, 2211915. [Google Scholar] [CrossRef]
- Roy, D.; Rajendra, R.; Gangadharan, P.K.; Pandikassala, A.; Kurungot, S.; Ballav, N. Seed-mediated growth of Pt on high-index faceted Au nanocrystals: The Ag lining and implications for electrocatalysis. ACS Appl. Nano Mater. 2021, 4, 9155–9166. [Google Scholar] [CrossRef]
- Mawarnis, E.R.; El-Bahy, S.M.; Al-She’IRey, A.Y.A.; Roza, L.; El Azab, I.H.; Mersal, G.A.; El-Bahy, Z.M.; Ibrahim, M.M.; Umar, A.A. Crystal growth and catalytic properties of AgPt and AuPt bimetallic nanostructures under surfactant effect. Inorg. Chem. Commun. 2022, 143, 109737. [Google Scholar] [CrossRef]
- Ramos, R.M.C.R.; Regulacio, M.D. Controllable synthesis of bimetallic nanostructures using biogenic reagents: A green perspective. ACS Omega 2021, 6, 7212–7228. [Google Scholar] [CrossRef] [PubMed]
- Qiao, W.; He, B.; Yang, J.; Ren, W.; Zhao, R.; Zhang, Y.; Bai, C.; Suo, Z.; Xu, Y.; Wei, M.; et al. Pt@AuNF nanozyme and horseradish peroxidase-based lateral flow immunoassay dual enzymes signal amplification strategy for sensitive detection of zearalenone. Int. J. Biol. Macromol. 2024, 254, 127746. [Google Scholar] [CrossRef]
- Nieto-Argüello, A.; Torres-Castro, A.; Villaurrutia-Arenas, R.; Martínez-Sanmiguel, J.J.; González, M.U.; García-Martín, J.M.; Cholula-Díaz, J.L. Green synthesis and characterization of gold-based anisotropic nanostructures using bimetallic nanoparticles as seeds. Dalton Trans. 2021, 50, 16923–16928. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, Y.; Chen, M.; Song, Z.-L.; Xiong, B.; Zhang, X.-B. Peroxidase-like Au@Pt nanozyme as an integrated nanosensor for Ag+ detection by LSPR spectroscopy. Talanta 2021, 221, 121627. [Google Scholar] [CrossRef]
- Chen, D.-N.; Wang, G.-Q.; Mei, L.-P.; Feng, J.-J.; Wang, A.-J. Dual II-scheme nanosheet-like Bi2S3/Bi2O3/Ag2S heterostructures for ultrasensitive PEC aptasensing of aflatoxin B1 coupled with catalytic signal amplification by dendritic nanorod-like Au@Pd@Pt nanozyme. Biosens. Bioelectron. 2023, 223, 115038. [Google Scholar] [CrossRef] [PubMed]
- Hilal, H.; Zhao, Q.; Kim, J.; Lee, S.; Haddadnezhad, M.; Yoo, S.; Lee, S.; Park, W.; Park, W.; Lee, J.; et al. Three-dimensional nanoframes with dual rims as nanoprobes for biosensing. Nat. Commun. 2022, 13, 4813. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lan, B.; Fan, Y.; Wang, D.; Cao, Y.; Zhang, F.; Xie, X. Atomic defect-directed epitaxial growth of multimetallic nanorods for high-efficiency alcohol electro-oxidation. ACS Appl. Mater. Interfaces 2025, 17, 27061–27075. [Google Scholar] [CrossRef]
- Xia, C.; He, W.; Yang, X.F.; Gao, P.F.; Zhen, S.J.; Li, Y.F.; Huang, C.Z. Plasmonic hot-electron-painted Au@Pt nanoparticles as efficient electrocatalysts for detection of H2O2. Anal. Chem. 2022, 94, 13440–13446. [Google Scholar] [CrossRef]
- Li, J.; Luo, M.; Yang, H.; Cai, R.; Tan, W. AuPt nanodonuts as a novel coreaction accelerator and luminophore for a label-free electrochemiluminescence aptasensor. Anal. Chem. 2023, 95, 13838–13843. [Google Scholar] [CrossRef]
- Dai, H.; Yu, J.; Zhou, R.; Hao, G.; Qiao, Z.; Feng, Z.; Liu, X.; Bi, J.; Wang, J.; Liu, X.; et al. Aptamer-modulated Pt/Au/MIL-100(Fe) nanozymatic activity for the colorimetric detection of deoxynivalenol in grains. Food Chem. 2025, 476, 143378. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Kim, C.; Kim, D.; Hong, C.; Kim, T.; Lee, M.; Lee, K. Multibranched Au–Ag–Pt nanoparticle as a nanozyme for the colorimetric assay of hydrogen peroxide and glucose. ACS Omega 2022, 7, 40973–40982. [Google Scholar] [CrossRef]
- Wu, S.; Khan, M.A.; Huang, T.; Liu, X.; Kang, R.; Zhao, H.; Cao, H.; Ye, D. Smartphone-assisted colorimetric sensor arrays based on nanozymes for high throughput identification of heavy metal ions in salmon. J. Hazard. Mater. 2024, 480, 135887. [Google Scholar] [CrossRef]
- Xie, W.; Zhang, G.; Guo, Z.; Huang, H.; Ye, J.; Gao, X.; Yue, K.; Wei, Y.; Zhao, L. Shape-controllable and kinetically miscible Copper–Palladium bimetallic nanozymes with enhanced Fenton-like performance for biocatalysis. Mater. Today Bio 2022, 16, 100411. [Google Scholar] [CrossRef] [PubMed]
- Lapshinov, N.E.; Pridvorova, S.M.; Zherdev, A.V.; Dzantiev, B.B.; Safenkova, I.V. Freeze-driven adsorption of oligonucleotides with polya-anchors on Au@Pt nanozyme. Int. J. Mol. Sci. 2024, 25, 10108. [Google Scholar] [CrossRef]
- Lan, F.; Xin, T.; Zhang, Y.; Li, A.; Wan, L.; Du, J.; Zheng, P.; Nie, C.; Pan, Q.; Zhu, W. Nanoconfinement-guided in situ co-deposition of single-atom cascade nanozymes combined with injectable sodium alginate hydrogels for enhanced diabetic wound healing. Int. J. Biol. Macromol. 2025, 304, 140814. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Gong, F.; Feng, X.; Xia, Y.; Xia, L.; Kai, T.; Ding, P. Multimetallic nanoparticles decorated metal-organic framework for boosting peroxidase-like catalytic activity and its application in point-of-care testing. J. Nanobiotechnol. 2023, 21, 185. [Google Scholar] [CrossRef]
- Du, Z.; Zhu, L.; Wang, P.; Lan, X.; Lin, S.; Xu, W. Coordination-driven one-step rapid self-assembly synthesis of dual-functional Ag@Pt nanozyme. Small 2023, 19, 2301048. [Google Scholar] [CrossRef]
- Zhang, B.; Zhou, R.; Zhang, H.; Cai, D.; Lin, X.; Lang, Y.; Qiu, Y.; Shentu, X.; Ye, Z.; Yu, X. A smartphone colorimetric sensor based on Pt@Au nanozyme for visual and quantitative detection of omethoate. Foods 2022, 11, 2900. [Google Scholar] [CrossRef]
- Qi, M.; Ke, Y.; Li, Y.; Li, P.; Zhou, H.; Zhang, X.; Chen, J.; Meng, J. Au@Pt nanozyme-based smart hydrogel for visual detection of hyaluronic acid. Sens. Actuators B Chem. 2025, 427, 137144. [Google Scholar] [CrossRef]
- Lv, F.; Gong, Y.; Cao, Y.; Deng, Y.; Liang, S.; Tian, X.; Gu, H.; Yin, J.-J. A convenient detection system consisting of efficient Au@PtRu nanozymes and alcohol oxidase for highly sensitive alcohol biosensing. Nanoscale Adv. 2020, 2, 1583–1589. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Yang, Y.; Xu, M.; Tao, Y.; Deng, C.; Li, M.; Wei, D.; Deng, Y.; Lv, J.; Wu, C.; et al. Screening and discrimination of phenolic acids using bimetallic nanozymes based colorimetric sensor array. Sens. Actuators B Chem. 2024, 420, 136484. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Hong, L.; Wang, X.; Cao, J. Tetrahedral DNA nanostructure-engineered paper-based electrochemical aptasensor for fumonisin B1 detection coupled with Au@Pt nanocrystals as an amplification label. J. Agric. Food Chem. 2023, 71, 19121–19128. [Google Scholar] [CrossRef]
