Physicochemical Properties of Starch Isolated from Betahealth, a High β-Glucan Barley Cultivar
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Barley Starch Isolation
2.3. Composition of Barley Grains and Barley Starch
2.4. Shape and Particle Size of Barley Starch
2.5. X-Ray Diffraction of Barley Starch
2.6. Gelatinization Properties of Barley Starch
2.7. Pasting Properties of Barley Starch
2.8. Statistical Analysis
3. Results and Discussion
3.1. Composition of Barley Grains and Barley Starch
3.2. Particle Morphology and Size Distribution of Barley Starch
3.3. X-Ray Diffraction Patterns of Barly Starch
3.4. Gelatinization Parameters of Barley Starch
3.5. Pasting Properties of Barley Starch
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GSD | granule size distribution |
To | onset temperature |
Tp | peak temperature |
Tc | conclusion temperature |
ΔH | gelatinization enthalpy |
RVA | rapid visco analyzer |
References
- FAO. FAOSTAT (Food and Agriculture Organization Statistics) Database: Land Use. Available online: https://www.fao.org/faostat/en/#data/RL (accessed on 31 August 2025).
- Tosh, S.M.; Bordenave, N. Emerging science on benefits of whole grain oat and barley and their soluble dietary fibers for heart health, glycemic response, and gut microbiota. Nutr. Rev. 2020, 78, 13–20. [Google Scholar] [CrossRef]
- Kumbhar, B.K.; Kulkarni, K.S.; Kadam, R.K.; Karuppannan, K.; Deshmukh, R.; Sonah, H. Exploring the significance of β-glucan in grains of hulless barley. Plants 2023, 12, 2877. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Yin, L.; Zhou, L. Extraction and characterization of waxy and normal barley β-glucans and their effects on waxy and normal barley starch pasting and degradation properties and mash filtration rate. Food Hydrocoll. 2023, 137, 108338. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D. The use of the rapid visco analyser (RVA) in breeding and selection of cereals. J. Cereal Sci. 2016, 70, 282–290. [Google Scholar] [CrossRef]
- Jaiswal, S.; Parween, S.; Singla-Pareek, S.L.; Pareek, A. Development of barley lines with altered starch granule size distribution. J. Agric. Food Chem. 2023, 71, 10718–10728. [Google Scholar]
- Kim, H.S.; Lee, S.K. Effects of barley starch substitution on bread quality and consumer acceptability. Food Sci. Nutr. 2020, 8, 1035–1042. [Google Scholar]
- EFSA. European Food Safety Authority. Panel on Dietetic Products Nutrition and Allergies. Scientific opinion on the substantiation of health claims related to beta-glucans from oats and barley. EFSA J. 2011, 9, 2471. [Google Scholar]
- Bai, Y.; Zhou, H.M.; Zhu, K.R.; Li, Q. Effect of thermal processing on the molecular, structural, and antioxidant characteristics of highland barley β-glucan. Carbohydr. Polym. 2021, 271, 118416. [Google Scholar] [CrossRef]
- Islam, M.Z.; An, H.G.; Kang, S.J.; Lee, Y.T. Physicochemical and bioactive properties of a high β-glucan barley variety ‘Betaone’ affected by germination processing. Int. J. Biol. Macromol. 2021, 177, 129–134. [Google Scholar] [CrossRef]