- Li, W.; Wang, Z.; Wang, X.; Cui, L.; Huang, W.; Zhu, Z.; Liu, Z. Highly efficient detection of deoxynivalenol and zearalenone in the aqueous environment based on nanoenzyme-mediated lateral flow immunoassay combined with smartphone. J. Environ. Chem. Eng. 2023, 11, 110494. [Google Scholar] [CrossRef]
- Huang, L.; Su, A.; Wang, Q.; Huang, J.; Chen, H. Revisiting the facet control in the growth of Au nanobipyramids. Nano Lett. 2025, 25, 2426–2434. [Google Scholar] [CrossRef]
- Jin, N.; Xue, L.; Ding, Y.; Liu, Y.; Jiang, F.; Liao, M.; Li, Y.; Lin, J. A microfluidic biosensor based on finger-driven mixing and nuclear track membrane filtration for fast and sensitive detection of Salmonella. Biosens. Bioelectron. 2023, 220, 114844. [Google Scholar] [CrossRef]
- Zheng, L.; Cai, G.; Qi, W.; Wang, S.; Wang, M.-H.; Lin, J. Optical biosensor for rapid detection of Salmonella typhimurium based on porous gold@platinum nanocatalysts and a 3D fluidic chip. ACS Sens. 2020, 5, 65–72. [Google Scholar] [CrossRef]
- Zhang, R.; Xie, S.; Yang, J.; Zhang, L.; Xiong, R.; Sun, H.; Zhang, H.; Jiang, M.; He, Y. A dual-mode colorimetric and surface-enhanced Raman strategy for chloramphenicol detection based on the Au@Pt nanozyme and EXPAR. Microchem. J. 2024, 207, 111990. [Google Scholar] [CrossRef]
- Guo, L.; Zhou, S.; Liu, Y.; Yang, H.; Miao, M.; Gao, W. Facile and controllable hybrid-nanoengineering of MWCNTs/Au@ZIF-8 and AuPt@CeO2 based sandwich electrochemical aptasensor for AFB1 determination in foods and herbs. J. Saudi Chem. Soc. 2024, 28, 101946. [Google Scholar] [CrossRef]
- Hammoud, L.; Strebler, C.; Toufaily, J.; Hamieh, T.; Keller, V.; Caps, V. The role of the gold–platinum interface in AuPt/TiO2-catalyzed plasmon-induced reduction of CO2 with water. Faraday Discussions 2023, 242, 443–463. [Google Scholar] [CrossRef]
- Mathiesen, J.K.; Ashberry, H.M.; Pokratath, R.; Gamler, J.T.L.; Wang, B.; Kirsch, A.; Kjær, E.T.S.; Banerjee, S.; Jensen, K.M.Ø.; Skrabalak, S.E. Why colloidal syntheses of bimetallic nanoparticles cannot be generalized. ACS Nano 2024, 18, 26937–26947. [Google Scholar] [CrossRef]
- Qi, B.; Chang, W.; Xu, Q.; Jiang, L.; An, S.; Chu, J.-F.; Song, Y.-F. Regulating hollow carbon cage supported nico alloy nanoparticles for efficient electrocatalytic hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2023, 15, 12078–12087. [Google Scholar] [CrossRef]
- Jiang, F.; Jin, N.; Wang, L.; Wang, S.; Li, Y.; Lin, J. A multimetallic nanozyme enhanced colorimetric biosensor for Salmonella detection on finger-actuated microfluidic chip. Food Chem. 2024, 460, 140488. [Google Scholar] [CrossRef]
- Sangkaew, P.; Ngamaroonchote, A.; Sanguansap, Y.; Karn-Orachai, K. Emerging electrochemical sensor based on bimetallic AuPt NPs for on-site detection of hydrogen peroxide adulteration in raw cow milk. Electrocatalysis 2022, 13, 794–806. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, D.; Aziz, A.; Deng, S.; Zhou, L.; Chen, W.; Asif, M.; Wang, S. Colorimetric platform based on synergistic effect between bacteriophage and AuPt nanozyme for determination of Yersinia pseudotuberculosis. Microchim. Acta 2023, 190, 76. [Google Scholar] [CrossRef] [PubMed]
- Jiao, J.; Kang, Q.; Ma, C.; Lin, T.; Xiao, Z.; Du, T.; Wang, N.; Du, X.; Wang, S. Pressure sensor array based on four DNA-nanoenzymes with catalase-like activity for portable multiple detection of foodborne pathogens. J. Agric. Food Chem. 2025, 73, 1694–1702. [Google Scholar] [CrossRef]
- Huang, W.; Ren, Z.; Li, X.; Chen, R.; Fan, D.; Da, J.; Zha, Y.; Xu, Y. Ultrasmall high-entropy alloy-nanolabels based immunochromatographic test strip for rapid, ultrasensitive, and catalytic detection of Staphylococcus aureus. Microchim. Acta 2025, 192, 408. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Suo, Z.; Zhu, J.; Xu, Y.; Ren, W.; Liu, Y.; Wang, H.; Wei, M.; He, B.; Zhao, R. Applying hollow octahedron PtNPs/Pd–Cu2O nanozyme and highly conductive AuPtNPs/Ni–Co NCs to colorimetric -electrochemical dual-mode aptasensor for AFB1 detection. Anal. Chim. Acta 2025, 1338, 343609. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, J.; Wang, M.; Su, X. Ratiometric fluorometric and colorimetric dual-mode sensing of glucose based on gold-platinum bimetallic nanoclusters. Microchem. J. 2022, 179, 107574. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, C.; Dong, Y.; Zhao, B.; Chen, Y. Gold core @ platinum shell nanozyme-mediated magnetic relaxation switching DNA sensor for the detection of Listeria monocytogenes in chicken samples. Food Control 2022, 137, 108916. [Google Scholar] [CrossRef]
- Chi, H.; Cui, X.; Lu, Y.; Yu, M.; Fei, Q.; Feng, G.; Shan, H.; Huan, Y. Colorimetric determination of cysteine based on Au@Pt nanoparticles as oxidase mimetics with enhanced selectivity. Microchim. Acta 2021, 189, 13. [Google Scholar] [CrossRef]
- Mao, M.; Sun, F.; Wang, J.; Li, X.; Pan, Q.; Peng, C.; Wang, Z. Delayed delivery of chromogenic substrate to nanozyme amplified aptamer lateral flow assay for acetamiprid. Sens. Actuators B Chem. 2023, 385, 133720. [Google Scholar] [CrossRef]
- Mao, M.; Chen, X.; Cai, Y.; Yang, H.; Zhang, C.; Zhang, Y.; Wang, Z.; Peng, C. Accelerated and signal amplified nanozyme-based lateral flow assay of acetamiprid based on bivalent triple helix aptamer. Sens. Actuators B Chem. 2023, 378, 133148. [Google Scholar] [CrossRef]
- Li, M.; Wang, L.; Xu, A.; Ding, Y.; Yang, F.; Li, Y.; Lin, J. Rapid and sensitive biosensing of Salmonella using mechanical step rotation and gold@platinum nanozymatic amplification. J. Anal. Test. 2024, 8, 262–269. [Google Scholar] [CrossRef]
- Wu, S.; Yuan, J.; Xi, X.; Wang, L.; Li, Y.; Wang, Y.; Lin, J. A colorimetric biosensor integrating rotifer-mimicking magnetic separation with RAA/CRISPR-Cas12a for rapid and sensitive detection of Salmonella. ACS Sens. 2025, 10, 5473–5483. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, X.; Lv, Y.; Li, X.; Xia, Q.; Yang, D.; Yang, Y. Colorimetric/SERS dual-mode sensing of glucose based on cascade reaction of peroxidase-like Au@Pt/Fe-DACDs nanozyme. J. Mater. Sci. 2024, 59, 11319–11332. [Google Scholar] [CrossRef]
- Zhai, R.; Chen, G.; Liu, B.; Liu, G.; Zhang, X.; Liu, J.; Xu, X.; Zhang, Y.; Wang, J.; Jin, M.; et al. Kill two birds with one stone: Colorimetric/fluorescence immunosensor based on Au@Pt nanozyme for sensitive detection of imidacloprid. Microchim. Acta 2024, 191, 637. [Google Scholar] [CrossRef]
- Lei, Y.; He, X.; Zeng, Y.; Wang, X.; Yang, L.; Liu, X.; Qing, Z. Pt–S bond stabilized DNAzyme nanosensor with thiol-resistance enabling high-fidelity biosensing. Talanta 2024, 276, 126187. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Yu, R.; Wang, R.; Xu, Z. A sensitive biomimetic enzyme-linked immunoassay method based on Au@Pt@Au composite nanozyme label and molecularly imprinted biomimetic antibody for histamine detection. Food Agric. Immunol. 2021, 32, 592–605. [Google Scholar] [CrossRef]
- Xie, Z.-J.; Shi, M.-R.; Wang, L.-Y.; Peng, C.-F.; Wei, X.-L. Colorimetric determination of Pb2+ ions based on surface leaching of Au@Pt nanoparticles as peroxidase mimic. Microchim. Acta 2020, 187, 255. [Google Scholar] [CrossRef] [PubMed]
- Mingyao, L.; Ruiyi, L.; Zaijun, L. Electrochemical biosensor for detection of ampicillin in milk based on Au5Pt and DNA cycle dual-signal amplification strategy. Microchim. Acta 2024, 192, 15. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, Z.; Ya, J.; Li, X.; Yan, Y.; Zhao, T.; Li, N. Acid phosphatase biosensing via Prussian Blue-Functionalized heterometallic covalent organic framework nanozymes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 343, 126497. [Google Scholar] [CrossRef]
- Nasidi, I.I.; Kaygili, O.; Majid, A.; Bulut, N.; Alkhedher, M.; ElDin, S.M. Halogen doping to control the band gap of ascorbic acid: A theoretical study. ACS Omega 2022, 7, 44390–44397. [Google Scholar] [CrossRef]
- Roy, D.; Johnson, H.M.; Hurlock, M.J.; Roy, K.; Zhang, Q.; Moreau, L.M. Exploring the complex chemistry and degradation of ascorbic acid in aqueous nanoparticle synthesis. Angew. Chem. Int. Ed. 2024, 63, e202412542. [Google Scholar] [CrossRef]
- Fini, R.; Magnani, M.; Santilli, C.V.; Pulcinelli, S.H. Tuning the formation and growth of platinum nanoparticles using surfactant: In situ SAXS study of the aggregative growth mechanism. ACS Appl. Mater. Interfaces 2025, 17, 41237–41248. [Google Scholar] [CrossRef]
- Xavier, I.P.L.; Lemos, L.L.; de Melo, E.C.; Campos, E.T.; de Souza, B.L.; Faustino, L.A.; Galante, D.; de Oliveira, P.F.M. Mechanochemical hydroquinone regeneration promotes gold salt reduction in sub-stoichiometric conditions of the reducing agent. Phys. Chem. Chem. Phys. 2024, 26, 11436–11444. [Google Scholar] [CrossRef]
- Deriu, C.; Morozov, A.N. Direct and water-mediated adsorption of stabilizers on SERS-active colloidal bimetallic plasmonic nanomaterials: Insight into citrate–AuAg interactions from DFT calculations. J. Phys. Chem. A 2022, 126, 5236–5251. [Google Scholar] [CrossRef] [PubMed]
- González-Martínez, D.A.; Ruíz, G.G.; Escalante-Bermúdez, C.; Artalejo, J.A.G.; Peña, T.G.; Gómez, J.A.; González-Martínez, E.; Quintana, Y.C.; Barrios, T.F.; Hernández, T.; et al. Efficient capture of recombinant SARS-CoV-2 receptor-binding domain (RBD) with citrate-coated magnetic iron oxide nanoparticles. Nanoscale 2023, 15, 7854–7869. [Google Scholar] [CrossRef] [PubMed]
- Zúñiga-Bustos, M.; Comer, J.; Poblete, H. Thermodynamics of the physisorption of capping agents on silver nanoparticles. Phys. Chem. Chem. Phys. 2023, 25, 20320–20330. [Google Scholar] [CrossRef]
- Van Gordon, K.; Girod, R.; Bevilacqua, F.; Bals, S.; Liz-Marzán, L.M. Structural and optical characterization of reaction intermediates during fast chiral nanoparticle growth. Nano Lett. 2025, 25, 2887–2893. [Google Scholar] [CrossRef]
- Yang, Z.-Y.; Jiang, W.-Y.; Ran, S.-Y. Reductant-dependent DNA-templated silver nanoparticle formation kinetics. Phys. Chem. Chem. Phys. 2023, 25, 23197–23206. [Google Scholar] [CrossRef]
- Mamatkulov, S.; Polák, J.; Razzokov, J.; Tomaník, L.; Slavíček, P.; Dzubiella, J.; Kanduč, M.; Heyda, J. Unveiling the borohydride ion through force-field development. J. Chem. Theory Comput. 2024, 20, 1263–1273. [Google Scholar] [CrossRef]
- Jeon, H.-J.; Kim, H.S.; Chung, E.; Lee, D.Y. Nanozyme-based colorimetric biosensor with a systemic quantification algorithm for noninvasive glucose monitoring. Theranostics 2022, 12, 6308–6338. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.-L.; Zhu, Y.; Lu, Y.; Gan, L.; Zhang, Y.; Zhao, Y.-G. Magnetic nanomaterials with unique nanozymes-like characteristics for colorimetric sensors: A review. Talanta 2021, 230, 122299. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, J.; Fu, T.; Zhang, W.; Xiao, Y.; Huang, Y. Highly catalytic and stable Au@AuPt nanoparticles for visual and quantitative detection of E. coli O157:H7. Analyst 2023, 148, 4279–4282. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Liu, T.; Xue, C.; Xue, G.; Wu, M.; Liu, P.; Hammock, B.D.; Lai, W.; Peng, J.; Zhang, C. Competitive ratiometric fluorescent lateral flow immunoassay based on dual emission signal for sensitive detection of chlorothalonil. Food Chem. 2024, 433, 137200. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, H.; Wang, F.; Adade, S.Y.-S.S.; Peng, T.; Chen, Q. Discrimination of toxigenic and non-toxigenic Aspergillus flavus in wheat based on nanocomposite colorimetric sensor array. Food Chem. 2024, 430, 137048. [Google Scholar] [CrossRef]
- Geng, W.; Haruna, S.A.; Li, H.; Kademi, H.I.; Chen, Q. A novel colorimetric sensor array coupled multivariate calibration analysis for predicting freshness in chicken meat: A comparison of linear and nonlinear regression algorithms. Foods 2023, 12, 720. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Wei, H.; Li, R.; Li, Y. Electrochemical and electrocatalytic performance of single Au@Pt/Au bimetallic nanoparticles. J. Alloys Compd. 2023, 956, 170365. [Google Scholar] [CrossRef]