- Tang, H.; Watanabe, K.; Mitsunaga, T. Structure and functionality of large, medium and small granule starches in normal and waxy barley endosperms. Carbohydr. Polym. 2002, 49, 217–224. [Google Scholar] [CrossRef]
- Milner, S.G.; Jost, M.; Taketa, S.; Mazón, E.R.; Himmelbach, A.; Oppermann, M.; Weise, S.; Knüpffer, H.; Basterrechea, M.; König, P.; et al. Genebank genomics highlights the diversity of a global barley collection. Nat. Genet. 2019, 51, 319–326. [Google Scholar] [CrossRef]
- Ham, J.R.; Lee, H.I.; Lee, Y.; Lee, H.J.; Kim, H.Y.; Son, Y.J.; Lee, M.K.; Lee, M.J. Dual beneficial effects of naked barley “Betaone” extract on high-fat diet/streptozotocin-induced hyperglycemia and hepatosteatosis in mice. J. Cereal Sci. 2021, 102, 103358. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kim, J.S.; Park, E.H.; Lim, H.J. Effects of Betaone barley extract on adipocyte differentiation in high-fat diet-induced obesity. J. Korean Soc. Food Sci. Nutr. 2021, 50, 1040–1046. [Google Scholar]
- Zhu, F. Barley starch: Composition, structure, properties, and modifications. Compr. Rev. Food Sci. Food Saf. 2017, 16, 558–579. [Google Scholar] [CrossRef]
- Punia, S. Barley starch: Structure, properties and in vitro digestibility—A review. Int. J. Biol. Macromol. 2020, 155, 868–875. [Google Scholar] [CrossRef]
- RDA. Rural Development Administration. Guideline of Agricultural Practices; Rural Development Administration: Wanju, Republic of Korea, 2012. [Google Scholar]
- Andersson, A.A.M.; Andersson, R.; Åman, P. Starch and byproducts from a laboratory-scale barley starch isolation procedure. Cereal Chem. 2001, 78, 507–513. [Google Scholar] [CrossRef]
- Bae, J.S.; Jeong, Y.S.; Kim, J.W.; Lee, E.S.; Lee, M.J.; Hong, S.T. β-Glucanase-assisted extraction of starch from glutinous barley. Korean J. Agric. Sci. 2012, 39, 387–393. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 17th ed.; Association of Official Analytical Communities: Rockville, MD, USA, 2000; pp. 1–26. [Google Scholar]
- McCleary, B.V.; Glennie-Holmes, M. Enzymic quantification of (1→3) (1→4)-β-D-glucan in barley and malt. J. Inst. Brew. 1985, 91, 285–295. [Google Scholar] [CrossRef]
- AACC. American Association of Cereal Chemists. Approved Methods of the AACC, 11th ed.; AACC: St. Paul, MN, USA, 2000; p. Ch.76. [Google Scholar]
- Na, J.H.; Jeong, G.A.; Park, H.J.; Lee, C.J. Impact of esterification with malic acid on the structural characteristics and in vitro digestibilities of different starches. Int. J. Biol. Macromol. 2021, 174, 540–548. [Google Scholar] [CrossRef]
- Yoon, Y.M.; Jeong, G.A.; Park, S.G.; Park, J.C.; Hur, O.S.; Chae, R.; Lee, C.J. Physicochemical properties of Betaone barley starch depending on starch isolation methods. Food Eng. Prog. 2024, 28, 333–341. [Google Scholar] [CrossRef]
- Åman, P.; Newman, C.W. Chemical composition of some different types of barley grown in Montana, USA. J. Cereal Sci. 1986, 4, 133–141. [Google Scholar] [CrossRef]
- Sullivan, O.; Arendt, E.; Gallagher, E. The increasing use of barley and barley by-products in the production of healthier baked goods. Trends Food Sci. Technol. 2013, 29, 124–134. [Google Scholar] [CrossRef]