- Habrioux, A.; Vogel, W.; Guinel, M.; Guetaz, L.; Servat, K.; Kokoh, B.; Alonso-Vante, N. Structural and electrochemical studies of Au–Pt nanoalloys. Phys. Chem. Chem. Phys. 2009, 11, 3573–3579. [Google Scholar] [CrossRef] [PubMed]
- Suo, Z.; Niu, X.; Liu, R.; Xin, L.; Liu, Y.; Wei, M. A methylene blue and Ag+ ratiometric electrochemical aptasensor based on Au@Pt/Fe-N-C signal amplification strategy for zearalenone detection. Sens. Actuators B Chem. 2022, 362, 131825. [Google Scholar] [CrossRef]
- Tian, J.; Liang, Z.; Hu, O.; He, Q.; Sun, D.; Chen, Z. An electrochemical dual-aptamer biosensor based on metal-organic frameworks MIL-53 decorated with Au@Pt nanoparticles and enzymes for detection of COVID-19 nucleocapsid protein. Electrochim. Acta 2021, 387, 138553. [Google Scholar] [CrossRef]
- Wei, L.; Wang, Z.; Zhang, H.; Jiang, F.; Chen, Y. Recent advances in magnetic relaxation switching biosensors for animal-derived food safety detection. Trends Food Sci. Technol. 2024, 146, 104387. [Google Scholar] [CrossRef]
- Shen, Y.; Jia, F.; He, Y.; Fu, Y.; Fang, W.; Wang, J.; Li, Y. A CRISPR-Cas12a-powered magnetic relaxation switching biosensor for the sensitive detection of Salmonella. Biosens. Bioelectron. 2022, 213, 114437. [Google Scholar] [CrossRef]
- Guo, X.; Deng, X.-C.; Zhang, Y.-Q.; Luo, Q.; Zhu, X.-K.; Song, Y.; Song, E.-Q. Fe2+/Fe3+ conversation-mediated magnetic relaxation switching for detecting Staphylococcus aureus in blood and abscess via liposome assisted amplification. J. Anal. Test. 2022, 6, 111–119. [Google Scholar] [CrossRef]
- Li, Y.; Wu, L.; Wang, Z.; Tu, K.; Pan, L.; Chen, Y. A magnetic relaxation DNA biosensor for rapid detection of Listeria monocytogenes using phosphatase-mediated Mn(VII)/Mn(II) conversion. Food Control 2021, 125, 107959. [Google Scholar] [CrossRef]
- Zou, K.; Zhang, S.; Chen, Q.; Chen, X. Advancements in photoelectrochemical sensors for analysis of food contaminants. Trends Food Sci. Technol. 2025, 157, 104903. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, W.; Yan, B.; Wu, B.; Ma, J.; Wang, X.; Qiao, B.; Tu, J.; Pei, H.; Chen, D.; et al. Gold and platinum nanoparticle-functionalized TiO2 nanotubes for photoelectrochemical glucose sensing. ACS Omega 2022, 7, 2474–2483. [Google Scholar] [CrossRef]
- Chen, C.; Zhou, X.; Wang, Z.; Han, J.; Chen, S. Core–shell Au@PtAg modified TiO2–Ti3C2 heterostructure and target-triggered DNAzyme cascade amplification for photoelectrochemical detection of ochratoxin A. Anal. Chim. Acta 2022, 1216, 339943. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Ahmad, W.; Rong, Y.; Wu, J.; Ouyang, Q.; Chen, Q. A dual-mode fluorescence and colorimetric sensing platform for efficient detection of ofloxacin in aquatic products using iron alkoxide nanozyme. Food Chem. 2024, 442, 138417. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, X.; Gu, C.; Xu, F.; Zhang, W.; Huang, X.; Qian, J. Fabrication of a versatile aptasensing chip for aflatoxin B1 in photothermal and electrochemical dual modes. Food Anal. Methods 2022, 15, 3390–3399. [Google Scholar] [CrossRef]
- Liu, S.; Meng, S.; Wang, M.; Li, W.; Dong, N.; Liu, D.; Li, Y.; You, T. In-depth interpretation of aptamer-based sensing on electrode: Dual-mode electrochemical-photoelectrochemical sensor for the ratiometric detection of patulin. Food Chem. 2023, 410, 135450. [Google Scholar] [CrossRef]
- Ouyang, Q.; Wang, L.; Ahmad, W.; Yang, Y.; Chen, Q. Upconversion nanoprobes based on a horseradish peroxidase-regulated dual-mode strategy for the ultrasensitive detection of Staphylococcus aureus in meat. J. Agric. Food Chem. 2021, 69, 9947–9956. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, C.; Guo, Z.; Yang, T.; Zhang, X.; Huang, X.; Shi, J.; Gao, S.; Zou, X. Ultrasensitive analysis of Escherichia coli O157:H7 based on immunomagnetic separation and labeled surface-enhanced Raman scattering with minimized false positive identifications. J. Agric. Food Chem. 2024, 72, 22349–22359. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.N.; Van Doren, J.M.; Leonard, C.L.; Datta, A.R. Prevalence of Listeria monocytogenes, Salmonella spp., Shiga toxin-producing Escherichia coli, and Campylobacter spp. in raw milk in the United States between 2000 and 2019: A systematic review and meta-analysis. J. Food Prot. 2023, 86, 100014. [Google Scholar] [CrossRef]
- Zhu, A.; Ali, S.; Jiao, T.; Wang, Z.; Ouyang, Q.; Chen, Q. Advances in surface-enhanced Raman spectroscopy technology for detection of foodborne pathogens. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1466–1494. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Wei, Z.; Zheng, X.; Zhu, J.; Wang, T.; Huang, X.; Shen, T.; Zhang, D.; Guo, Z.; Zou, X. Advancements in magnetic nanomaterial-assisted sensitive detection of foodborne bacteria: Dual-recognition strategies, functionalities, and multiplexing applications. Food Chem. 2025, 478, 143626. [Google Scholar] [CrossRef]
- Mukunzi, D.; Habimana, J.d.D.; Li, Z.; Zou, X. Mycotoxins detection: View in the lens of molecularly imprinted polymer and nanoparticles. Crit. Rev. Food Sci. Nutr. 2022, 63, 6034–6068. [Google Scholar] [CrossRef]
- Cao, H.H.; Molina, S.; Sumner, S.; Rushing, B.R.; Wist, J. An untargeted metabolomic analysis of acute AFB1 treatment in liver, breast, and lung cells. PLoS ONE 2025, 20, e0313159. [Google Scholar] [CrossRef]
- Zhou, R.; Wu, X.; Xue, S.; Yin, L.; Gao, S.; Zhang, Y.; Wang, C.; Wang, Y.; El-Seedi, H.R.; Zou, X.; et al. Magnetic metal-organic frameworks-based ratiometric SERS aptasensor for sensitive detection of patulin in apples. Food Chem. 2025, 466, 142200. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, Y.; Sun, Q.; Guo, Z.; Zhang, D.; Zou, X. Enzyme-assisted patulin detoxification: Recent applications and perspectives. Trends Food Sci. Technol. 2024, 146, 104383. [Google Scholar] [CrossRef]
- Zhang, B.; Li, H.; Li, Y.; Fu, X.; Du, D. A sensitive chemiluminescence immunoassay based on immunomagnetic beads for quantitative detection of zearalenone. Eur. Food Res. Technol. 2021, 247, 2171–2181. [Google Scholar] [CrossRef]
- Zhai, W.; You, T.; Ouyang, X.; Wang, M. Recent progress in mycotoxins detection based on surface-enhanced Raman spectroscopy. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1887–1909. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; He, Y.; Yuan, B.; Li, L.; Luo, L.; You, T. Simultaneous detection of multiple mycotoxins in agricultural products: Recent advances in optical and electrochemical sensing methods. Compr. Rev. Food Sci. Food Saf. 2024, 23, e70062. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Dai, X.; Yang, R.; Liu, Z.; Chen, H.; Zhang, Y.; Zhang, X. Fenton-like catalytic MOFs driving electrochemical aptasensing toward tracking lead pollution in pomegranate fruit. Food Control 2025, 169, 111006. [Google Scholar] [CrossRef]
- Liu, M.; Zareef, M.; Zhu, A.; Wei, W.; Li, H.; Chen, Q. SERS-based Au@Ag core-shell nanoprobe aggregates for rapid and facile detection of lead ions. Food Control 2024, 155, 110078. [Google Scholar] [CrossRef]
- Wu, H.; Xie, R.; Hao, Y.; Pang, J.; Gao, H.; Qu, F.; Tian, M.; Guo, C.; Mao, B.; Chai, F. Portable smartphone-integrated AuAg nanoclusters electrospun membranes for multivariate fluorescent sensing of Hg2+, Cu2+ and l-histidine in water and food samples. Food Chem. 2023, 418, 135961. [Google Scholar] [CrossRef]
- Barimah, A.O.; Chen, P.; Yin, L.; El-Seedi, H.R.; Zou, X.; Guo, Z. SERS nanosensor of 3-aminobenzeneboronic acid labeled Ag for detecting total arsenic in black tea combined with chemometric algorithms. J. Food Compos. Anal. 2022, 110, 104588. [Google Scholar] [CrossRef]
- Barimah, A.O.; Guo, Z.; Agyekum, A.A.; Guo, C.; Chen, P.; El-Seedi, H.R.; Zou, X.; Chen, Q. Sensitive label-free Cu2O/Ag fused chemometrics SERS sensor for rapid detection of total arsenic in tea. Food Control 2021, 130, 108341. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, P.; Yosri, N.; Chen, Q.; Elseedi, H.R.; Zou, X.; Yang, H. Detection of heavy metals in food and agricultural products by surface-enhanced Raman spectroscopy. Food Rev. Int. 2023, 39, 1440–1461. [Google Scholar] [CrossRef]
- Dong, Z.; Lu, J.; Wu, Y.; Meng, M.; Yu, C.; Sun, C.; Chen, M.; Da, Z.; Yan, Y. Antifouling molecularly imprinted membranes for pretreatment of milk samples: Selective separation and detection of lincomycin. Food Chem. 2020, 333, 127477. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Tao, C.; Kong, D. Multiplex SERS-based lateral flow assay for one-step simultaneous detection of neomycin and lincomycin in milk. Eur. Food Res. Technol. 2022, 248, 2157–2165. [Google Scholar] [CrossRef]
- Liang, N.; Shi, B.; Hu, X.; Shi, Y.; Wang, T.; Huang, X.; Li, Z.; Zhang, X.; Zou, X.; Shi, J. Simultaneous adsorption and fluorescent sensing of ampicillin based on a trimetallic metal-organic framework. Food Chem. 2025, 472, 142891. [Google Scholar] [CrossRef] [PubMed]
- Zeng, K.; Zhang, X.; Wei, D.; Huang, Z.; Cheng, S.; Chen, J. Chemiluminescence imaging immunoassay for multiple aminoglycoside antibiotics in cow milk. Int. J. Food Sci. Technol. 2020, 55, 119–126. [Google Scholar] [CrossRef]
- Zhang, Y.; Hassan, M.; Rong, Y.; Liu, R.; Li, H.; Ouyang, Q.; Chen, Q. An upconversion nanosensor for rapid and sensitive detection of tetracycline in food based on magnetic-field-assisted separation. Food Chem. 2022, 373, 131497. [Google Scholar] [CrossRef]
- Gao, S.; Wei, Z.; Zheng, X.; Wang, T.; Huang, X.; Shen, T.; Zhang, D.; Guo, Z.; Zhang, Y.; Zou, X. Multiplexed lateral-flow immunoassays for the simultaneous detection of several mycotoxins in foodstuffs. Trends Food Sci. Technol. 2025, 156, 104858. [Google Scholar] [CrossRef]
- Kim, T.-H.; Park, S.C.; Kim, J.E.; Yeon, H.J.; Kim, J.H.; Park, Y.S.; Kim, S.-H.; Oh, Y.-H.; Jo, G.-H. Exposure assessment for pesticide residues in agricultural products consumed in the Republic of Korea during 2016–2020. Environ. Sci. Pollut. Res. 2023, 30, 4917–4933. [Google Scholar] [CrossRef]
- Åkesson, A.; Donat-Vargas, C.; Hallström, E.; Sonesson, U.; Widenfalk, A.; Wolk, A. Associations between dietary pesticide residue mixture exposure and mortality in a population-based prospective cohort of men and women. Environ. Int. 2023, 182, 108346. [Google Scholar] [CrossRef]
- Ogah, C.; Oganah-Ikujenyo, B.; Onyeaka, H.; Ojapah, E.; Adeboye, A.; Olaniran, T. Organophosphate pesticide residues in fruits and vegetables in Nigeria: Prevalence, environmental impact, and human health implications. Environ. Sci. Pollut. Res. 2024, 31, 66568–66587. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhu, H.; Li, C.; Qian, H.; Yao, W.; Guo, Y. The present situation of pesticide residues in China and their removal and transformation during food processing. Food Chem. 2021, 354, 129552. [Google Scholar] [CrossRef]
- Prasad, S.N.; Bansal, V.; Ramanathan, R. Detection of pesticides using nanozymes: Trends, challenges and outlook. TRAC Trends Anal. Chem. 2021, 144, 116429. [Google Scholar] [CrossRef]
- Bu, Q.; Yu, F.; Cai, J.; Bai, J.; Xu, J.; Wang, H.; Lin, H.; Long, H. Preparation of sugarcane bagasse-derived Co/Ni/N/MPC nanocomposites and its application in H2O2 detection. Ind. Crops Prod. 2024, 211, 118218. [Google Scholar] [CrossRef]
- Yang, L.; Fu, Z.; Xie, J.; Ding, Z. Portable sensing of hydrogen peroxide using MOF-based nanozymes. Food Res. Int. 2024, 197, 115272. [Google Scholar] [CrossRef] [PubMed]
- Jayan, H.; Zhou, R.; Zheng, Y.; Xue, S.; Yin, L.; El-Seedi, H.R.; Zou, X.; Guo, Z. Microfluidic-SERS platform with in-situ nanoparticle synthesis for rapid E. coli detection in food. Food Chem. 2025, 471, 142800. [Google Scholar] [CrossRef] [PubMed]
- Agha, A.; Waheed, W.; Stiharu, I.; Nerguizian, V.; Destgeer, G.; Abu-Nada, E.; Alazzam, A. A review on microfluidic-assisted nanoparticle synthesis, and their applications using multiscale simulation methods. Discov. Nano 2023, 18, 18. [Google Scholar] [CrossRef]
- Khizar, S.; Zine, N.; Errachid, A.; Jaffrezic-Renault, N.; Elaissari, A. Microfluidic-based nanoparticle synthesis and their potential applications. Electrophoresis 2022, 43, 819–838. [Google Scholar] [CrossRef]