- Feng, X.; Rahman, M.M.; Hu, Q.; Wang, B.; Karim, H.; Guzmán, C.; Harwood, W.; Xu, Q.; Zhang, Y.; Tang, H.; et al. HvGBSSI mutation at the splicing receptor site affected RNA splicing and decreased amylose content in barley. Front. Plant Sci. 2022, 13, 1003333. [Google Scholar] [CrossRef] [PubMed]
- Hebelstrup, K.H.; Nielsen, M.M.; Carciofi, M.; Andrzejczak, O.; Shaik, S.S.; Blennow, A.; Palcic, M.M. Waxy and non-waxy barley cultivars exhibit differences in the targeting and catalytic activity of GBSS1a. J. Exp. Bot. 2017, 68, 931–941. [Google Scholar] [CrossRef]
- Langenaeken, N.A.; De Schepper, C.F.; De Schutter, D.P.; Courtin, C.M. Different gelatinization characteristics of small and large barley starch granules impact their enzymatic hydrolysis and sugar production during mashing. Food Chem. 2019, 295, 138–146. [Google Scholar] [CrossRef]
- Mansur, A.R.; Jeong, G.A.; Lee, C.J. Preparation, physicochemical properties, and in vivo digestibility of thermostable resistant starch from malic acid-treated wheat starch. Food Res. Int. 2022, 162, 112159. [Google Scholar] [CrossRef]
- Xie, J.; Hong, Y.; Gu, Z.; Cheng, L.; Li, Z.; Li, C.; Ban, X. Highland barley starch: Structures, properties, and applications. Foods 2023, 12, 387. [Google Scholar] [CrossRef]
- Nie, M.; Piao, C.; Li, J.; He, Y.; Xi, H.; Chen, Z.; Li, W.; Li, L.; Hu, Y.; Wang, F.; et al. Effects of different extraction methods on the gelatinization and retrogradation properties of highland barley starch. Molecules 2022, 27, 6524. [Google Scholar] [CrossRef]
- Chen, X.; Ma, M.; Liu, X.; Zhang, C.; Xu, Z.; Li, H.; Sui, Z.; Corke, H. Multi-scale structure of A- and B-type granules of normal and waxy hull-less barley starch. Int. J. Biol. Macromol. 2022, 200, 42–49. [Google Scholar] [CrossRef]
- Stevnebø, A.; Sahlström, S.; Svihus, B. Starch structure and degree of starch hydrolysis of small and large starch granules from barley varieties with varying amylose content. Anim. Feed. Sci. Technol. 2006, 130, 23–38. [Google Scholar] [CrossRef]
- Bunting, J.S.; Ross, A.S.; Meints, B.M.; Hayes, P.M.; Kunze, K.; Sorrells, M.E. Effect of genotype and environment on food-related traits of organic winter naked barleys. Foods 2022, 11, 2642. [Google Scholar] [CrossRef]
- Sasaki, T.; Yasui, T.; Matsuki, J. Effect of amylose content on gelatinization, retrogradation, and pasting properties of starches from waxy and nonwaxy wheat and their F1 seeds. Cereal Chem. 2000, 77, 58–63. [Google Scholar] [CrossRef]
Sample | Varieties | Composition (%) 1 | ||||||
---|---|---|---|---|---|---|---|---|
Moisture | Ash | Protein | Total Starch | β-Glucan | Lipids | Amylose | ||
Whole flour | Shikoku Hadaka 97 | 10.1 ± 0.01 b | 0.82 ± 0.01 b | 11.2 ± 0.09 b | 68.7 ± 0.35 b | 5.81 ± 0.00 c | 1.11 ± 0.01 c | 6.56 ± 0.00 c |
Glacier AC38 | 9.42 ± 0.06 c | 0.80 ± 0.02 b | 10.7 ± 0.20 c | 68.3 ± 0.18 b | 8.79 ± 0.00 b | 1.45 ± 0.04 b | 31.1 ± 0.16 a | |
Dahyang | 10.3 ± 0.04 a | 0.59 ± 0.00 c | 10.9 ± 0.23 bc | 73.6 ± 0.16 a | 5.30 ± 0.02 d | 1.03 ± 0.02 d | 21.6 ± 0.56 b | |