- Tao, H.; Wu, T.; Aldeghi, M.; Wu, T.C.; Aspuru-Guzik, A.; Kumacheva, E. Nanoparticle synthesis assisted by machine learning. Nat. Rev. Mater. 2021, 6, 701–716. [Google Scholar] [CrossRef]
- Fong, A.Y.; Pellouchoud, L.; Davidson, M.; Walroth, R.C.; Church, C.; Tcareva, E.; Wu, L.; Peterson, K.; Meredig, B.; Tassone, C.J. Utilization of machine learning to accelerate colloidal synthesis and discovery. J. Chem. Phys. 2021, 154, 224201. [Google Scholar] [CrossRef] [PubMed]
- Nathanael, K.; Cheng, S.; Kovalchuk, N.M.; Arcucci, R.; Simmons, M.J. Optimization of microfluidic synthesis of silver nanoparticles: A generic approach using machine learning. Chem. Eng. Res. Des. 2023, 193, 65–74. [Google Scholar] [CrossRef]
- Chen, X.; Lv, H. Intelligent control of nanoparticle synthesis on microfluidic chips with machine learning. NPG Asia Mater. 2022, 14, 69. [Google Scholar] [CrossRef]
- Tao, H.; Wu, T.; Kheiri, S.; Aldeghi, M.; Aspuru-Guzik, A.; Kumacheva, E. Self-driving platform for metal nanoparticle synthesis: Combining microfluidics and machine learning. Adv. Funct. Mater. 2021, 31, 2106725. [Google Scholar] [CrossRef]
- Li, L.; Hu, Y.; Shi, Y.; Liu, Y.; Liu, T.; Zhou, H.; Niu, W.; Zhang, L.; Zhang, J.; Xu, G. Triple-enzyme-mimicking AuPt3Cu hetero-structural alloy nanozymes towards cascade reactions in chemodynamic therapy. Chem. Eng. J. 2023, 463, 142494. [Google Scholar] [CrossRef]
- Hasanjani, H.R.A.; Zarei, K. DNA/Au-Pt bimetallic nanoparticles/graphene oxide-chitosan composites modified pencil graphite electrode used as an electrochemical biosensor for sub-picomolar detection of anti-HIV drug zidovudine. Microchem. J. 2021, 164, 106005. [Google Scholar] [CrossRef]
- Liu, W.; Yao, Y.; Liu, Q.; Chen, X.-Q. Au/Pt@ZIF-90 nanoenzyme capsule-based “explosive” signal amplifier for “all-in-tube” poct. Anal. Chem. 2024, 96, 1362–1370. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Zhou, R.; Zhang, D.; Zheng, X.; El-Seedi, H.R.; Chen, S.; Niu, L.; Li, X.; Guo, Z.; Zou, X. Magnetic nanoparticle-based immunosensors and aptasensors for mycotoxin detection in foodstuffs: An update. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13266. [Google Scholar] [CrossRef]
- Kuang, J.; Ju, J.; Lu, Y.; Chen, Y.; Liu, C.; Kong, D.; Shen, W.; Shi, H.-W.; Li, L.; Ye, J.; et al. Magnetic three-phase single-drop microextraction for highly sensitive detection of aflatoxin B1 in agricultural product samples based on peroxidase-like spatial network structure. Food Chem. 2023, 416, 135856. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Yin, L.; Ma, L.; Jayan, H.; Majeed, U.; El-Seedi, H.R.; Zou, X.; Guo, Z. Magnetic ratiometric SERS aptasensor based on Au (Core)-internal standard-Ag (shell) structure for patulin quantitative detection. Food Control 2025, 178, 111479. [Google Scholar] [CrossRef]
- Hu, H.; Tian, J.; Shu, R.; Liu, H.; Wang, S.; Yin, X.; Wang, J.; Zhang, D. A cheaper substitute for HRP: Ultra-small Cu–Au bimetallic enzyme mimics with infinitesimal steric hindrance to promote catalytic lateral flow immunodetection of clenbuterol. Lab A Chip 2024, 24, 2272–2279. [Google Scholar] [CrossRef]
- Shu, C.; Cao, J.; Gan, Z.; Qiu, P.; Chen, Z.; Guanwu, L.; Chen, Z.; Deng, C.; Tang, W. Synergistic effect between Co single atoms and Pt nanoparticles for efficient alkaline hydrogen evolution. Mater. Futures 2024, 3, 035101. [Google Scholar] [CrossRef]
- Li, T.; Fang, J.; Wan, X.; Wang, H.; Zhang, L.; Wang, L.; Qiu, X.; Liang, G. Fe3O4@Ag@Pt nanoparticles with multienzyme like activity for total antioxidant capacity assay. Food Chem. 2025, 473, 143064. [Google Scholar] [CrossRef]
- Panferov, V.G.; Zhang, W.; D’aBruzzo, N.; Liu, J. Enhancing the peroxidase-mimicking activity of gold nanoparticles for lateral flow assays: Quantitative evaluation in a kinetic view. Langmuir 2025, 41, 4894–4905. [Google Scholar] [CrossRef]
- Liao, D.; Zhao, Y.; Zhou, Y.; Yi, Y.; Weng, W.; Zhu, G. Colorimetric detection of organophosphorus pesticides based on Nb2CTx MXene self-reducing PdPt nanozyme integrated with hydrogel and smartphone. J. Food Meas. Charact. 2024, 18, 9223–9232. [Google Scholar] [CrossRef]
- Han, J.; Zhang, Y.; Lv, X.; Fan, D.; Dong, S. A facile, low-cost bimetallic iron–nickel MOF nanozyme-propelled ratiometric fluorescent sensor for highly sensitive and selective uric acid detection and its smartphone application. Nanoscale 2024, 16, 1394–1405. [Google Scholar] [CrossRef]
- Li, C.; Zhang, X.; Tang, Q.; Guo, Y.; Zhang, Z.; Zhang, W.; Zou, X.; Sun, Z. Molecularly imprinted electrochemical sensor for ethyl carbamate detection in Baijiu based on “on-off” nanozyme-catalyzing process. Food Chem. 2024, 453, 139626. [Google Scholar] [CrossRef]
- Peng, L.; Zhu, A.; Ahmad, W.; Adade, S.Y.-S.S.; Chen, Q.; Wei, W.; Chen, X.; Wei, J.; Jiao, T.; Chen, Q. A three-channel biosensor based on stimuli-responsive catalytic activity of the Fe3O4@Cu for on-site detection of tetrodotoxin in fish. Food Chem. 2024, 460, 140566. [Google Scholar] [CrossRef]
- Chang, Z.; Fu, Q.; Wang, M.; Duan, D. Advances of nanozyme-driven multimodal sensing strategies in point-of-care testing. Biosensors 2025, 15, 375. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Shao, D.; Wang, J.; Zheng, X.; Yang, Z.; Wang, A.; Chen, Z.; Gao, Y. Pre-ligand-induced porous MOF as a peroxidase mimic for electrochemical analysis of deoxynivalenol (DON). Food Chem. 2025, 480, 143860. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wang, H.; Du, K.; Yu, X.; Shentu, X. Bi-model detection of sulfonamide antibiotics using a microfluidic chip-lateral flow immunoassay based on liposome-modified PCN-222. Biosens. Bioelectron. 2025, 279, 117393. [Google Scholar] [CrossRef]
- Liu, D.; Shen, H.; Zhang, Y.; Shen, D.; Zhu, M.; Song, Y.; Zhu, Z.; Yang, C. A microfluidic-integrated lateral flow recombinase polymerase amplification (MI-IF-RPA) assay for rapid COVID-19 detection. Lab. A Chip. 2021, 21, 2019–2026. [Google Scholar] [CrossRef]
- Adampourezare, M.; Dehghan, G.; Hasanzadeh, M.; Feizi, M.-A.H. Application of lateral flow and microfluidic bio-assay and biosensing towards identification of DNA-methylation and cancer detection: Recent progress and challenges in biomedicine. Biomed. Pharmacother. 2021, 141, 111845. [Google Scholar] [CrossRef]
- Zhang, X.; Zhi, H.; Zhu, M.; Wang, F.; Meng, H.; Feng, L. Electrochemical/visual dual-readout aptasensor for Ochratoxin A detection integrated into a miniaturized paper-based analytical device. Biosens. Bioelectron. 2021, 180, 113146. [Google Scholar] [CrossRef]
- Wang, W.; Jayan, H.; Majeed, U.; Zou, X.; Hu, Q.; Guo, Z. Visual detection of Auramine O using dual-signal ratiometric fluorescent nanopaper sensor combined portable smartphone. Food Biosci. 2025, 65, 106135. [Google Scholar] [CrossRef]
- Chen, X.; Xu, J.; Li, Y.; Zhang, L.; Bi, N.; Gou, J.; Zhu, T.; Jia, L. A novel intelligently integrated MOF-based ratio fluorescence sensor for ultra-sensitive monitoring of TC in water and food samples. Food Chem. 2023, 405, 134899. [Google Scholar] [CrossRef]
- Gao, S.; Yang, W.; Zheng, X.; Wang, T.; Zhang, D.; Zou, X. Advances of nanobody-based immunosensors for detecting food contaminants. Trends Food Sci. Technol. 2025, 156, 104871. [Google Scholar] [CrossRef]
- Wei, X.; Reddy, V.S.; Gao, S.; Zhai, X.; Li, Z.; Shi, J.; Niu, L.; Zhang, D.; Ramakrishna, S.; Zou, X. Recent advances in electrochemical cell-based biosensors for food analysis: Strategies for sensor construction. Biosens. Bioelectron. 2024, 248, 115947. [Google Scholar] [CrossRef]
- Escobar, V.; Scaramozzino, N.; Vidic, J.; Buhot, A.; Mathey, R.; Chaix, C.; Hou, Y. Recent advances on peptide-based biosensors and electronic noses for foodborne pathogen detection. Biosensors 2023, 13, 258. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, Y.; Zhou, R.; Shen, T.; Zhang, D.; Guo, Z.; Zou, X. Boronic acid-assisted detection of bacterial pathogens: Applications and perspectives. Coord. Chem. Rev. 2024, 518, 216082. [Google Scholar] [CrossRef]
- Jiao, X.; Huang, X.; Yu, S.; Wang, L.; Wang, Y.; Zhang, X.; Ren, Y. A novel composite colorimetric sensor array for quality characterization of shrimp paste based on indicator displacement assay and etching of silver nanoprisms. J. Food Process Eng. 2023, 46, e14195. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, J.; Hu, X.; Huang, X.; Zhang, X.; Zou, X.; Shi, J. A visible colorimetric sensor array based on chemo-responsive dyes and chemometric algorithms for real-time potato quality monitoring systems. Food Chem. 2023, 405, 134717. [Google Scholar] [CrossRef]
- Lai, J.; Ding, L.; Liu, Y.; Fan, C.; You, F.; Wei, J.; Qian, J.; Wang, K. A miniaturized organic photoelectrochemical transistor aptasensor based on nanorod arrays toward high-sensitive T-2 toxin detection in milk samples. Food Chem. 2023, 423, 136285. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Arslan, M.; Ullah, S.; Shishir, M.R.I.; Shaukat, F.; Li, Z.; Xia, S.; Xiaobo, Z. Efficient detection of adulteration in peanut seed oil using a smartphone-based colorimetric sensor array system. J. Food Compos. Anal. 2025, 144, 107654. [Google Scholar] [CrossRef]
- Zheng, J.-J.; Zhu, F.; Song, N.; Deng, F.; Chen, Q.; Chen, C.; He, J.; Gao, X.; Liang, M. Optimizing the standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2024, 19, 3470–3488. [Google Scholar] [CrossRef]
- Jiang, B.; Duan, D.; Gao, L.; Zhou, M.; Fan, K.; Tang, Y.; Xi, J.; Bi, Y.; Tong, Z.; Gao, G.F.; et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520. [Google Scholar] [CrossRef]
- Liang, M.; Yan, X. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhu, Z.; Chen, Z.; Guo, M.; Zhang, Y.; Wang, L.; Zhu, Z. Machine learning in nanozymes: From design to application. Biomater. Sci. 2024, 12, 2229–2243. [Google Scholar] [CrossRef]
- Hamed, E.M.; Rai, V.; Li, S.F. Single-atom nanozymes with peroxidase-like activity: A review. Chemosphere 2024, 346, 140557. [Google Scholar] [CrossRef]
Preparation Methods | Reducing Agents | ||||
---|---|---|---|---|---|
Ascorbic Acid | Sodium Citrate | NaBH4 | Other Agents | ||
One-pot synthesis | Template-free | [28,54,56,78,89,98,99,106,120,121,123,124,125,134,135] | [45,114,136] | [52,58,130,137,138,139] | [140] |
Template-assisted | –– | –– | [76,77,84] | [29,85,86] | |
Seed-growth methods | Au NPs as seeds | [16,41,43,44,47,59,60,62,63,72,73,87,88,97,127,128,141,142,143,144,145,146,147] | [46,69,129,148,149,150] | [70,71] | [14,40,53] |
Au NRs as seeds | [57,107,122] | –– | –– | –– | |
Other nanomaterials as seeds | [104,111,112,113] | –– | [75] | [151] |
Analytes | Au/Pt Nanozymes | Detection Methods | Detection Limit | Real Samples | Ref. |
---|---|---|---|---|---|
Bacterial pathogens | |||||
Clavibacter michiganensis | Au@Pt | Lateral flow immunoassay | 300 CFU/mL | Potato tuber extract | [43] |
Salmonella typhimurium | Au@Pt | Colorimetric | 12 CFU/mL | Chicken | [44] |
Escherichia coli O157:H7 | Dumbbell Au-Pt | Colorimetric | 2 CFU/mL | Tap water and romaine lettuce | [57] |
Staphylococcus aureus | Au/Pt nanoclusters | Colorimetric | 80 CFU/mL | Milk, orange juice and human serum | [58] |
Staphylococcus aureus | Fe3O4/TiO2 nanotubes/Au NP/Pt NP | Colorimetric | 4 cells | Milk and juice | [74] |
Escherichia coli O157:H7 | Sea cucumber-like AuPt/PCN-224 | Colorimetric (naked-eye, absorption spectra, and smartphone) | 10, 1, and 2 CFU/mL | Lake water, lettuce and milk | [77] |
Listeria monocytogenes | ZIF-8@Au nanostar@PtNPs | Colorimetric and SERS dual-mode | 7 and 5 CFU/mL | Milk, pork, and lettuce | [79] |
Staphylococcus aureus | Porous Au@Pt | Colorimetric | 40 CFU/mL | Milk | [98] |
Escherichia coli O157:H7 | Au@AuPt | Pressure meter (O2) | 3 CFU/mL | Water and tea | [99] |
Salmonella | Au@Pt | Colorimetric (microfluidic) | 168 CFU/mL | Pork meat | [127] |
Salmonella typhimurium | Au@Pt | Colorimetric | 17 CFU/mL | Chicken meat | [128] |
Salmonella | Au@PtPd | Colorimetric (Finger-actuated microfluidic chip) | 45 CFU/mL | Pork | [134] |
Nine Pathogens | DNA-Ag/Pt, DNA-Au/Pt, DNA-Cu/Pt, and DNA-Pt-nanoenzyme | Pressure sensor array | 102 and 104 CFU/mL | Tap water and raw beef | [137] |
Staphylococcus aureus | Ultrasmall AuPtIrRuRh | Lateral flow immunoassay (colorimetric and catalytic colorimetric) | 1.5 × 103 and 15 CFU/mL | Milk and orange juice | [138] |
Listeria monocytogenes | Au@Pt | Magnetic relaxation switching | 30 CFU/mL | Chicken | [141] |