Betahealth | 9.31 ± 0.04 c | 1.06 ± 0.02 a | 11.8 ± 0.12 a | 56.6 ± 0.45 c | 12.3 ± 0.04 a | 2.74 ± 0.02 a | 3.66 ± 0.20 d | |
Starch | Shikoku Hadaka 97 | 6.46 ± 0.02 b | 0.17 ± 0.01 c | 0.27 ± 0.01 a | 97.1 ± 0.07 a | 0.06 ± 0.01 a | 0.13 ± 0.04 c | 10.4 ± 0.02 b |
Glacier AC38 | 6.46 ± 0.03 b | 0.21 ± 0.01 b | 0.16 ± 0.01 b | 92.1 ± 0.18 b | 0.01 ± 0.00 b | 0.21 ± 0.01 ab | 43.4 ± 0.12 a | |
Dahyang | 6.46 ± 0.16 b | 018 ± 0.02 c | 0.15 ± 0.04 b | 92.6 ± 0.64 b | 0.01 ± 0.00 b | 0.24 ± 0.04 a | 43.8 ± 0.51 a | |
Betahealth | 7.92 ± 0.02 a | 0.34 ± 0.01 a | 0.19 ± 0.02 b | 97.3 ± 0.35 a | 0.01 ± 0.01 b | 0.17 ± 0.01 bc | 8.75 ± 0.02 c |
Sample | Varieties | GSD (Granule Size Distribution) 1 | ||||
---|---|---|---|---|---|---|
Mean (μm) 2 | Median (μm) | D10 (μm) | D50 (μm) | D90 (μm) | ||
Whole flour | Shikoku Hadaka 97 | 237 ± 5.55 a | 212 ± 6.95 a | 8.44 ± 0.38 a | 212 ± 6.95 a | 526 ± 5.75 a |
Glacier AC38 | 259 ± 14.1 a | 237 ± 15.7 a | 8.75 ± 0.16 a | 237 ± 15.7 a | 549 ± 13.3 a | |
Dahyang | 238 ± 27.4 a | 212 ± 34.3 a | 9.49 ± 0.65 a | 242 ± 34.3 a | 513 ± 39.8 a | |
Betahealth | 263 ± 37.8 a | 232 ± 33.6 a | 7.83 ± 1.66 a | 232 ± 33.6 a | 592 ± 87.7 a | |
Starch | Shikoku Hadaka 97 | 11.4 ± 0.05 b | 12.1 ± 0.08 b | 1.63 ± 0.03 b | 12.1 ± 0.08 b | 20.0 ± 0.05 a |
Glacier AC38 | 8.63 ± 0.05 c | 8.35 ± 0.05 c | 2.59 ± 0.53 a | 8.35 ± 0.05 c | 14.8 ± 0.08 b | |
Dahyang | 12.2 ± 0.07 a | 12.7 ± 0.08 a | 1.72 ± 0.01 b | 12.7 ± 0.08 a | 19.9 ± 0.03 a | |
Betahealth | 6.96 ± 0.05 d | 7.01 ± 0.03 d | 1.09 ± 0.01 c | 7.02 ± 0.05 d | 11.9 ± 0.13 c |
Varieties | Gelatinization Parameters 2 | ||||
---|---|---|---|---|---|
To 1 (°C) | Tp (°C) | Tc (°C) | Tc–To (°C) | ΔH (J/g) | |
Shikoku Hadaka 97 | 61.4 ± 0.24 a | 68.0 ± 0.29 a | 82.3 ± 1.25 b | 20.9 ± 1.45 ab | 7.7 ± 0.44 a |
Glacier AC38 | 62.0 ± 0.36 a | 68.2 ± 0.17 a | 80.1 ± 1.13 ab | 18.2 ± 1.48 ab | 8.2 ± 1.09 a |
Dahyang | 61.8 ± 0.17 a | 68.0 ± 0.12 a | 79.3 ± 1.07 a | 17.5 ± 1.09 a | 8.7 ± 0.38 a |
Betahealth | 68.5 ± 1.36 b | 77.7 ± 0.57 b | 90.1 ± 0.96 c | 21.6 ± 2.27 b | 7.5 ± 1.15 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-C.; Jeong, G.A.; Park, S.-G.; Yoon, Y.-M.; Hur, O.-S.; Lee, C.J. Physicochemical Properties of Starch Isolated from Betahealth, a High β-Glucan Barley Cultivar. Foods 2025, 14, 3226. https://doi.org/10.3390/foods14183226
Park J-C, Jeong GA, Park S-G, Yoon Y-M, Hur O-S, Lee CJ. Physicochemical Properties of Starch Isolated from Betahealth, a High β-Glucan Barley Cultivar. Foods. 2025; 14(18):3226. https://doi.org/10.3390/foods14183226
Chicago/Turabian StylePark, Jin-Cheon, Gyeong A Jeong, Seul-Gi Park, Young-Mi Yoon, On-Sook Hur, and Chang Joo Lee. 2025. "Physicochemical Properties of Starch Isolated from Betahealth, a High β-Glucan Barley Cultivar" Foods 14, no. 18: 3226. https://doi.org/10.3390/foods14183226
APA StylePark, J.-C., Jeong, G. A., Park, S.-G., Yoon, Y.-M., Hur, O.-S., & Lee, C. J. (2025). Physicochemical Properties of Starch Isolated from Betahealth, a High β-Glucan Barley Cultivar. Foods, 14(18), 3226. https://doi.org/10.3390/foods14183226