Salmonella | Au@Pt | Colorimetric | 56 CFU/mL | Skim milk and ultrapure water | [145] |
Escherichia coli O157:H7 | Au@AuPt | ELISA | 100 CFU/mL | Tap water and milk tea | [166] |
Mycotoxins | |||||
Aflatoxin B1 | Au@Pt | Lateral flow immunoassay | 4 pg/mL | Corn | [14] |
Aflatoxin B1 | AuPt@ZIF-67 | Flow-injection chemiluminescence immunoassay | 0.68 pg/mL | Corn and wheat | [29] |
Zearalenone | Au0.4Pt0.6 | Colorimetric | 0.6979 ng/mL | Wheat and corn | [45] |
Ochratoxin A | AuPt@IL@Fe3O4 | Colorimetric | 0.078 ng/mL | Beer and corn | [72] |
Ochratoxin A | AuPt NPs/Zr-MOF | Electrochemical | 0.525 pg/mL | Corn flour, black tea and coffee powder | [76] |
Zearalenone | Pt@Au nanoflower | Lateral flow immunoassay | 0.052 ng/mL | Corn | [104] |
Aflatoxin B1 | Dendritic nanorod-like Au@Pd@Pt | Photoelectrochemical | 0.09 pg/mL | Peanut milk | [107] |
Deoxynivalenol | Pt/Au/MIL-100(Fe) | Colorimetric | 44.14 ng/mL | Wheat and maize flour | [112] |
Fumonisin B1 | Au@Pt | Electrochemical | 21 fg/mL | Corn and wheat | [124] |
Deoxynivalenol and zearalenone | Au@Pt | Multiplexed lateral flow immunoassay | 0.24 and 0.04 ng/mL | Corn, wheat and water | [125] |
Aflatoxin B1 | AuPt@CeO2 | Electrochemical | 2.13 fg/mL | Walnuts, oats, Quisqualis Fructu and Radix astragali | [130] |
Aflatoxin B1 | AuPtNPs/Ni–Co NCs | Colorimetric and electrochemical dual-mode | 0.49 and 0.76 pg/mL | Edible oil, peanut, and cornmeal | [139] |
Heavy metal ions | |||||
Hg2+, Pb2+, Co2+, Cr6+, and Fe3+ | AuPt@Fe-N-C, AuPt@N-C, and Fe-N-C | Colorimetric sensor array | 0.5 μM | Seawater and salmon | [114] |
Antibiotic, pesticide and veterinary drug residues | |||||
Parathion | Au@Pt | Colorimetric (Bio-barcode) | 2.13 × 10–3 μg/kg | Rice, pear, apple, and cabbage | [41] |
Malathion | CeO2 nanorods@AuPt | Colorimetric | 1.5 nM | Cucumber juice and human serum | [54] |
Carbendazim | Au@Pt | Colorimetric | 0.038 ng/mg | Leeks and rice | [46] |
Glutathione | Capreomycin@AuPt | Colorimetric | 0.58 μM | Tomato supernatant | [52] |
Acid phosphatase and malathion | Au@Pt porous nanospheres | Colorimetric | 0.047 U/L and 1.96 nM | Fetal bovine serum and cucumber juice | [56] |
Enrofloxacin | Au@Pt nanoflowers/CoSe2 | Electrochemical | 1.59 fg/mL | Milk | [61] |
3-Phenoxybenzoic acid | Au@Pt | Lateral flow immunoassay | 0.005 ng/mL | Milk and lake water | [63] |
Gentamicin, streptomycin, and clenbuterol | Fe3O4/Au@Pt | Lateral flow immunoassay | 10.1, 6.3, and 1.1 pg/mL | Pork, milk, and honey | [73] |
Furosemide | Au/Pt@CeO2 and Au/Pt@Cu–MOF | Electrochemical | 1 ng/L | Diet tea, diet bread and diet capsule | [78] |
Ractopamine, clenbuterol, and gentamicin | GO/Au–AuPt | Lateral flow immunoassay | 0.013, 0.12, and 0.12 ng/mL | Pork, chicken, lake water, and river water | [83] |
Dipterex | Ti3C2Tx MXene@AuPt | Colorimetric | 0.479 ng/mL | Insecticide samples | [86] |
Tetracycline | Au@Pt/carbon nanotubes | Colorimetric | 0.74 ng/mL | Milk and pork | [89] |
Ofloxacin | Au@Pt | Lateral flow immunoassay | 0.017 ng/mL | Chicken and fish | [97] |
Lincomycin | SnS2 QDs/Cys-AuPt heterogeneous nanorings | Electrochemiluminescence | 0.7 fg/mL | Milk | [111] |
Omethoate | Pt@Au | Colorimetric | 0.01 μg/L | Chinese cabbage | [120] |
Chloramphenicol | Au@Pt | Colorimetric and SERS dual-mode | 9.23 × 10−9 and 4.96 × 10−13 M | Milk | [129] |
Acetamiprid | Au@Pt | Lateral flow assay (aptamer) | 0.17 ng/mL | Tomato | [143] |
Acetamiprid | Au@Pt NPs | Lateral flow assay (colorimetric and catalytic colorimetric) | 0.33 ng/mL and 0.068 ng/mL | Tomato and rape | [144] |
Imidacloprid | Au@Pt | Colorimetric and fluorescence dual-mode | 0.88 and 1.14 μg/L | Cabbage, cucumber, and zucchini | [148] |
Other food hazards | |||||
Antioxidants | Au2Pt | Three-channel colorimetric sensor array | <0.2 μM | Milk, green tea and orange juice | [28] |
Okadaic acid | Au@Pt | Lateral flow immunoassay | 0.5 ng/mL | Seawater, river water, and fish | [40] |
H2O2 | SiO2@Au@Pt | Colorimetric | 1.0 mM | –– | [47] |
Myoglobin | Au@Pt | Lateral flow immunoassay | 0.15 ng/mL | Beef, chicken, and turkey meat | [53] |
Toxin B in Clostridium difficile | Au/Pt | Lateral flow immunoassay | 1 ng/mL | –– | [62] |
Saxitoxin | Fe3O4@Au-Pt | Fluorescence | 0.6 nM | Shellfish | [70] |
Saxitoxin | Fe3O4@Au-Pt/MIP | Colorimetric and SERS | 3.1 and 0.03 nM | Mussel and clam | [71] |
H2O2 | AuPtRu/ZnO-rGO | Colorimetric | 3.0 μM | Milk | [84] |
Cysteine | MoS2-Au@Pt | Colorimetric | 0.7 μM | Tablets | [87] |
Bisphenol A | Chitosan/MWCNTs-AuPtPd | Electrochemical | 1.4 nM | Tap water, orange juice and milk | [88] |
Seven phenolic acids | Au@Pt, Au@Os, and Au@Pd | Colorimetric sensor array | 0.0032, 0.0017, 0.0031, 0.003, 0.0015, 0.0028, and 0.0013 mM | Tap water, plant, fruit, and Chinese medicine | [123] |
H2O2 | AuPt | Electrochemical | 2.5 µM | Raw cow milk | [135] |
Cysteine | Au@Pt | Colorimetric | 1.5 nM | Fetal bovine serum and fresh milk | [142] |
L-histidine | Au@Pt | Fluorescence | 6.2 μM | Infant formula | [149] |
Histamine | Au@Pt@Au | Colorimetric (MIP-assisted ELISA) | 0.069 mg/L | Yellow rice wine and liqueur | [150] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, S.; Xu, X.; Zheng, X.; Zhang, Y.; Zhang, X. Bimetallic Gold--Platinum (AuPt) Nanozymes: Recent Advances in Synthesis and Applications for Food Safety Monitoring. Foods 2025, 14, 3229. https://doi.org/10.3390/foods14183229
Gao S, Xu X, Zheng X, Zhang Y, Zhang X. Bimetallic Gold--Platinum (AuPt) Nanozymes: Recent Advances in Synthesis and Applications for Food Safety Monitoring. Foods. 2025; 14(18):3229. https://doi.org/10.3390/foods14183229
Chicago/Turabian StyleGao, Shipeng, Xinhao Xu, Xueyun Zheng, Yang Zhang, and Xinai Zhang. 2025. "Bimetallic Gold--Platinum (AuPt) Nanozymes: Recent Advances in Synthesis and Applications for Food Safety Monitoring" Foods 14, no. 18: 3229. https://doi.org/10.3390/foods14183229
APA StyleGao, S., Xu, X., Zheng, X., Zhang, Y., & Zhang, X. (2025). Bimetallic Gold--Platinum (AuPt) Nanozymes: Recent Advances in Synthesis and Applications for Food Safety Monitoring. Foods, 14(18), 3229. https://doi.org/10.3390/foods14183229